China has some bold plans for space research and exploration that will be taking place in the coming decades. This includes doubling the size of their Tiangong space station, sending additional robotic missions to the Moon, and building the International Lunar Research Station (ILRS) around the lunar south pole. They also hope to begin sending crewed missions to Mars by 2033, becoming the first national space agency to do so. Not to be left behind in the commercial space sector, China is also looking to create a space tourism industry that offers suborbital flights for customers.
One of the companies offering these services is Jiangsu Deep Blue Aerospace Technology, a private launch company founded in November 2016 by Chinese entrepreneur Huo Liang. On October 24th, at 6:00 pm local time (03:00 am PDT; 06:00 am EDT), during a “Make Friends” Taobao live broadcast, Huo shared the companies’ latest progress on their commercial spacecraft. He also announced the pre-sale of tickets for the first suborbital launch in 2027. The company also posted an infographic with the details of the flight on the Chinese social media platform Weixin (WeChat).
Four astronauts splashed down safely in the Gulf of Mexico aboard their SpaceX Crew Dragon Endeavour capsule, despite one of the parachutes not deploying immediately. Their spectacular return in darkness from the International Space Station capped off the record-setting mission for the SpaceX Crew-2, with the longest spaceflight by a U.S. crewed spacecraft. Their 199 days in orbit surpassed the 168 days set by NASA’s SpaceX Crew-1 mission earlier this year.
The test flight – called the Pad Abort Test – is slated for the early morning hours of Wednesday, May 6, if all goes well. The key facts and a timeline of the test events are outlined herein.
The test vehicle will reach roughly a mile in altitude (5000 feet, 1500 meters) and last only about 90 seconds in duration from beginning to end.
It constitutes a crucial first test of the crew capsule escape system that will save astronauts lives in a split second in the unlikely event of a catastrophic launch pad failure with the Falcon 9 rocket.
The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.
SpaceX has just released new images showing the Dragon crew capsule and trunk section being moved to the launch pad and being positioned atop the launch mount on SLC-40. See above and below. Together the Dragon assembly stands about 20 feet (5 meters) tall.
A test dummy is seated inside. And SpaceX now says the dummy is not named “Buster” despite an earlier announcement from the company.
“Buster the Dummy already works for a great show you may have heard of called MythBusters. Our dummy prefers to remain anonymous for the time being,” SpaceX said today.
So, only time will tell if that particular mission fact will ever be revealed.
The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT into the afternoon.
The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.
The current weather forecast predicts a 70% GO for favorable weather conditions during the lengthy test window.
Since the Pad Abort Test is specifically designed to be a development test, in order to learn crucial things about the performance of the escape system, it doesn’t have to be perfect to be valuable.
And delays due to technical issues are a very significant possibility.
“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX at a May 1 media briefing at the Kennedy Space Center press site. “One test is worth a thousand good analyses.”
The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.
Here’s a graphic illustrating the May 6 SpaceX Pad Abort Test trajectory and sequence of planned events.
The Crew Dragon will accelerate to nearly 100 mph in barely one second. The test will last less than two minutes and the ship will travel over one mile in the first 20 seconds alone.
The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.
The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety.
The eight SuperDraco’s will propel Dragon nearly 100 meters (328 ft) in 2 seconds, and more than half a kilometer (1/3 mi) in just over 5 seconds.
SpaceX likens the test to “an ejection seat for a fighter pilot, but instead of ejecting the pilot out of the spacecraft, the entire spacecraft is “ejected” away from the launch vehicle.”
Here’s a timeline of events from SpaceX:
T-0: The eight SuperDracos ignite simultaneously and reach maximum thrust, propelling the spacecraft off the pad.
T+.5s: After half a second of vertical flight, Crew Dragon pitches toward the ocean and continues its controlled burn. The SuperDraco engines throttle to control the trajectory based on real-time measurements from the vehicle’s sensors.
T+5s: The abort burn is terminated once all propellant is consumed and Dragon coasts for just over 15 seconds to its highest point about 1500 meters (.93 mi) above the launch pad.
T+21s: The trunk is jettisoned and the spacecraft begins a slow rotation with its heat shield pointed toward the ground again.
T+25s: Small parachutes, called drogues, are deployed first during a 4-6 second window following trunk separation.
T+35s: Once the drogue parachutes stabilize the vehicle, three main parachutes deploy and further slow the spacecraft before splashdown.
T+107s: Dragon splashes down in the Atlantic Ocean about 2200 meters (1.4 mi) downrange of the launch pad.
“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.
“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”
The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.
Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.
The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.
There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.
The next landing attempt is set for the CRS-7 mission.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Concluding a busy five week mission, the SpaceX Dragon CRS-4 commercial cargo ship departed the International Space Station (ISS) this morning, Oct. 25, after delivering a slew of some 2.5 tons of ground breaking science experiments and critical supplies that also inaugurated a new era in Earth science at the massive orbiting outpost following installation of the ISS-RapidScat payload.
Dragon was released from the snares of the station’s robotic arm at 9: 57 a.m. EDT while soaring some 250 mi (400 km) over the northwest coast of Australia.
It returned safely to Earth with a splashdown in the Pacific Ocean some six hours later, capping the fourth of SpaceX’s twelve contracted station resupply missions for NASA through 2016.
“The Dragon is free!” exclaimed NASA commentator Rob Navias during a live broadcast on NASA TV following the ungrappling this morning. “The release was very clean.”
The private resupply ship was loaded for return to Earth with more than 3,276 pounds of NASA cargo and science samples from the station crew’s investigations on “human research, biology and biotechnology studies, physical science investigations, and education activities sponsored by NASA and the Center for the Advancement of Science in Space, the nonprofit organization responsible for managing research aboard the U.S. national laboratory portion of the space station,” said NASA.
The release set up a quick series of three burns by the ship’s Draco thrusters designed to carry Dragon safely away from the station.
NASA astronauts Reid Wiseman and Butch Wilmore quickly retracted the arm working from their robotics workstation in the domed Cupola module.
“Thanks for the help down there,” the astronauts radioed. “It was a great day.”
The first burn took place a minute later at about 9:58 a.m. EDT and the second at about 10:00 a.m. A yaw maneuver at 10:05 a.m. set up the orientation required for the third burn at about 10:08 a.m.
Dragon moved away quickly during the nighttime release and was already outside the Keep Out Sphere (KOS), an imaginary bubble surrounding the station at a distance of 200 m. It disappeared quickly in the dark and was barely visible within minutes.
“The propulsion systems are in good shape,” said Navias. “All systems on Dragon are functioning perfectly.”
With Dragon safely gone following the trio of burns, the next major event was the deorbit burn at 2:43 p.m. EDT at a distance of about 90 statute miles from the station.
Dragon slipped out of orbit. After surviving the scorching heat of reentry through the Earth’s atmosphere, the ship sequentially deployed its drogue chutes and three main parachutes at about 3:30 p.m.
Splashdown in the Pacific Ocean occurred as expected at about 3:39 p.m., approximately 265 miles west of the Baja peninsula.
Dragon is the only vehicle that can return intact from the ISS with a substantial load of cargo and is carrying critical science samples for distribution to researchers.
Today’s Dragon departure starts a week of heavy traffic of comings and goings to the ISS involving a series of US and Russian unmanned cargo ships.
The Orbital Sciences Antares rocket with the commercial Cygnus cargo freighter is set to launch on Monday, Oct. 27, from NASA Wallops, VA. It will dock at the ISS on Nov. 2 at the Earth-facing port on the Harmony module just vacated by Dragon.
Russia’s Progress 56 unmanned cargo ship will also undock on Oct. 27. And Progress 57 will launch from Baikonur on Wednesday, Oct 29.
The SpaceX Dragon CRS-4 cargo resupply mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.
Dragon was successfully berthed at the Harmony module on Sept. 23, 2014.
Among the nearly 5000 pounds of cargo hauled up by Dragon was as an Earth observation platform named ISS-RapidScat loaded in the unpressurized trunk section.
Also loaded aboard were a slew of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
It also carried the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.
20 mice housed in a special rodent habitat were also aboard, as well as fruit flies.
The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.
The successful installation and activation of the ISS-RapidScat science instrument on the exterior of Europe’s Columbus module in late September and early October inaugurated a new era in space station science.
RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.
The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.
“This mission enabled research critical to achieving NASA’s goal of long-duration human spaceflight in deep space,” said Sam Scimemi, director of the International Space Station division at NASA Headquarters.
“The delivery of the ISS RapidScatterometer advances our understanding of Earth science, and the 3-D printer will enable a critical technology demonstration. Investigations in the returned cargo could aid in the development of more efficient solar cells and semiconductor-based electronics, the development of plants better suited for space, and improvements in sustainable agriculture.”
The next SpacX cargo Dragon on the CRS-5 mission is slated for launch no earlier then Dec. 9.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – A SpaceX Falcon 9 rocket blazed aloft on a spectacular middle of the night blastoff that turned night into day along the Florida Space coast today, Sept. 21, 2014, boosting a commercial cargo ship for NASA and loaded with 2.5 tons of ground breaking science experiments, 20 ‘mousetronauts’ and critical supplies for the human crew residing aboard the International Space Station (ISS).
The SpaceX Dragon cargo vessel on the CRS-4 mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, just hours after a deluge of widespread rain showers inundated central Florida.
Notably, the Space CRS-4 mission is carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.
“There’s nothing like a good launch, it’s just fantastic,” said Hans Koenigsman, vice president of Mission Assurance for SpaceX at the post launch briefing. “From what I can tell, everything went perfectly.”
“We worked very hard yesterday and weather wasn’t quite playing along and today everything was beautiful.”
CRS-4 marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing, and supplies for the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
“This launch kicks off a very busy time for the space station,” said NASA’s Sam Scimemi, director of the International Space Station, noting upcoming launches of a Soyuz carrying the next three person international crew of the station and launches of other cargo spacecraft including the Orbital Sciences Antares/Cygnus around mid- October.
Today’s Falcon 9 launch had already been postponed 24 hours by continuing terrible weather all week long at Cape Canaveral which had also forced a more than two hour delay to the target liftoff of a United Launch Alliance Atlas V rocket from the Cape just four days earlier. Read my Atlas V launch story involving the completely clandestine CLIO satellite – here.
Rather amazingly given the awful recent weather, Falcon 9 streaked to orbit under a beautifully star filled nighttime sky.
Sunday’s launch brilliantly affirmed the ability of SpaceX to fire off their Falcon 9 rockets at a rapid pace since it was the second launch in less than two weeks, and the fourth over the past ten weeks. The prior Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite from the Cape on Sept. 7 – detailed here.
The CRS-4 missions marks the birth of a new era in Earth science aboard the massive million pound orbiting space station. The trunk of the Dragon is loaded with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.
RapidScat is NASA’s first research payload aimed at conducting Earth science from the station’s exterior. The station’s robot arm will pluck RapidScat out of the trunk and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.
Dragon also carries the first 3-D printer to space for studies by the astronaut crews over at least the next two years.
The science experiments and technology demonstrations alone amount to over 1644 pounds (746 kg) of the Dragon’s cargo and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.
After a two day orbital chase, Dragon will rendezvous with the station on Tuesday morning, Sept. 23. It will be grappled at 7:04 a.m. by Expedition 41 Flight Engineer Alexander Gerst of the European Space Agency, using the space station’s robotic arm and then berthed at an Earth-facing port on the station’s Harmony module. NASA astronaut Reid Wiseman will support Gerst.
NASA TV is expected to provide live coverage of Dragon’s arrival, grappling, and station berthing.
Dragon was launched aboard the newest, more powerful version of the Falcon 9, dubbed v1.1, powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines’ 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
The maiden launch of the Falcon 9 v1.1 took place in December 2013.
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.
Overall it’s been a great week for SpaceX. The firm was also awarded one of two NASA contracts to build a manned version of the Dragon, dubbed V2, that will ferry astronaut crews to the ISS starting as soon as 2017. Read my story – here.
The second ‘space taxi’ contract was awarded Boeing to develop the CST-100 crew transporter to end the nation’s sole source reliance on Russia for astronaut launches in 2017.
Dragon V2 will launch on the same version of the Falcon 9 launching today’s CRS-4 cargo Dragon.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more Earth and Planetary science and human spaceflight news.
NASA Administrator Charles Bolden discusses future of NASA human spaceflight during exploration forum at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com
Story updated[/caption]
NASA GODDARD SPACE FLIGHT CENTER, MD – Why is NASA’s Commercial Crew Program to develop private human transport ships to low Earth orbit important?
That’s the question I posed to NASA Administrator Charles Bolden when we met for an exclusive interview at NASA Goddard.
The Commercial Crew Program (CCP) is the critical enabler “for establishing a viable orbital infrastructure” in the 2020s, NASA Administrator Charles Bolden told Universe Today in an exclusive one-on-one interview at NASA’s Goddard Space Flight Center in Greenbelt, Md.
Bolden, a Space Shuttle commander who flew four time to space, says NASA wants one of the new American-made private crewed spaceships under development by SpaceX, Boeing and Sierra Nevada – with NASA funding – to be ready to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017. Flights for other commercial orbital space ventures would follow later and into the next decade.
Since the shutdown of NASA’s space shuttle program following the final flight by STS-135 in 2011 (commanded by Chris Ferguson), America has been 100% dependent on the Russians to fly our astronauts to the space station and back.
“Commercial crew is critical. We need to have our own capability to get our crews to space,” Bolden told me, during a visit to the NASA Goddard cleanroom with the agency’s groundbreaking Magnetospheric Multiscale (MMS) science probes.
Administrator Bolden foresees a huge shift in how the US will conduct space operations in low earth orbit (LEO) just a decade from now. The future LEO architecture will be dominated not by NASA and the ISS but rather by commercial entrepreneurs and endeavors in the 2020s.
“There are going to be other commercial stations or other laboratories,” Bolden excitedly told me.
And the cash strapped Commercial Crew effort to build new astronaut transporters is the absolutely essential enabler to get that exploration task done, he says.
“Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration.”
“We have got to have a way to get our crews to space.”
“You know people try to separate stuff that NASA does into nice little neat packages. But it’s not that way anymore.”
Bolden and NASA are already looking beyond the ISS in planning how to use the new commercial crew spaceships being developed by SpaceX, Boeing and Sierra Nevada in a public- partnership with NASA’s Commercial Crew Program.
“Everything we do [at NASA] is integrated. We have to have commercial crew [for] a viable low Earth orbit infrastructure – a place where we can do testing – for example with what’s going on at the ISS today.”
“And in the out years you are going to be doing the same type of work.”
“But it’s not going to be on the ISS.”
“After 2024 or maybe 2028, if we extend it again, you are going to see the people on commercial vehicles. There are going to be other stations or other laboratories.”
“But there won’t be NASA operated laboratories. They will be commercially viable and operating laboratories.”
Private NewSpace ventures represent a revolutionary departure from current space exploration thinking. But none of these revolutionary commercial operations will happen if we don’t have reliable and cost effective human access to orbit from American soil with American rockets on American spaceships.
“We need to have our own capability to get our crews to space – first of all. That’s why commercial crew is really, really, really important,” Bolden emphasized.
The ongoing crises in Ukraine makes development of a new US crew transporter to end our total reliance on Russian spaceships even more urgent.
“Right now we use the Russian Soyuz. It is a very reliable way to get our crews to space. Our partnership with Roscosmos is as strong as it’s ever been.”
“So we just keep watching what’s going on in other places in the world, but we continue to work with Roscosmos the way we always have,” Bolden stated.
The latest example is this week’s successful launch of the new three man Russian-US- German Expedition 40 crew to the ISS on a Soyuz.
Of course, the speed at which the US develops the private human spaceships is totally dependent on the funding level for the Commercial Crew program.
Unfortunately, progress in getting the space taxis actually built and flying has been significantly slowed because the Obama Administration CCP funding requests for the past few years of roughly about $800 million have been cut in half by a reluctant US Congress. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.
And every forced postponement to CCP costs US taxpayers another $70 million payment per crew seat to the Russians. As a result of the congressional CCP cuts more than 1 Billion US Dollars have been shipped to Russia instead of on building our own US crew transports – leaving American aerospace workers unemployed and American manufacturing facilities shuttered.
I asked Bolden to assess NASA’s new funding request for the coming fiscal year 2015 currently working its way through Congress.
“It’s looking better. It’s never good. But now it’s looking much better,” Bolden replied.
“If you look at the House markup that’s a very positive indication that the budget for commercial crew is going to be pretty good.”
The pace of progress in getting our crews back to orbit basically can be summed up in a nutshell.
“No Bucks, No Buck Rogers,” Chris Ferguson, who now leads Boeing’s crew effort, told me in a separate exclusive interview for Universe Today.
The BoeingCST-100, Sierra Nevada Dream Chaser and SpaceX Dragon ‘space taxis’ are all vying for funding in the next round of contracts to be awarded by NASA around late summer 2014 known as Commercial Crew Transportation Capability (CCtCap).
All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.
Altogether they have received more than $1 Billion in NASA funding under the current CCiCAP initiative. Boeing and SpaceX were awarded contracts worth $460 million and $440 million, respectively. Sierra Nevada was given what amounts to half an award worth $212.5 million.
SpaceX CEO Elon Musk just publicly unveiled his manned Dragon V2 spaceship on May 29.
Boeing’s Chris Ferguson told me that assembly of the CST-100 test article starts soon at the Kennedy Space Center.
NASA officials have told me that one or more of the three competitors will be chosen later this year in the next phase under CCtCAP to build the next generation spaceship to ferry astronauts to and from the ISS by 2017.
In order to certify the fitness and safety of the new crew transporters, the CCtCAP contracts will specify that “each awardee conduct at least one crewed flight test to verify their spacecraft can dock to the space station and all its systems perform as expected.”
Concurrently, NASA is developing the manned Orion crew vehicle for deep space exploration. The state-of-the-art capsule will carry astronauts back to the Moon and beyond on journeys to Asteroids and one day to Mars.
“We need to have our own capability to get our crews to space. Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration,” that’s the bottom line message from my interview with NASA Administrator Bolden.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX Story updated[/caption]
SpaceX CEO and billionaire founder Elon Musk gushed with excitement as he counted down the seconds and literally pulled the curtain away to unveil his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast shortly after 10 p.m. EST (7 p.m. PST, 0200 GMT) this evening, Thursday, May 29, from SpaceX HQ.
The first photos from the event are collected herein. And I’ll be adding more and updating this story as they flow in.
Musk’s Dragon V2 unveiling was brimming with excitement like a blockbuster Hollywood Science Fiction movie premiere – with lights, cameras and action.
But this was the real deal and hopefully gets America moving again back to thrilling, real space adventures in orbit and beyond – reaching for the stars.
“The Dragon V2 is a 21st century spacecraft,” Musk announced to a wildly cheering crowd. “As it should be.”
“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level.”
“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter.”
“I think that’s what a spaceship should be able to do.”
“It will be capable of carrying seven astronauts. And it will be fully reusable.”
The sleek gleaming spaceship looks decidedly different from the current cargo Dragon V1.
Read my “Dragon V2” preview articles leading up to the May 29 event – here and here.
This new manrated Dragon is aimed at restoring US human launch access to space from American soil by carrying crews of up to seven US astronauts to low Earth orbit and eventually perhaps Mars – starting as soon as 2017.
Musk unveiled the gumdrop-shaped Dragon V2, or Version 2, to an overflow crowd of employees and media at SpaceX headquarters and design and manufacturing facility in Hawthorne, CA.
But Musk and SpaceX are not alone in striving to get Americans back to space.
Two other US aerospace firms – Boeing and Sierra Nevada – are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.
Altogether they have received more than $1 Billion in NASA funding.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
The ‘Dragon V2’ is an upgraded, man-rated version of the unmanned Dragon cargo spaceship that just completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
The private Dream Chaser mini-shuttle being developed by Sierra Nevada Corp. (SNC) has successfully completed a series of rigorous wind tunnel tests on scale models of the spacecraft – thereby accomplishing another key development milestone under NASA’s Commercial Crew Program to restore America’s human spaceflight access to low Earth orbit.
Engineers from SNC and NASA’s Langley Research Center in Hampton, Virginia conducted six weeks of intricate testing with several different Dream Chaser scale model spacecraft to study its reaction to subsonic, transonic and supersonic conditions that will be encountered during ascent into space and re-entry from low-Earth orbit.
The tests are among the milestones SNC must complete to receive continued funding from the Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.
The Dream Chaser is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station (ISS) by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.
Since that day, seats on the Russian Soyuz are US astronauts only way to space and back.
The SpaceXDragon and BoeingCST-100 ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
“What we have seen from our industry partners is a determination to make their components and systems work reliably, and in turn they’ve been able to demonstrate the complex machinery that makes spaceflight possible will also work as planned,” said Kathy Lueders, NASA’s Commercial Crew Program manager. “These next few months will continue to raise the bar for achievement by our partners.”
To prepare for the wind tunnel testing, technicians first meticulously hand glued 250 tiny sand grains to the outer surface of the 22-inch long Dream Chaser scale model in order to investigate turbulent flow forces and flight dynamic characteristics along the vehicle that simulates what the actual spacecraft will experience during ascent and re-entry.
Testing encompassed both the Dream Chaser spacecraft by itself as well as integrated in the stacked configuration atop the Atlas V launch vehicle that will boost the vehicle to space from Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
The testing of the Dream Chaser model was conducted at different angles and positions and around the clock inside the Unitary Plan Wind Tunnel at NASA Langley to collect the data as quickly as possible.
“All the data acquired will be used to validate computer models and populate the Dream Chaser spacecraft performance database,” according to NASA test engineer Bryan Falman.
NASA says that the resulting data showed the existing computer models were accurate.
Additonal wind tunnel testing was done at NASA’s Ames Research Center in Moffett Field, California and the CALSPAN Transonic Wind Tunnel in New York.
The wind tunnel work will also significantly aid in refining the Dream Chaser’s design and performance as well as accelerate completion of the Critical Design Review (CDR) before the start of construction of the full scale vehicle for orbital flight tests by late 2016.
Video Caption: Engineers used a wind tunnel at NASA’s Langley Research Center in Hampton, Virginia, to evaluate the design of Sierra Nevada Corporation’s Dream Chaser spacecraft. Credit: NASA
“The aerodynamic data collected during these tests has further proven and validated Dream Chaser’s integrated spacecraft and launch vehicle system design. It also has shown that Dream Chaser expected performance is greater than initially predicted,” said Mark N. Sirangelo, corporate vice president and head of SNC’s Space Systems.
“Our program continues to fully complete each of our CCiCap agreement milestones assisted through our strong collaboration efforts with our integrated ‘Dream Team’ of industry, university and government strategic partners. We are on schedule to launch our first orbital flight in November of 2016, which will mark the beginning of the restoration of U.S. crew capability to low-Earth orbit.”
The Dream Chaser design builds on the experience gained from NASA Langley’s earlier exploratory engineering work with the HL-20 manned lifting-body vehicle.
“The NASA-SNC effort makes for a solid, complementary relationship,” said Andrew Roberts, SNC aerodynamics test lead. “It is a natural fit. NASA facilities and the extensive work they’ve done with the Dream Chaser predecessor, HL-20, combined with SNC’s engineering, is synergistic and provides great results.”
Dream Chaser will be reusable and can carry a mix of cargo and up to a seven crewmembers to the ISS. It will also be able to land on commercial runways anywhere in the world, according to SNC.
Stay tuned here for Ken’s continuing Sierra Nevada, Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
The SpaceX 3 Dragon commercial cargo freighter successfully arrived at the International Space Station (ISS) on Easter Sunday morning, April 20, as planned and was deftly captured by Expedition 39 Commander Koichi Wakata at 7:15 a.m. EDT at the controls of the Canadian built robotic arm.
The next step due shortly is berthing of Dragon at the Earth facing port of the Harmony module at approximately 9:30 a.m. EDT.
Berthing was officially completed at 10:06 a.m. EDT while the massive complex was soaring 260 miles above Brazil.
This story is being updated as events unfold. The mission is the company’s third cargo delivery flight to the station.
The Dragon vehicle loaded with nearly 2.5 tons of science experiments and supplies moved ever so slowly closely to within grappling distance – dramatically backdropped with gorgeous and ever changing scenery of our Home Planet sliding below.
The million pound orbiting lab complex and free flying SpaceX Dragon were soaring some 260 miles above Egypt and the Nile River as the 57 foot long robotic arm grappled the resupply ship.
Dragon was approximately 30 feet (10 meters) away from the stations hull at the time of capture.
Wakata, of the Japan Aerospace Exploration Agency, was assisted by NASA astronaut Rick Mastracchio, while both were working from inside the 7 windowed Cupola robotics work station. Newly arrived NASA astronaut Steve Swanson observed the proceedings with a big smile.
“Congratulations to the entire ops team for the successful launch, rendezvous and capture of Dragon,” Wakata radioed mission control moments after the successful grapple.
“Great work catching the Dragon, enabling fantastic science,” radioed Capcom Steve Fisher from NASA Houston Mission Control.
Cheers and celebrations erupted at SpaceX Mission Control at the firms headquarters in Hawthorne, Calif.
Dragon arrived this morning following Friday afternoons, Apr 18, spectacular blastoff from Cape Canaveral, Fla, atop an upgraded SpaceX Falcon 9 booster.
A two day orbital chase ensued with a series of critical engine burns targeting the ISS for Easter Sunday’s rendezvous and docking activities.
Rick Mastracchio was at the controls for the actual berthing and latching in place at Harmony with Dragon’s Common Berthing Mechanism (CBM).
The berthing process started at about 9:30 a.m. EDT.
4 latches were driven for 1st stage of capture. Followed by all 16 bolts and latches in total during second stage capture to firmly hold Dragon in place.
The crew and mission control concluded the berthing procedure at 10:06 a.m. EDT flying over Brazil.
The next step is for the crew to pressurize the vestibule connecting Dragon to station.
Hatch opening is set to take place on Monday morning.
It’s a busy week ahead for the six person international crew representing the US, Russia and Japan.
A Russian Progress departs on Wednesday followed by the 2 person US spacewalk to replace the failed MDM unit.
Dragon will remain attached to the station until May 18.
This story is being updated. Check back.
The SpaceX-3 mission marks the company’s third operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
There are over 150 science experiments loaded aboard the Dragon capsule for research to be conducted by the crews of ISS Expeditions 39 and 40.
This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), a laser optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
NASA TV coverage of the Easter Sunday grappling process began at 5:45 a.m. EDT with berthing coverage beginning at 9:30 a.m. EDT: http://www.nasa.gov/ntv
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Alan Walters/AmericaSpace
Story updated[/caption]
The powerful SpaceX Falcon 9 rocket that launched successfully on a cargo delivery run for NASA bound for the Space Station on Friday, April 18, from Cape Canaveral, Fla, also had a key secondary objective for the company aimed at experimenting with eventually recovering the rockets first stage via the use of landing legs and leading to the boosters refurbishment and reuse further down the road.
Marking a first of its kind test, this 20 story tall commercial Falcon 9 rocket was equipped with a quartet of landing legs to test controlled soft landing techniques first in the ocean and then back on solid ground at some later date this year or next – by reigniting the 1st stage engines for a guided touchdown.
The 12 foot diameter Falcon 9 rocket would sprout the legs just prior to water impact for the controlled soft landing in the Atlantic Ocean, guided by SpaceX engineers.
Prior to the launch SpaceX managers were careful not to raise expectations.
“The entire recovery of the first stage is completely experimental,” said Hans Koenigsmann, SpaceX vice president of mission assurance. “It has nothing to do with the primary mission.”
He estimated the odds of successfully retrieving an intact booster at merely 30 or 40 percent.
Following Friday’s blastoff, SpaceX reported they made significant strides towards that goal of a 1st stage recovery.
SpaceX engineers had preprogrammed the spent first stage to relight several Merlin 1 D engines after completing the boost phase and stage seperation to stabilize it, reduce its roll rate and then gradually lower its altitude back down to the Atlantic Ocean’s surface for a soft landing attempt and later possible recovery by retrieval ships.
All these critical steps seemed to go fairly well in initial reports that are subject to change.
SpaceX CEO and founder Elon Musk reported at a post launch briefing and later tweeted further updates that the Falcon 9 first stage actually made a good water landing despite rough seas, with waves swelling at least six feet.
“Roll rate close to zero (v important!).”
“Data upload from tracking plane shows landing in Atlantic was good! Several boats enroute through heavy seas,” Musk tweeted.
Furthermore he reported that the 1st stage survived the ocean touchdown.
“Flight computers continued transmitting for 8 seconds after reaching the water. Stopped when booster went horizontal.”
Because of the high waves, the recovery boats had difficulty reaching the booster in the recovery area located some two hundred miles off shore from Cape Canaveral.
Several previous attempts by SpaceX to recover the first stage via parachutes and thrusters were not successful. So SpaceX adopted this new approach with the landing legs and 1st stage Merlin 1 D engines.
Further details will be proved when they become available.
The attachment of the 25 foot long 1st stage landing legs to SpaceX’s next-generation Falcon 9 rocket for ocean recovery counts as a major step towards the firm’s future goal of building a fully reusable rocket and dramatically lowering launch costs compared to expendable boosters.
The eventual goal is to accomplish a successful first stage touchdown by the landing legs on solid ground back somewhere near on Cape Canaveral, Florida.
Musk said that SpaceX is still working out the details on finding a suitable landing location with NASA and the US Air Force.
Extensive work and testing remains to develop and refine the technology before a land landing will be attempted by the company, says Musk.
It will be left to future missions to accomplish a successful first stage touchdown by the landing legs back on solid ground back through a series of ramped up rocket tests at Cape Canaveral, Florida.
“Even though we probably won’t get the stage back, I think we’re really starting to connect the dots of what’s needed,” Musk said at the briefing.
“There are only a few more dots that need to be there to have it all work. I think we’ve got a decent chance of bringing a stage back this year, which would be wonderful.”
Overall Musk was very pleased with the performance of the rocket and the landing leg test.
“I would consider it a success in the sense that we were able to control the boost stage to a zero roll rate, which is previously what has destroyed the stage, an uncontrolled roll, where the on-board nitrogen thrusters weren’t able to control the aerodynamic torque and spun up.”
“This time, with more powerful thrusters and more nitrogen propellant, we were able to null the roll rates.”
“I’m feeling pretty excited,” Musk stated. “This is a happy day. Most important of all is that we did a good job for NASA.”
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
Indeed Dragon is loaded with nearly 5000 pounds of cargo, about double the weight carried previously.
If all goes well, Dragon will reach the ISS early on Easter Sunday morning after a two day orbital chase.
Station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday at about 7:14 a.m. and then berth it at the Earth-facing port of the Harmony module.
NASA TV coverage of the Easter Sunday grappling process will begin at 5:45 a.m. with berthing coverage beginning at 9:30 a.m. : http://www.nasa.gov/ntv
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.