It’s hard enough finding your way around planet Earth, but what do you do when you’re trying to find your way around the Solar System? Today we’ll talk about how spacecraft navigate from world to world.
We record Astronomy Cast as a live Google+ Hangout on Air every Monday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
Freelance animator and storyboard artist Stanley VonMedvey has started using his remarkable talents to create short videos to explain a pretty complex topic: how spacecraft work. He’s made two so far and they are wonderfully concise, clear and easy to understand. Plus his hand-drawn animations are incredible.
Here’s the first one that caught my eye, about the space shuttle and the concept of reusability:
VonMedvey describes himself as “completely obsessed with and fascinated by space exploration,” and he wants to share what he’s learned over the years about spaceflight.
He’d like the opportunity and resources to make more videos, and has started a Patreon page to help in this process. Right now, he creates the videos on his own (using the time-honored home-recording technique of draping a blanket over his head) in his home officee.
“I’d like to make a lot more videos,” he writes on Patreon, “explaining things like Hohmman transfers and laser propulsion and the construction techniques of O’Neill cylinders. I want to make long form videos (2-3 minutes) that explain a general idea, and short form videos (30 seconds) that cover a single word, like “ballistics” or “reaction control”.
The second video he’s done covers expendable launch vehicles:
Enjoy these great videos and if you’d like to see more, consider supporting his work. See more of his drawings at his website.
Europa is probably the best place in the Solar System to go searching for life. But before they’re launched, any spacecraft we send will need to be squeaky clean so don’t contaminate the place with our filthy Earth bacteria. Continue reading “Will We Contaminate Europa?”
Like me, you’re probably a little ego-geocentric about the importance of Earth. It’s where you were born, it’s where you keep all your stuff. It’s even where you’re going to die – I know, I know, not you Elon Musk, you’re going to “retire” on Mars, right after you nuke the snot out of it.
For the rest of us, Earth is the place. But in reality, when it comes to planets, this is somebody else’s racket. This is Jupiter’s Solar System, and we all sleep on its couch.
Jupiter accounts for 75% of the mass of the planets of the Solar System, nearly 318 times more massive than Earth, and isn’t just the name of everyone’s favorite secret princess. It’s the 1.9 × 10^27 kilogram gorilla in the room. Whatever Jupiter wants, Jupiter gets. Jupiter hungry? JUPITER HUNGRY.
What Jupiter apparently wants is to throw our stuff around the Solar System. Thanks to its immense gravity, Jupiter yanks material around in the asteroid belt, preventing the poor space rocks from ever forming up into anything larger than Ceres.
Jupiter gobbles up asteroids, comets, and spacecraft, and hurtles others on wayward trajectories. Who knows how much mayhem and destruction Jupiter has gotten into over the course of its 4.5 billion years in the Solar System.
Some scientists think we owe our existence to Jupiter’s protective gravity. It greedily vacuums up dangerous asteroids and comets in the Solar System.
Other scientists totally disagree and think that Jupiter is a bully, perturbing perfectly safe comets and asteroids into dangerous trajectories and flushing earth’s head in the toilet during recess.
Which is it? Is Jupiter our friend and protector, or evil enemy. We’ve already figured out how to dismantle you Jupiter, don’t make us put our plans into action.
Some of the most dangerous objects in the Solar System are long-period comets. These balls of rock and ice come from the deepest depths of the Oort cloud. Some event nudges these death missiles into trajectories that bring them into the inner Solar System, to shoot past the Sun and maybe, just maybe, smash into a planet and kill 99.99999% of the life on it.
There’s a pretty good chance some of the biggest extinctions in the history of the Earth were caused by impacts by long period comets.
As these comets make their way through the Solar System, they interact with Jupiter’s massive gravity, and get pushed this way and that. As we saw with Comet Shoemaker-Levy, some just get consumed entirely, like a tasty ice-rock sandwich.
The theory goes that Jupiter pushes these dangerous comets out of their murder orbits so they don’t smash into Earth and kill us all.
But a competing theory says that Jupiter actually diverts comets that would have completely missed our planet into deadly, Earth-killing trajectories.
Will the Sailor Scouts provide us any clues? Who can say?
Here’s friend of the show, Dr. Kevin Grazier, a planetary scientist and scientific advisor for many of your favorite sci-fi TV shows and movies.
… [ see video for Interview with Dr. Grazier about Jupiter]
So which is it? Is Jupiter our friend or enemy? We’ll need to run more simulations and figure this out with more accuracy. And until then, it’s probably best if we just tremble in fear and worship Jupiter as a dark and capricious god until the evidence proves otherwise. It’s what Pascal would wager.
What are some other theories you’ve heard about and you’d like us to dig in further? Make some suggestions in the comments below.
Thanks for watching! Click subscribe, never miss an episode.
If you’re into other facts about our Solar system here’s a link to our Solar system playlist. Thanks to Ben Johnson and Tal Ghengis, and the members of the Guide to Space community who keep these shows rolling. Love space science? Want to see episodes before anyone else? Get extras, contests, and shenanigans with Jay, myself and the rest of the team. Get in on the action. Click here.
It’s a staple of scifi, and a requirement if we’re going to travel long-term in space. Will we ever develop artificial gravity?
It’s safe to say we’ve spent a significant amount of our lives consuming science fiction.
Berks, videos, movies and games.
Science fiction is great for the imagination, it’s rich in iron and calcium, and takes us to places we could never visit. It also helps us understand and predict what might happen in the future: tablet computers, cloning, telecommunication satellites, Skype, magic slidey doors, and razors with 5 blades.
These are just some of the predictions science fiction has made which have come true.
Then there are a whole bunch of predictions that have yet to happen, but still might, Fun things like the climate change apocalypse, regular robot apocalypse, the giant robot apocalypse, the alien invasion apocalypse, the apocalypse apocalypse, comet apocalypse, and the great Brawndo famine of 2506. Continue reading “Could We Make Artificial Gravity?”
On Sunday, May 31, the Cassini spacecraft will perform its last close pass of Hyperion, Saturn’s curiously spongelike moon. At approximately 9:36 a.m. EDT (13:36 UTC) it will zip past Hyperion at a distance of about 21,000 miles (34,000 km) – not its closest approach ever but considerably closer (by 17,500 miles/28,160 km) than it was when the image above was acquired.*
This will be Cassini’s last visit of Hyperion. It will make several flybys of other moons within Saturn’s equatorial plane over the course of 2015 before shifting to a more inclined orbit in preparation of the end phase of its mission and its operating life in 2017.
At 255 x 163 x 137 miles (410 x 262 x 220 km) in diameter, Hyperion is the largest of Saturn’s irregularly-shaped moons. Researchers suspect it’s the remnant of a larger body that was blown apart by an impact. Hyperion’s craters appear to have a “punched-in” look rather than having been excavated, and have no visible ejecta or secondary craters nearby.
Hyperion orbits Saturn in an eccentric orbit at a distance of over 920,000 miles (1.48 million km)…that’s almost four times the distance our Moon is from us! This distance – as well as constant gravitational nudges from Titan – prevents Hyperion from becoming tidally locked with Saturn like nearly all of its other moons are. In fact its rotation is more of haphazard tumble than a stately spin, making targeted observations of any particular regions on its surface virtually impossible.
Images from the May 31 flyby are expected to arrive on Earth 24 to 48 hours later.
As small as it is Hyperion is Saturn’s eighth-largest moon, although it appears to be very porous and has a density half that of water. Read more about Hyperion here and see more images of it from Cassini here and here.
*Cassini did come within 310 miles (500 km) of Hyperion on Sept. 26, 2005, but the images to make up the view above were acquired during approach.
UPDATE June 1, 2015: the raw images from Cassini’s flyby have arrived on Earth, check out a few below. (Looks like Cassini ended up with the same side of Hyperion again!)
For more than four years NASA’s MESSENGER spacecraft has been orbiting our solar system’s innermost planet Mercury, mapping its surface and investigating its unique geology and planetary history in unprecedented detail. But the spacecraft has run out of the fuel needed to maintain its extremely elliptical – and now quite low-altitude – orbit, and the Sun will soon set on the mission when MESSENGER makes its fatal final dive into the planet’s surface at the end of the month.
On April 30 MESSENGER will impact Mercury, falling down to its Sun-baked surface and colliding at a velocity of 3.9 kilometers per second, or about 8,700 mph. The 508-kilogram spacecraft will create a new crater on Mercury about 16 meters across.
The impact is estimated to occur at 19:25 UTC, which will be 3:25 p.m. at the John Hopkins University Applied Physics Lab in Laurel, Maryland, where the MESSENGER operations team is located. Because the spacecraft will be on the opposite side of Mercury as seen from Earth the impact site will not be in view.
But while it’s always sad to lose a dutiful robotic explorer like MESSENGER, its end is bittersweet; the mission has been more than successful, answering many of our long-standing questions about Mercury and revealing features of the planet that nobody even knew existed. The data MESSENGER has returned to Earth – over ten terabytes of it – will be used by planetary scientists for decades in their research on the formation of Mercury as well as the Solar System as a whole.
“For the first time in history we now have real knowledge about the planet Mercury that shows it to be a fascinating world as part of our diverse solar system,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate. “While spacecraft operations will end, we are celebrating MESSENGER as more than a successful mission. It’s the beginning of a longer journey to analyze the data that reveals all the scientific mysteries of Mercury.”
On April 6 MESSENGER used up the last vestiges of the liquid hydrazine propellant in its tanks, which it needed to make course corrections to maintain its orbit. But the tanks also hold gaseous helium as a pressurizer, and system engineers figured out how to release that gas through the complex hydrazine nozzles and keep MESSENGER in orbit for a few more weeks.
On April 24, though, even those traces of helium will be exhausted after a sixth and final orbit correction maneuver. From that point on MESSENGER will be coasting – out of fuel, out of fumes, and out of time.
“Following this last maneuver, we will finally declare MESSENGER out of propellant, as this maneuver will deplete nearly all of our remaining helium gas,” said Mission Systems Engineer Daniel O’Shaughnessy. “At that point, the spacecraft will no longer be capable of fighting the downward push of the Sun’s gravity.
“After studying the planet intently for more than four years, MESSENGER’s final act will be to leave an indelible mark on Mercury, as the spacecraft heads down to an inevitable surface impact.”
But MESSENGER scientists and engineers can be proud of the spacecraft that they built, which has proven itself more than capable of operating in the inherently challenging environment so close to our Sun.
“MESSENGER had to survive heating from the Sun, heating from the dayside of Mercury, and the harsh radiation environment in the inner heliosphere, and the clearest demonstration that our innovative engineers were up to the task has been the spacecraft’s longevity in one of the toughest neighborhoods in our Solar System,” said MESSENGER Principal Investigator Sean Solomon. “Moreover, all of the instruments that we selected nearly two decades ago have proven their worth and have yielded an amazing series of discoveries about the innermost planet.”
The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft launched on August 3, 2004, and traveled over six and a half years before entering orbit about Mercury on March 18, 2011 – the first spacecraft ever to do so. Learn more about the mission’s many discoveries here.
The video below was released in 2013 to commemorate MESSENGER’s second year in orbit and highlights some of the missions important achievements.
Have you ever heard that spacecraft can speed themselves up by performing gravitational slingshot maneuvers? What’s involved to get yourself going faster across the Solar System.
Let’s say you want to go back in time and prevent Kirk from dying on the Enterprise B.
You could use a slingshot maneuver. You’d want to be careful that you don’t accidentally create an alternate reality future where the Earth has been assimilated by the Borg, because Kirk wasn’t in the Nexus to meet up with Professor Picard and Sir Iandalf Magnetopants, while they having the best time ever gallivanting around New York City.
*sigh* Ah, man. I really love those guys. What was I saying? Oh right. One of the best ways to increase the speed of a spacecraft is with a gravitational slingshot, also known as a gravity assist.
There are times that fantasy has bled out too far into the hive mind, and people confuse a made up thing with an actual thing because of quirky similarities, nomenclature and possibly just a lack of understanding.
So, before we go any further a “gravitational slingshot” is a gravity assist that will speed up an actual spacecraft, “slingshot maneuver” is made up bananas nonsense. For example, when Voyager was sent out into the Solar System, it used gravitational slingshots past Jupiter and Saturn to increase its velocity enough to escape the Sun’s gravity.
So how do gravitational assists work? You probably know this involves flying your spacecraft dangerously close to a massive planet. But how does this help speed you up? Sure, as the spacecraft flies towards the planet, it speeds up. But then, as it flies away, it slows down again. Sort of like a skateboarder in a half pipe.
This process nets out to zero, with no overall increase in velocity as your spacecraft falls into and out of the gravity well. So how do they do it? Here’s the trick. Each planet has an orbital speed travelling around the Sun.
As the spacecraft approaches the planet, its gravity pulls the much lighter spacecraft so that it catches up with the planet in orbit. It’s the orbital momentum from the planet which gives the spacecraft a tremendous speed boost. The closer it can fly, the more momentum it receives, and the faster it flies away from the encounter.
To kick the velocity even higher, the spacecraft can fire its rockets during the closest approach, and the high speed encounter will multiply the effect of the rockets. This speed boost comes with a cost. It’s still a transfer of momentum. The planet loses a tiny bit of orbital velocity.
If you did enough gravitational slingshots, such as several zillion zillion slingshots, you’d eventually cause the planet to crash into the Sun. You can use gravitational slingshots to decelerate by doing the whole thing backwards. You approach the planet in the opposite direction that it’s orbiting the Sun. The transfer of momentum will slow down the spacecraft a significant amount, and speed up the planet an infinitesimal amount.
NASA’s MESSENGER spacecraft made 2 Earth flybys, 2 Venus flybys and 3 Mercury flybys before it was going slowly enough to make an orbital insertion around Mercury. Ulysses, the solar probe launched in 1990, used gravity assists to totally change its trajectory into a polar orbit above and below the Sun. And Cassini used flybys of Venus, Earth and Jupiter to reach Saturn with an efficient flight path.
Nature sure is trying to make it easy for us. Gravitational slingshots are an elegant way to slow down spacecraft, tweak their orbits into directions you could never reach any other way, or accelerate to incredible speeds.
It’s a brilliant dance using orbital mechanics to aid in our exploration of the cosmos. It’s a shining example of the genius and the ingenuity of the minds who are helping to push humanity further out into the stars.
What do you think? What other places is the general comprehension between actual facts and fictional knowledge blurring, just like the “slingshot maneuver” and “gravitational slingshot”?
And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!
Eureka – it’s Europa! And a brand-new image of it, too! (Well, kinda sorta.)
The picture above, showing the icy moon’s creased and cracked surface, was made from images acquired by NASA’s Galileo spacecraft during its exploration of Jupiter and its family of moons in 1997 and 1998. While the data itself isn’t new per se the view seen here has never been released by JPL, and so it’s new to you! (And to me too.)
The original high-resolution images were acquired on Nov. 6, 1997, in greyscale and colorized with data acquired during a later pass by Galileo in 1998. The whiter areas are regions of relatively pure water ice, while the rusty red bands are where ice has mixed with salts and organic compounds that have oozed up from deeper within Europa.
The entire image area measures about 101 by 103 miles across (163 km x 167 km).
Europa has long been one of the few places we know of outside our own planet where life could very well have evolved and potentially still exist. Getting a peek below the icy moon’s frozen crust — or even a taste of the recently-discovered water vapor spraying from its south pole — is all we’d need to further narrow down the chances that somewhere, something could be thriving in Europa’s subsurface seas. Get a planetary scientist’s perspective in a video interview with Dr. Mike Brown here.
Launched in October 1989, the Galileo spacecraft arrived at Jupiter in December 1995. Through primary and extended missions Galileo explored the giant planet and its family of moons until plunging into Jupiter’s atmosphere on September 21, 2003. Learn more about Galileo here, and check out some of the amazing images it acquired on the CICLOPS imaging diary page here.
SpaceShipOne is the spacecraft created by Scaled Composites to win the $10 million Ansari X-Prize in 2003. It was the first privately built spacecraft to reach 100 km in altitude, twice in two weeks, carrying the equivalent of 3 people. It’s the prototype of the upcoming SpaceShipTwo, created for Virgin Galactic to carry paying passengers into space. Continue reading “Astronomy Cast 350: SpaceShipOne”