SpaceX Falcon 9 Failure Investigation ‘Most Difficult’ Ever: Musk

Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – More than a week after the catastrophic launch pad explosion that eviscerated a SpaceX Falcon 9 rocket during a fueling test, the bold and burgeoning aerospace firm is still confounded by the “most difficult and complex failure” in its history, and is asking the public for help in nailing down the elusive cause – says SpaceX CEO and Founder Elon Musk in a new series of tweets, that also seeks the public’s help in the complex investigation.

“Turning out to be the most difficult and complex failure we have ever had in 14 years,” Musk tweeted on Friday, Sept. 9 about the disaster that took place without warning on Space Launch Complex-40 at approximately 9:07 a.m. EDT on Cape Canaveral Air Force Station, Fl. on Sept. 1, 2016.

Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during a routine and planned pre-launch fueling and engine ignition test at pad 40 on Wednesday morning Sep. 1.

“Still working on the Falcon fireball investigation,” Musk stated.

Check out my new up close photos of launch pad 40 herein – showing dandling cables and pad damage – taken over the past few days during NASA’s OSIRIS-REx launch campaign which successfully soared to space on Sept 8. from the adjacent pad at Space Launch Complex-41.

The rocket failure originated somewhere in the upper stage during fueling test operations at the launch pad for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines, said Musk.

However, the countdown dress rehearsal had not yet reached the point of ignition and the Merlin engines were still several minutes away from typically firing for a few seconds as the rocket was to be held down during the pre-planned hot fire test.

“Important to note that this happened during a routine filling operation. Engines were not on and there was no apparent heat source,” Musk elaborated.

Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal.

Mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

The explosion mystery and its root causes are apparently so deep that SpaceX is asking the public for help by sending in “any recordings of the event” which may exist, beyond what is already known.

“If you have audio, photos or videos of our anomaly last week, please send to [email protected]. Material may be useful for investigation,” Musk requested by twitter.

Indications of an initial “bang” moments before the calamity are also bewildering investigators.

“Particularly trying to understand the quieter bang sound a few seconds before the fireball goes off. May come from rocket or something else.”

The explosion is also being jointly investigated by multiple US Federal agency’s.

“Support & advice from @NASA, @FAA, @AFPAA & others much appreciated. Please email any recordings of the event to [email protected].”

The incident took place less than two days before the scheduled Falcon 9 launch on Sept. 3.

It also caused extensive damage to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my new photos of the pad taken a week after the explosion.

Dangling cables and gear such as pulley’s and more can clearly be seen to still be present as the strongback remains raised at pad 40. The strongback raises the rocket at the pad and also houses multiple umbilical line for electrical power, purge gases, computer communications and more.

One of the four lightning masts is also visibly burnt and blackened – much like what occurred after the catastrophic Orbital ATK Antares rocket exploded moments after liftoff from a NASA Wallops launch pad on Oct 28, 2014 and witnessed by this author.

Black soot also appears to cover some area of the pads ground support equipment in the new photos.

US Air Force personnel immediately jumped into action to assess the situation, set up roadblocks and look for signs of blast debris and “detect, dispose and render safe any possible explosive threats.”

However SpaceX has not released a full description of the damage to the pad and GSE. It cost approximately $15 Million to repair the Antares pad and flights have not yet resumed – nearly 2 years after that disaster.

Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague at USLaunchReport – shown below.

Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.

Mangled SpaceX Falcon 9 strongback after prelaunch explosion destroyed the rocket and AMOS-6 payload. Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback after prelaunch explosion destroyed the rocket and AMOS-6 payload. Credit: Ken Kremer/kenkremer.com

The Falcon rocket and AMOS-6 satellite were swiftly consumed in a huge fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage that was visible for many miles around the Florida Space Coast.

“Loss of Falcon vehicle today during propellant fill operation,” Musk tweeted several hours after the launch pad explosion.

“Originated around upper stage oxygen tank. Cause still unknown. More soon.”

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Thankfully there were no injuries to anyone – because the pad is always cleared of all personnel during these types of extremely hazardous launch complex operations.

“The anomaly originated around the upper stage oxygen tank and occurred during propellant loading of the vehicle. Per standard operating procedure, all personnel were clear of the pad and there were no injuries,” SpaceX reported in a statement.

“We are continuing to review the data to identify the root cause. Additional updates will be provided as they become available.”

This also marks the second time a Falcon 9 has exploded in 15 months and will call into question the rocket’s reliability. The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

All SpaceX launches are on hold until a thorough investigation is conducted, the root cause is determined, and effective fixes and remedies are identified and instituted.

After the last failure, it took nearly six months before Falcon 9 launches were resumed.

Any announcement of a ‘Return to Flight’ following this latest launch failure is likely to be some time off given the thus far inscrutable nature of the anomaly.

The planned engine test was being conducted as part of routine preparations for the scheduled liftoff of the Falcon 9 on Saturday, September 3, with an Israeli telecommunications satellite that would have also been used by Facebook.

The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.

SpaceX is simultaneously renovating and refurbishing NASA’s former shuttle launch pad at the Kennedy Space Center at Pad 39A – from which the firm hopes to launch the new Falcon Heavy booster as well as human rated launches of the Falcon 9.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

Ongoing work at Pad 39A was clearly visible to this author and other media this past week during NASA’s OSIRIS-REx launch campaign.

SpaceX has indicated they hope to have the pad upgrades complete by November, but a lot of work remains to be done. For example the shuttle era Rotating Service Structure (RSS) is still standing. The timing for its demolishment has not been announced.

Damage at  SpaceX Launch Complex-40 following Sept. 1, 2016 launch pad explosion.  Credit: Lane Hermann
Damage at SpaceX Launch Complex-40 following Sept. 1, 2016 launch pad explosion. Credit: Lane Hermann

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

SpaceX Falcon 9 Explosion Aftermath Brings Legal Battles

SpaceX and NASA find themselves at odds over the company's fueling policy. Credit: SpaceX

SpaceX experienced a rather serious setback last week as a Falcon 9 rocket exploded on the launch pad while preparing for a static fire test. The launch was meant to deploy one of Spacecom latest communications satellites (AMOS-6), which was also destroyed in the accident. Mercifully, no one was hurt, and an investigation was quickly mounted to determine the root cause.

However, in the aftermath of the explosion, it appears that SpaceX could be facing legal battles, as Spacecom indicated that it is seeking compensation for the loss of their satellite. According to a recent press released by the Israel-based telecommunications company, this will either take the form of $50 million, or a free flight aboard another SpaceX launch.

As the sixth satellite to be launched by the telecommunications company, the AMOS-6 satellite was intended to provide phone, video and internet services for the Middle East, Europe, and locations across sub-Sahara Africa. As such, it’s destruction was certainly a loss for the company.

A Falcon 9 test firing its nine first-stage Merlin engines at Cape Canaveral Air Force Station in Feb of 2015. Credit: NASA/Frankie Martin
A Falcon 9 test firing its nine first-stage Merlin engines at Cape Canaveral Air Force Station in Feb of 2015. Credit: NASA/Frankie Martin

But as they stated in their press release – which was released on Monday, Sept. 5th – their plan is “to recover funds invested in the project” and to replace the satellite as soon as possible. As David Pollack, Spacecom CEO and president, was quoted as saying:

“Spacecom has crafted a plan of action which represents the foundation upon which we shall recover from AMOS-6’s loss. Our program includes, among other measures, exploring the possibility of procuring and launching a replacement satellite. Working quickly and efficiently, management is engaging with current and potential partner. Spacecom will serve all of its current and future financial commitments.”

In addition to covering their losses, these moves are clearly intended to ensure that the company can still move ahead with its planned merger. Prior to the launch, Spacecom was engaged in talks with the Beijing Xinwei Group – a Chinese telecommunications company – about being acquired for $285 million. One of the conditions of this deal was the successful launch of the AMOS-6 and completion of in orbit testing.

As Pollack told the Financial Times, his company is still in the process of negotiating the merger, but the price may come down as a result of the loss. “We are speaking to them;” he said, “we are trying to adapt it to the new situation. It definitely might go ahead… everybody is trying to keep the deal”.

The damaged gantry at the SpaceX  launch pad after the explosion. Credit: Karla Thompson
The damaged gantry at the SpaceX launch pad after the explosion. Credit: Karla Thompson

Spacecom has also suggested that the firm might pursue an additional $205 million in compensation from Israel Aerospace Industries, which manufactured the satellite. Not surprising, since the price of their stock had dropped by over a third since the accident took place.

Since the accident took place, SpaceX has been keeping the public updated on the results of their investigation. On Friday, Sept 2nd, they released the latest finds, which included where the problems began:

“The anomaly on the pad resulted in the loss of the vehicle. This was part of a standard pre-launch static fire to demonstrate the health of the vehicle prior to an eventual launch. At the time of the loss, the launch vehicle was vertical and in the process of being fueled for the test.  At this time, the data indicates the anomaly originated around the upper stage liquid oxygen tank.  Per standard operating procedure, all personnel were clear of the pad.  There were no injuries.”

No indications have been given yet as to what could have caused the tanks to explode, but the company is still processing the data and posting updates on a regular basis. In any event, the recent accident appears to have been a minor setback for the private aerospace giant, which will be pushing ahead with a full year of launch contracts.

This will likely include the first launch of the Falcon Heavy, which is expected to take place before 2016 is out.

Further Reading: Amos-Spacecom, FT Times

Spectacular Video Captures Catastrophic SpaceX Falcon 9 Rocket Explosion During Prelaunch Test

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. See the full video below. Credit: USLaunchReport

The SpaceX Falcon 9 rocket that suffered a catastrophic explosion this morning, Thursday, Sept. 1, at Cape Canaveral Air Force Station in Florida was captured in stunning detail in a spectacular video recorded by my space journalist colleague at USLaunchReport.

As seen in the still image above and the full video below, the rocket failure originated somewhere in the upper stage during fueling test operations at the launch pad, less than two days prior to its planned launch on Sept. 3. The rocket was swiftly consumed in a massive fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage visible for many miles.

Both the SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in the incident. Thankfully there were no injuries to anyone, because the pad is cleared during these types of operations.

This also marks the second time a Falcon 9 has exploded and will call into question the rocket’s reliability. The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during a cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

It took place during this morning’s prelaunch preparations for a static hot fire test of the nine Merlin 1 D engines powering the Falcon 9 first stage when engineers were loading the liquid oxygen (LOX) and RP-1 kerosene propellants for the test, according to SpaceX CEO Elon Musk.

“Loss of Falcon vehicle today during propellant fill operation,” tweeted SpaceX CEO and founder Elon Musk this afternoon a few hours after the launch pad explosion.

“Originated around upper stage oxygen tank. Cause still unknown. More soon.”

The Falcon 9 explosion occurred at approximately 9:07 a.m. EDT this morning at the SpaceX launch facilities at Space Launch Complex 40 on Cape Canaveral Air Force Station, according to statements from SpaceX and the USAF 45th Space Wing Public Affairs office.

All SpaceX launches will be placed on hold until a thorough investigation is conducted, the root cause is determined, and effective fixes and remedies are identified and instituted.

The planned engine test was being conducted as part of routine preparations for the scheduled liftoff of the Falcon 9 on Saturday, September 3, with an Israeli telecommunications satellite that would have also been used by Facebook.

During the static fire test, which is a full launch dress rehearsal, the rocket is loaded with propellants and is held down at pad 40 while the engines are typically fired for a few seconds.

Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.

In the video you can clearly see the intensely bright explosion flash near the top of the upper stage that quickly envelopes the entire rocket in a fireball, followed later by multiple loud bangs from the disaster echoing across and beyond the pad.

Seconds later the nose cone and payload break away violently, falling away and crashing into the ground and generating a new round of loud explosions and fires and a vast plume of smoke rising up.

At the end the rocket is quite visibly no longer standing. Only the strongback erector is still standing at pad 40. And both the strongback and the pad structure seems to have suffered significant damage.

This would have been the 9th Falcon 9 launch of 2016.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

SpaceX media relations issued this updated statement:

“At approximately 9:07 am ET, during a standard pre-launch static fire test for the AMOS-6 mission, there was an anomaly at SpaceX’s Cape Canaveral Space Launch Complex 40 resulting in loss of the vehicle.”

“The anomaly originated around the upper stage oxygen tank and occurred during propellant loading of the vehicle. Per standard operating procedure, all personnel were clear of the pad and there were no injuries.”

“We are continuing to review the data to identify the root cause. Additional updates will be provided as they become available.”

Listen to my BBC Radio 5 Live interview conducted late this afternoon:

Today’s explosion and the total loss of vehicle and payload will certainly have far reaching consequences for not just SpaceX and the commercial satellite provider and end users, but also NASA, the International Space Station, the US military, and every other customer under a launch contact with the fast growing aerospace firm.

The ISS is impacted because SpaceX is one of two NASA contracted firms launching cargo resupply missions to the ISS – along with Orbital ATK.

Continued operations of the ISS depends on a reliable and robust lifeline of periodic supply trains from SpaceX and Orbital ATK.

In fact the most recent SpaceX Drago cargo freighter launched on the CRS-9 mission to the ISS on July 18 as I witnessed and reported here. And just successfully returned to Earth with 3000 pounds of NASA science cargo and research samples last week on Aug. 26.

The SpaceX Dragon launches to the ISS will be put on hold as the investigation moves forward.

Furthermore SpaceX is manufacturing a Crew Dragon designed to launch astronauts to the ISS atop this same Falcon 9 rocket. So that will also have to be evaluated.

SpaceX is also trying to recover and recycle the Falcon 9 first stage.

To date SpaceX has recovered 6 first stage Falcon 9 boosters by land and by sea.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Indeed as I reported just 2 days ago, SpaceX announced a contract with SES to fly the SES-10 communications satellite on a recycled Falcon 9, before the end of the year and perhaps as soon as October.

But this explosion will set back that effort and force a halt to all SpaceX launches until the root cause of the disaster is determined.

Here’s one of my photos showing the prior SpaceX rocket failure in June 2015 during the CRS-7 cargo delivery mission to the ISS:

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Here’s the prior SpaceX Falcon 9 on pad 40 before the successful liftoff with the JCSAT-16 Japanese telecom satellite on Aug. 14, 2016:

SpaceX Falcon 9 set to deliver JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 set to deliver JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.

Cape Canaveral Air Force Station Emergency Management quickly provided initial on-scene response and set up roadblocks, said the Air Force in a statement.

“Days like today are difficult for many reasons,” said Brig. Gen. Wayne Monteith, 45th Space Wing commander.

“There was the potential for things to be a lot worse; however, due to our processes and procedures no one was injured as a result of this incident. I am proud of our team and how we managed today’s response and our goal moving forward will be to assist and provide support wherever needed. Space is inherently dangerous and because of that, the Air Force is always ready.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket is destroyed during explosion at the pad. Only the strongback remains. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016 of Amos-6 comsat. Credit: NASA
A SpaceX Falcon 9 rocket is destroyed during explosion at the pad on Sept. 1, 2016. Only the strongback remains. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016 of Amos-6 comsat. Credit: NASA
This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background - as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com
This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background – as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com

Save

SpaceX Falcon 9 Blows Up During Launch Pad Test with Israeli Comsat

A SpaceX Falcon 9 rocket is destroyed during explosion at the pad on Sept. 1, 2016. Only the strongback remains. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016 of Amos-6 comsat. Credit: NASA
A SpaceX Falcon 9 apparently explodes at the base of the rocket.   A static hot fire test was planned ahead of scheduled launch on Sep.t 3, 2016. Credit: CCAFS
A SpaceX Falcon 9 rocket is destroyed during explosion at the pad on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016 of Amos-6 comsat. Credit: CCAFS

BREAKING NEWS- A SpaceX Falcon 9 rocket and its Israeli commercial satellite payload were completely destroyed this morning, Thursday, September 1, during launch preparations ahead of the scheduled liftoff on Saturday, September 3.

The explosion occurred at approximately 9:07 a.m. this morning at the SpaceX launch facilities at Space Launch Complex 40 on Cape Canaveral Air Force Station, according to a statement from the USAF 45th Space Wing Public Affairs office.

Watch for additional details here and my interview on the BBC as this story is being frequently updated:

There were no injuries reported at this time.

SpaceX was preparing to conduct a routine static fire test of the first stage Merlin 1 D engine when the explosion took place this morning.

SpaceX media relations issued this statement:

“SpaceX can confirm that in preparation for today’s static fire, there was an anomaly on the pad resulting in the loss of the vehicle and its payload. Per standard procedure, the pad was clear and there were no injuries.”

The SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the AMOS-6 telecommunications satellite valued at some $200 million.

SpaceX sells Falcon 9 rockets at a list price of some $60 million.

This would have been the 9th Falcon 9 launch of 2016.

SpaceX Falon 9 rocket explosion
SpaceX Falcon 9 rocket explosion. Credit: WTTV/Julian Leek

This explosion and the total loss of vehicle and payload will have far reaching consequences for not just SpaceX and the commercial satellite provider, but also NASA, the US military, and every other customer under a launch contact with the aerospace firm.

Here’s my interview with the BBC TV news a short while ago. Note that the cause is under investigation:

SpaceX is also trying to recover and recycle the Falcon 9 first stage.

Indeed as I reported just 2 days ago, SpaceX announce a contract with SES to fly the SES-10 communications satellite on a recycled Falcon 9.

This explosion will set back that effort and force a halt to all SpaceX launches until the root cause is determined.

chan4large 4

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Upgraded SpaceX Falcon 9 prior to launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 prior to launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

SES Boldly Goes Where No Firm Has Gone Before, Inks Deal to Fly on 1st SpaceX ‘Flight-Proven’ Booster

First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX
First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX
First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX

CAPE CANAVERAL, FL — The telecommunications giant SES is boldly going where no company has gone before by making history in inking a deal today, Aug. 30, to fly the expensive SES-10 commercial satellite on the first ever launch of a ‘Flight-Proven’ SpaceX booster – that’s been used and recovered.

Luxembourg-based SES and Hawthrone, CA-based SpaceX today jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster” before the end of this year.

“The satellite, which will be in a geostationary orbit and expand SES’s capabilities across Latin America, is scheduled for launch in Q4 2016. SES-10 will be the first-ever satellite to launch on a SpaceX flight-proven rocket booster,” according to a joint statement.

That first launch of a flight-proven Falcon 9 first stage will use the CRS-8 booster that delivered a SpaceX Dragon to the International Space Station in April 2016. The reflight could happen as soon as October 2016.

Recovered SpaceX Falcon 9 rocket moved by crane from drone ship to an upright storage cradle on land at Port Canaveral,  Florida on April 12, 2016.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket from NASA CRS-8 cargo mission is moved by crane from drone ship to an upright storage cradle on land at Port Canaveral, Florida on April 12, 2016. Credit: Julian Leek

The deal marks a major milestone and turning point in SpaceX CEO and billionaire founder Elon Musk’s long sought endeavor to turn the science fictionesque quest of rocket reusability into the scientific fact of reality.

“Thanks for the longstanding faith in SpaceX,” tweeted SpaceX CEO Elon Musk after today’s joint SES/SpaceX announcement.

“We very much look forward to doing this milestone flight with you.”

Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket recycling – in a way that will one day lead to his vision of a ‘City on Mars.’

Over just the past 8 months, SpaceX has successfully recovered 6 of the firms Falcon 9 first stage boosters intact – by land and by sea since December 2015 – in hopes of recycling and reusing them with new payloads from paying customers daring enough to take the risk of stepping into the unknown!

SES is that daring company and has repeatedly shown faith in SpaceX. They were the first commercial satellite operator to launch with SpaceX with SES-8 back in October 2013. Earlier this year the firm also launched SES-9 on the recently upgraded full thrust version of Falcon 9 in March 2016.

Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 prior to launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

“Having been the first commercial satellite operator to launch with SpaceX back in 2013, we are excited to once again be the first customer to launch on SpaceX’s first ever mission using a flight-proven rocket. We believe reusable rockets will open up a new era of spaceflight, and make access to space more efficient in terms of cost and manifest management,” said Martin Halliwell, Chief Technology Officer at SES, in the statement.

“This new agreement reached with SpaceX once again illustrates the faith we have in their technical and operational expertise. The due diligence the SpaceX team has demonstrated throughout the design and testing of the SES-10 mission launch vehicle gives us full confidence that SpaceX is capable of launching our first SES satellite dedicated to Latin America into space.”

SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station.   Credit: Julian Leek
SpaceX Falcon 9 rocket with a Dragon cargo spacecraft launches on April 8, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station on the CRS-8 mission to the International Space Station. Credit: Julian Leek

But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it. So they have been carefully inspecting it for structural integrity, checking all the booster systems, plumbing, avionics, etc and retesting the first stage Merlin 1D engines.

Multiple full duration hot fire tests of the fully integrated booster have been conducted at the SpaceX test facility in McGregor, Texas as part of long life endurance testing. This includes igniting all nine used first stage Merlin 1D engines housed at the base of a landed rocket for approximately three minutes.

For the SES-10 launch, SpaceX plans to use the Falcon 9 booster that landed on an ocean going drone ship from NASA’s CRS-8 space station mission launched in April 2016, said Hans Koenigsmann, SpaceX vice president of Flight Reliability, to reporters recently at the Kennedy Space Center during NASA’s CRS-9 cargo launch to the ISS.

SpaceX has derived many lessons learned on how to maximize the chances for a successful rocket recovery, Koenigsmann explained to Universe Today at KSC when I asked for some insight.

“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.

“There are no structural changes first of all.”

“The key thing is to protect the engines- and make sure that they start up well [in space during reentry],” Koenigsmann elaborated, while they are in flight and “during reentry.”

“And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”

“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”

The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.

“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told me.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

“Re-launching a rocket that has already delivered spacecraft to orbit is an important milestone on the path to complete and rapid reusability,” said Gwynne Shotwell, President and Chief Operating Officer of SpaceX.

“SES has been a strong supporter of SpaceX’s approach to reusability over the years and we’re delighted that the first launch of a flight-proven rocket will carry SES-10.”

Remote camera photo from "Of Course I Still Love You" droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX
Remote camera photo from “Of Course I Still Love You” droneship of Falcon 9 first stage landing following launch of Dragon cargo ship to ISS on CRS-8 mission on 8 April 2016. Credit: SpaceX

How much money will SES save by using a spent, recycled first stage Falcon 9 booster?

SpaceX says the price of a completely new Falcon 9 booster is approximately $60 million.

Shotwell has said SpaceX will reduce the cost about 30%. So SES might be saving around $20 million – but there are no published numbers regarding this particular launch contract.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

SES-10 will be the first SES satellite wholly dedicated to Latin America.

“The satellite will provide coverage over Mexico, serve the Spanish speaking South America in one single beam, and cover Brazil with the ability to support off-shore oil and gas exploration,” according to SES.

It will replace capacity currently provided by two other satellites, namely AMC-3 and AMC-4, and will “provide enhanced coverage and significant capacity expansion over Latin America – including Mexico, Central America, South America and the Caribbean. The high-powered, tailored and flexible beams will provide direct-to-home broadcasting, enterprise and mobility services.”

It is equipped with a Ku-band payload of 55 36MHz transponder equivalents, of which 27 are incremental. It will be stationed at 67 degrees West.

SES-10 was built by Airbus Defence and Space and is based on the Eurostar E3000 platform. Notably it will use “an electric plasma propulsion system for on-orbit manoeuvres and a chemical system for initial orbit raising and some on-orbit manoeuvres.”

SES-10 satellite mission artwork. Credit: SES
SES-10 satellite mission artwork. Credit: SES

The most recent SpaceX Falcon 9 booster to be recovered followed the dramatic overnight launch of the Japanese JCSAT-16 telecom satellite on Aug. 14.

Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s.  Credit: Ken Kremer/kenkremer.com
Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s. Credit: Ken Kremer/kenkremer.com

It was towed back into port on atop the diminutive OCISLY ocean landing platform that measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The 6 successful Falcon upright first stage landings are part of a continuing series of SpaceX technological marvels/miracles rocking the space industry to its core.

SpaceX had already successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27, prior to JCSAT-16 on Aug. 14.

Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016.    Credit:  Julian Leek
SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016. Credit: Julian Leek
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40.  Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Splashes Down with NASA’s Station Science Cargo

SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station. Credit: SpaceX
SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station.  Credit: SpaceX
SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station. Credit: SpaceX

A SpaceX commercial Dragon cargo ship returned to Earth today, Friday, Aug. 26, 2016, by splashing down safely in the Pacific Ocean – thus concluding more than a month long stay at the International Space Station (ISS). The vessel was jam packed with some 1.5 tons of NASA cargo and critical science samples for eagerly waiting researchers.

The parachute assisted splashdown of the Dragon CRS-9 cargo freighter took place at 11:47 a.m. EDT today in the Pacific Ocean – located some 326 miles (520 kilometers) southwest of Baja California.

Dragon departed after spending more than five weeks berthed at the ISS.

This image, captured from NASA Television's live coverage, shows SpaceX's Dragon spacecraft departing the International Space Station at 6:10 am EDT Friday, Aug. 26, 2016, after successfully delivering almost 5,000 pounds of supplies and scientific cargo on its ninth resupply mission to the orbiting laboratory.  Credits: NASA Television
This image, captured from NASA Television’s live coverage, shows SpaceX’s Dragon spacecraft departing the International Space Station at 6:10 am EDT Friday, Aug. 26, 2016, after successfully delivering almost 5,000 pounds of supplies and scientific cargo on its ninth resupply mission to the orbiting laboratory. Credits: NASA Television

It was loaded with more than 3,000 pounds of NASA cargo and critical research samples and technology demonstration samples accumulated by the rotating six person crews of astronauts and cosmonauts living and working aboard the orbiting research laboratory.

This station based research will contribute towards NASA’s strategic plans to send astronauts on a ‘Journey to Mars’ by the 2030s.

It arrived at the station on July 20 ferrying over 2.5 tons of priceless research equipment, gear, spare parts and supplies, food, water and clothing for the station’s resident astronauts and cosmonauts as well as the first of two international docking adapters (IDAs) in its unpressurized cargo hold known as the “trunk.”

The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV

Dragon was launched on July 18 during a mesmerizing post midnight, back-to-back liftoff and landing of the SpaceX Falcon 9 rocket in its upgraded, full thrust version.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

The SpaceX Falcon 9 blasted off at 12:45 a.m. EDT July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and successfully delivered the Dragon CRS-9 resupply ship to its preliminary orbit about 10 minutes later.

SpaceX also successfully executed a spellbinding ground landing of the Falcon 9 first stage back at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing of the 156 foot tall Falcon 9 first stage at LZ -1 took place about 9 minutes after liftoff. It marked only the second time a spent, orbit class booster has touched down intact and upright on land.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

The stage was set for today’s return to Earth when ground controllers robotically detached Dragon from the Earth-facing port of the Harmony module early this morning using the station’s 57.7-foot (17.6-meter) long Canadian-built robotic arm.

Expedition 48 Flight Engineers Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) then used Canadarm 2 to release Dragon from the grappling snares at about 6:10 a.m. EDT (1011 GMT) this morning.

“Houston, station, on Space to Ground Two, Dragon depart successfully commanded,” radioed Rubins.

The ISS was soaring some 250 miles over the Timor Sea, north of Australia.

“Congratulations to the entire team on the successful release of the Dragon. And thank you very much for bringing all the science, and all the important payloads, and all the important cargo to the station,” Onishi said. “We feel really sad to see it go because we had a great time and enjoyed working on all the science that the Dragon brought to us.”

Dragon then backed away and moved to a safe distance from the station via a trio of burns using its Draco maneuvering thrusters.

The de-orbit burn was conducted at 10:56 a.m. EDT (1456 GMT) to drop Dragon out of orbit and start the descent back to Earth.

SpaceX contracted recovery crews hauled Dragon aboard the recovery ship and are transporting it to a port near Los Angeles, where some time critical cargo items and research samples will be removed and returned to NASA for immediate processing.

SpaceX plans to move Dragon back to the firms test facility in McGregor, Texas, for further processing and to remove the remaining cargo cache.

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon was an off the shelf instrument designed to perform the first-ever DNA sequencing in space and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

During a spacewalk last week on Aug. 19, the initial docking adapter known as International Docking Adapter-2 (IDA-2) was installed Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA.

Other science experiments on board included OsteoOmics to test if magnetic levitation can accurately simulate microgravity to study different types of bone cells and contribute to treatments for diseases like osteoporosis, a Phase Change Heat Exchanger to test temperature control technology in space, the Heart Cells experiments that will culture heart cells on the station to study how microgravity changes the human heart, new and more efficient three-dimensional solar cells, and new marine vessel tracking hardware known as the Automatic Identification System (AIS) that will aid in locating and identifying commercial ships across the globe.

The ring shaped IDA-2 unit was stowed in the Dragon’s unpressurized truck section. It weighs 1029 lbs (467 kg), measures about 42 inches tall and sports an inside diameter of 63 inches in diameter – so astronauts and cargo can easily float through. The outer diameter measures about 94 inches.

“Outfitted with a host of sensors and systems, the adapter is built so spacecraft systems can automatically perform all the steps of rendezvous and dock with the station without input from the astronauts. Manual backup systems will be in place on the spacecraft to allow the crew to take over steering duties, if needed,” says NASA.

“It’s a passive system which means it doesn’t take any action by the crew to allow docking to happen and I think that’s really the key,” said David Clemen Boeing’s director of Development/Modifications for the space station.

“Spacecraft flying to the station will use the sensors on the IDA to track to and help the spacecraft’s navigation system steer the spacecraft to a safe docking without astronaut involvement.”

CRS-9 counts as the company’s ninth of 26 scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission was launched for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Watch for Ken’s continuing SpaceX and CRS mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An illustration of how the IDA will look when attached to the International Space Station. Credits: NASA
An illustration of how the IDA will look when attached to the International Space Station.
Credits: NASA
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida.   Credit: Ken Kremer/kenkremer.com
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

SpaceX Just Put The Coolest Garden Gnome Ever In Its Front Yard

The first stage of the very first Falcon 9 to successfully be recovered now stands as a monument outside of SpaceX's headquarters in Hawthorne, California. Credit: KC Grim

SpaceX has certainly pulled off some successful feats lately. In the past few months, the private aerospace company made its second successful landing on solid ground and its third successful landing at sea with their Falcon 9 rocket. In so doing, they demonstrated that they have achieved the long sought-after dream of reusable rocket technology.

And to celebrate these feats, SpaceX has placed a particularly special first stage on display outside the company headquarters in Hawthorne, California. This particular rocket stage made history about eight months ago (on Dec. 21st, 2015), when it became the first-ever first stage to be recovered in the entire history of spaceflight.

For the sake of this mission, which was the 20th flight conducted by SpaceX using this class of rocket, the Falcon 9 was tasked with delivering 11 Orbcomm-OG2 communications satellites into orbit. After separating, the first stage descended to Earth and became the first rocket stage ever to make a soft landing and recovery.

The top of the Falcon-9 lower stage. Image credit: KC Grim
The top of the Falcon-9 lower stage. Credit: KC Grim

Prior to this flight, SpaceX’s had made two attempts at a vertical landing and booster recovery, both of which ended in failure. The first attempt, which took place in January of 2015, ended when the rocket came close to a successful landing aboard the company’s Autonomous Spaceport Drone Ship (ASDS), but then fell over and exploded.

An investigation determined that failure was due to the rocket’s steering fins running out of hydraulic fluid. The second failed attempt, which took place in April of last year, ended when the rocket stage was mere seconds away from landing on ASDS, but once again fell over and exploded. This time around, the culprit was a failure in one of the rocket stage’s engine throttle valves.

On the third attempt, which took place on Dec. 21st, the Falcon 9 first stage landed a mere ten minutes after launching from Earth. After its descent, it successfully touched down in an upright position on SpaceX’s Landing Zone (LZ-1) at Cape Canaveral Air Force Station.

The success of this recovery was a major milestone for the company, and a breakthrough in the history of space exploration and technology. Little wonder then why the company is choosing to honor it by placing it on display at the Hawthorn facility, where their rocket manufacturing plant is located.

The first stage of the recovered Falcon 9, showing its landing struts deployed. Credit: SpaceX
The first stage of the recovered Falcon 9, showing its landing struts deployed. Credit: KC Grim

It all happened this past weekend, where work crews spent Saturday and Sunday standing the 50 meter (165 foot) Falcon 9 stage up on its landing skids. Prior to it being transported to their headquarters in Hawthorne, the rocket’s first stage was being kept in a horizontal position at the NASA Kennedy Space Center in Florida, and then at a location a few blocks away from the HQ.

Getting it to stand again was no easy task, and required two days and two cranes! The rocket also underwent some “aesthetic renewal” before being erected, which included a cleaning in order to remove all the soot it had accumulated on re-entry. Its logos were also repainted, and most of its engines were replaced by spent versions.

Since this first recovery, SpaceX has managed to conduct five more successful recoveries, one on land and four on its ASDS. They are moving ahead with the first launch of their Falcon Heavy  – Demo Flight 1, which is scheduled to take place by the end of 2016 – which will be the heaviest rocket to be launched from the US since the retirement of the venerable Saturn V.

Yes, the little company Elon Musk started with the dream of one-day colonizing Mars has certainly achieved some milestones. And between the creation of this display, and the Dragon capsule they have on display inside their Hawthorn headquarters, the company is clearly committed to immortalizing them.

And be sure to enjoy this video of the Falcon 9 making its first successful landing, courtesy of SpaceX:

Further Reading: Collect Space

A big thanks to KC Grim for capturing some images of the rocket for Universe Today. Check out his Instagram @citizenkace.

Sea Landed SpaceX Falcon 9 Sails Back into Port Canaveral: Gallery

This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background - as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com
This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background.  Credit: Ken Kremer/kenkremer.com
This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background – as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL, FL — Rocket recycling continues apace as the latest SpaceX Falcon 9 rocket to successfully launch a payload to orbit on Aug. 14 and land the first stage at sea minutes later, sailed safely into Port Canaveral just days later atop the dedicated drone ship landing platform.

It’s just the latest previously unfathomable and science fictionesque space adventure turned into science reality by SpaceX – a burgeoning aerospace giant.

A virgin SpaceX Falcon 9 rocket carrying the Japanese JCSAT-16 telecom satellite roared to life past midnight last Sunday, Aug. 14, at 1:26 a.m. EDT and streaked to orbit from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.

After the first stage firing was completed, it separated from the second stage, turned around 180 degrees, relit three of its Merlin 1D engines and began descending back to Earth towards the waiting drone ship barge.

Scarcely nine minutes later the 15 story tall first stage completed a pinpoint and upright soft landing on a prepositioned ocean going platform some 400 miles (650 km) off shore of of Florida’s east coast in the Atlantic Ocean., after successfully delivering the Japanese communications satellite to its intended geostationary orbit.

Recovered SpaceX Falcon 9 booster from JCSAT-16 launch after arrival in Port Canaveral, FL on Aug. 17, 2016 with landing legs deployed. Credit: Julian Leek
Recovered SpaceX Falcon 9 booster from JCSAT-16 launch after arrival in Port Canaveral, FL on Aug. 17, 2016 with landing legs deployed. Credit: Julian Leek

It was towed back into port on Wedenesday, Aug. 16 atop the diminutive ocean landing platform measuring only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.

Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s.  Credit: Ken Kremer/kenkremer.com
Port Canaveral aerial view showing SpaceX Falcon 9 first stage back on land in storage cradle after arriving back into port and craning off droneship barge it propulsively soft landed on after launching JCSAT-16 Japanese comsat on Aug. 14, 2016 from Cape Canaveral Air Force Station, Fl. NASA’s. Credit: Ken Kremer/kenkremer.com

The JCSAT-16 satellite was successfully deployed from the second stage about 32 minutes after liftoff from Cape Canaveral – as the primary objective of this flight.

The secondary experimental objective was to try and recover the first stage booster via a propulsive landing on the ocean-going platform named “Of Course I Still Love You” or OCISLY.

The ocean-going barge is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks.

OCISLY and the vertical booster arrived back into Port Canaveral three days later on Wednesday morning, Aug. 17,floating past unsuspecting tourists and pleasure craft.

A heavy duty crane lifted the spent 156-foot-tall (47-meter) booster off the OCISLY barge and onto a restraining cradle within hours of arrival.

Watch this exquisitely detailed video from USLaunchReport showing workers capping the first stage and preparing the booster for craning off the barge on Aug. 17, 2016.

Video Caption: SpaceX – JCSAT-16 – In Port – YouTube 4K – 08-17-2016. Credit: USLaunchReport

One by one, workers then removed all four landing legs over the next two days.

It will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch processing facilities and hangars at Cape Canaveral for refurbishment, exhaustive engine and structural testing. It will also be washed, stored and evaluated for reuse.

Recovered SpaceX Falcon 9 booster from JCSAT-16 launch after arrival in Port Canaveral, FL on Aug. 17, 2016 after 3 landing legs removed. Credit: Julian Leek
Recovered SpaceX Falcon 9 booster from JCSAT-16 launch after arrival in Port Canaveral, FL on Aug. 19, 2016 after 3 landing legs removed. Credit: Julian Leek

As always, SpaceX will derive lessons learned and apply them to the upcoming missions – as outlined by SpaceX VP Hans Koenigsmann in my story here.

This 6th successful Falcon upright first stage landing – two by land and four by sea – is part of a continuing series of technological marvels/miracles rocking the space industry to its core.

The sextet of intact and upright touchdowns of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

To date SpaceX had successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.

The JCSAT-16 communications satellite was built by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp. It is equipped Ku-band and Ka-band communications services for customers of SKY Perfect JSAT Corp.

The satellite was launched using the upgraded version of the 229 foot tall Falcon 9 rocket.

Relive the launch via this pair of videos from remote video cameras set at the SpaceX launch pad 40 facility:

Video caption: SpaceX Falcon 9 launch of JCSAT-16 on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Video Caption: Launch of the JCSAT-16 communications satellite on a SpaceX Falcon 9 rocket on 8/14/2016 from Pad 40 of CCAFS. Credit: Jeff Seibert

SKY Perfect JSAT Corp. is a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.

The Aug. 14 launch was the second this year for SKY Perfect JSAT. The JCSAT-14 satellite was already successfully launched earlier this year atop a SpaceX Falcon 9 on May 6.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

JCSAT-16 will primarily serve as an on orbit back up spare for the company’s existing services, a company spokeswomen told Universe Today at the media launch viewing site.

Tourists oblivious to the SpaceX technological marvel - recovering the Falcon 9 1st stage from JCSAT-16 launch - behind them at Port Canaveral, FL on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com
Tourists oblivious to the SpaceX technological marvel – recovering the Falcon 9 1st stage from JCSAT-16 launch – behind them at Port Canaveral, FL on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Up close view of hoisting cap and grid fins on recovered SpaceX Falcon 9 from JCSAT-16 launch after arrival into Port Canaveral, FL.    NASA’s VAB in the background - as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com
Up close view of hoisting cap and grid fins on recovered SpaceX Falcon 9 from JCSAT-16 launch after arrival into Port Canaveral, FL. NASA’s VAB in the background – as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese comsat to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese comsat to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor
Streak shot of SpaceX Falcon 9 delivering JCSAT-16 Japanese communications satellite to orbit after blastoff on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Streak shot of SpaceX Falcon 9 delivering JCSAT-16 Japanese communications satellite to orbit after blastoff on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

SpaceX Nails Dazzling Midnight Launch of Japanese Comsat and Droneship Landing

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — Shortly after midnight today, Sunday, Aug. 14, and under near pristine Florida Space Coast skies, SpaceX dazzled its commercial customers and space enthusiasts alike worldwide with the twin feats of nailing the nighttime launch of the firm’s Falcon 9 carrying a huge Japanese telecommunications satellite to orbit and accomplishing the nailbiting precision touchdown of the first stage on a miniscule droneship at sea.

A virgin SpaceX Falcon 9 rocket carrying the JCSAT-16 telecom satellite roared to life right on time Sunday morning at 1:26 a.m. from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida and streaked to orbit.

Streak shot of SpaceX Falcon 9 delivering JCSAT-16 Japanese communications satellite to orbit after blastoff on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Streak shot of SpaceX Falcon 9 delivering JCSAT-16 Japanese communications satellite to orbit after blastoff on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Scarcely some nine minutes later the 15 story tall first stage completed a pinpoint and upright soft landing on a prepositioned ocean going platform after carrying the Japanese satellite to its intended Geostationary Transfer Orbit (GTO).

First stage landing confirmed on the droneship. Second stage & JCSAT-16 continuing to orbit on 15 Aug 2016.  Credit: SpaceX
First stage landing confirmed on the droneship. Second stage & JCSAT-16 continuing to orbit on 15 Aug 2016. Credit: SpaceX

The satellite was launched using the upgraded version of the 229 foot tall Falcon 9 rocket. The first stage generates over 1.71 million pounds of sea level thrust when all nine Merlin 1D engines fire up on the pad.

Check out the expanding gallery of launch photos and videos.

The JCSAT-16 communications satellite was built by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp. It is equipped Ku-band and Ka-band communications services for customers of SKY Perfect JSAT Corp.

SKY Perfect JSAT Corp. ia a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.

Sunday’s launch was the second this year for The sextet of intact and upright landings of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The JCSAT-14 satellite was already successfully launched earlier this year atop a SpaceX Falcon 9 on May 6.

JCSAT-16 will primarily serve as an on orbit back up spare for the company’s existing services, a company spokeswomen told Universe Today at the media launch viewing site.

The U.S. Air Force’s 45th Space Wing supported SpaceX’s Falcon 9 launch of JCSAT-16.

“I am very proud of the entire Space Coast team. Their flawless work made this mission a success,” said Col. Walt Jackim, 45th Space Wing vice commander and mission Launch Decision Authority.

“Assured access to space remains a difficult and challenging endeavor. Today’s launch reflects a superb collaborative effort between commercial launch providers, allied customers, and U.S. Air Force range and safety resources. The 45th Space Wing remains a proud member of the Space Coast team and we look forward to continuing our service as the ‘World’s Premier Gateway to Space.”

With today’s event, SpaceX has now successfully soft landed 6 of the spent first stage boosters over the past eight months following successful rocket delivery launches to orbit for NASA and commercial customers – two on land and four at sea.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese comsat to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese comsat to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor

The sextet of intact and upright landings of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

JCSAT-16 satellite manufactured by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp.
JCSAT-16 satellite manufactured by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Launch and :Landing control center. Credit: Lane Hermann
SpaceX Launch and :Landing control center. Credit: Lane Hermann
Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX
Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX
SKY Perfect JSAT Corporation communications managers Yoko Watanabe and Katsumi Sugiura discuss and Ken Kremer of Universe Today discuss the JCSAT-16 mission in this prelaunch view of SpaceX Falcon 9 at SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
SKY Perfect JSAT Corporation communications managers Yoko Watanabe and Katsumi Sugiura, and Ken Kremer of Universe Today discuss the JCSAT-16 Japanese telecom sat mission in this prelaunch view of SpaceX Falcon 9 at SLC-40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

SpaceX Falcon 9 Set for Post-Midnight Blastoff and Landing on Aug. 14 – Watch Live

Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. First stage successfully landed vertically back at the Cape ten minutes later for the first time in history. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015.   First stage successfully landed vertically back at the Cape ten minutes later for the first time in history.   Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Scarcely three weeks after the mesmerizing midnight launch and landing of a SpaceX Falcon 9 rocket that delivered over two tons of science and critical hardware to the space station for NASA, the innovative firm is set to repeat the back to back space feats – with a few big twists – during a post midnight launch this Sunday, Aug.14 of a Japanese telecom satellite.

In less than 24 hours, a freshly built SpaceX Falcon 9 is set to transform night into day and launch the JCSAT-16 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.

And some nine minutes later, the 15 story Falcon 9 first stage is scheduled to make a pinpoint soft landing on a tiny, prepositioned drone ship at sea in the vast Atlantic Ocean.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

To date SpaceX has successfully soft landed 5 first stage boosters over the past eight months – two by land and three by sea.

Nighttime liftoffs are always a viewing favorite among the general public – whether visiting from near or far. And this one is virtually certain to offer some spectacular summer fireworks since the weather looks rather promising – if all goes well.

Sunday’s launch window opens at 1:26 a.m. EDT and extends two hours long for the 229 foot tall Falcon 9 rocket. The window closes at 3:26 a.m. EDT.

The commercial mission involves lofting the JCSAT-16 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.

Sunday’s launch is the second this year for SKY Perfect JSAT. The JCSAT-14 satellite was already launched earlier this year on May 6.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:06 a.m. EDT at SpaceX.com/webcast

The weather currently looks very good. Air Force meteorologists are predicting an 80 percent chance of favorable weather conditions at launch time in the wee hours early Sunday morning.

The primate concerns are for violations of the Cumulus Cloud and Think Cloud rules.

The U.S. Air Force’s 45th Space Wing will support SpaceX’s Falcon 9 launch of JCSAT-16.

In cases of any delays for technical or weather issues, a backup launch opportunity exists 24 hours later on Monday morning with a 70 percent chance of favorable weather.

The rocket has already been rolled out to the launch pad on the transporter and raised to its vertical position.

The path to launch was cleared following the successful Aug. 10 hold down static fire test of the Falcon 9 first stage Merlin 1-D engines. SpaceX routinely performs the hot fire test to ensure the rocket is ready.

Watch this crystal clear video of the Static Fire Test from USLaunchReport:

Video Caption: SpaceX – JCSAT-16 – Static Fire Test 08-10-2016. On a humid, windless evening at 11 PM, JCSAT-16 gave one good vapor show. Credit: USLaunchReport

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.
The JCSAT-16 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

JCSAT-16 satellite will separate from the second stage and will be deployed about 32 minutes after liftoff from Cape Canaveral. The staging events are usually broadcast live by SpaceX via stunning imagery from onboard video cameras.

A secondary objective is to try and recover the first stage booster via a propulsive landing on an ocean-going platform.

This booster is again equipped with 4 landing legs and 4 grid fins.

Following stage separation, SpaceX will try to soft land the first stage on the “Of Course I Still Love You” drone ship positioned about 400 miles (650 km) off shore of Florida’s east coast in the Atlantic Ocean.

But SpaceX officials say landings from GTO mission destinations are extremely challenging because the first stage will be subject to extreme velocities and re-entry heating.

If all goes well with the supersonic retropropulsion landing on the barge, the booster will arrive back into Port Canaveral a few days later.

Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

To date SpaceX has successfully recovered first stages three times in a row at sea this year on the an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX
Mission patch for SpaceX JCSAT-16 launch. Credit: SpaceX

………….

Learn more about SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Aug 12-14: “SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings