SpaceX Calls In The Lawyers For 2018 Mars Shot

An artist's illustration of SpaceX's Dragon capsule entering the Martian atmosphere. Image: SpaceX
An artist's illustration of SpaceX's Dragon capsule entering the Martian atmosphere. Image: SpaceX

A manned mission to Mars is a hot topic in space, and has been for a long time. Most of the talk around it has centred on the required technology, astronaut durability, and the overall feasibility of the mission. But now, some of the talk is focussing on the legal framework behind such a mission.

In April 2016, SpaceX announced their plans for a 2018 mission to Mars. Though astronauts will not be part of the mission, several key technologies will be demonstrated. SpaceX’s Dragon capsule will make the trip to Mars, and will conduct a powered, soft landing on the surface of the red planet. The capsule itself will be launched by another new piece of technology, SpaceX’s Falcon Heavy rocket.

It’s a fascinating development in space exploration; a private space company, in cooperation with NASA, making the trip to Mars with all of its own in-house technology. But above and beyond all of the technological challenges, there is the challenge of making the whole endeavour legal.

Though it’s not widely known or talked about, there are legal implications to launching things into space. In the US, each and every launch by a private company has to have clearance from the Federal Aviation Administration (FAA).
That’s because the US signed the Outer Space Treaty in 1969, a treaty that sets out the obligations and limitations to activities in space. The FAA has routinely given their ascent to commercial launches, but things may be starting to get a little tricky in space.

The most recent Humans To Mars Summit, a conference focussed on Mars missions and explorations, just wrapped up on May 19th. At that conference, George Nield, associate administrator for commercial space transportation at the FAA, addressed the issue. “That’ll be an FAA licensed launch as well,” said Nield of the SpaceX mission to Mars. “We’re already working with SpaceX on that mission,” he added. “There are some interesting policy questions that have to do with the Outer Space Treaty,” said Nield.

The Outer Space Treaty was signed in 1967, and has some sway over space exploration and colonization. Though it gives wide latitude to governments that are exploring space, how it will affect commercial activity like resource exploitation, and installations like settlements in other planets, is not so clear.

An artist's illustration of a Mars settlement. If a private company like SpaceX were to build a colony on Mars, would other countries cry foul? Image: Bryan Versteeg/MarsOne
An artist’s illustration of a Mars settlement. If a private company like SpaceX were to build a colony on Mars, would other countries cry foul? Image: Bryan Versteeg/MarsOne

According to Nield, the FAA is interested in Article VI of the treaty and how it might impact SpaceX’s planned mission to Mars. Article VI states that all signees to the treaty “shall bear international responsibility for national activities in outer space, including the Moon and other celestial bodies, whether such activities are carried on by governmental agencies or by non-governmental entities.”

Article VI also says, “the activities of non-governmental entities in outer space, including the Moon and other celestial bodies, shall require authorization and continuing supervision by the appropriate State Party to the Treaty.”

What this language means is that the US government itself will bear responsibility for the SpaceX Mars mission. Obviously, this kind of treaty obligation is important. There isn’t exactly a huge list of private companies exploring space, but that will change as the years pass. It seems likely that the bulk of commercial space exploration and resource utilization will be centred in the US, so how the US deals with their treaty obligations will be of immense interest now and in the future.

The treaty itself is mostly focused on avoiding military activity in space. It prohibits things like weapons of mass destruction in space, and weapons testing or military bases on the Moon or other celestial bodies. The treaty also states that the Moon and other planets and bodies cannot be claimed by any nation, and that these and other bodies “are the common heritage of mankind.” Good to know.

Taken as a whole, it’s easy to see why the Treaty is important. Space can’t become a free-for-all like Earth has been in the past. There has to be some kind of framework. “A government needs to oversee these non-governmental activities,” according to Nield.

There’s another aspect to all of this. Governments routinely sign treaties, and then try to figure out ways around them, while hoping their rivals won’t do the same. It’s a sneaky, tactical business, because governments can’t grossly ignore treaties, else the other co-signatories abandon said treaty completely. A case in point is last year’s law, signed by the US Congress, which makes it legal for companies to mine asteroids. This law could be interpreted as violating the Treaty.

The image of the American flag planted on the Moon, being saluted by an American astronaut, must have caused great consternation in the Kremlin. Will SpaceX's mission to Mars cause the same consternation? Will Russia and other nations use the mission to remind the US of their Outer Space Treaty obligations? Image: NASA
The US won the space race against its adversary, the USSR. The image of the American flag planted on the Moon, being saluted by an American astronaut, must have caused great consternation in the Kremlin. Will SpaceX’s mission to Mars cause the same consternation? Will Russia and other nations use the mission to remind the US of their Outer Space Treaty obligations? Image: NASA

Governments can claim, for instance, that their activities are scientific rather than military. Geo-political influence depends greatly on projecting power. If one nation can project power into space, while claiming their activities are scientific rather than military, they will gain an edge over their rivals. Countries also seek to bend the rules of a treaty to satisfy their own interests, while preventing other countries from doing the same. Just look at history.

We’re not in that type of territory yet. So far, no nation has had an opportunity to really violate the treaty, though the asteroid mining law passed by the US Congress comes close.

The SpaceX mission to Mars is a very important one, in terms of how the Outer Space Treaty will be tested and adhered to. More and more countries, and private companies, are becoming space-farers. The legality of increasingly complex missions in space, and the eventual human presence on the Moon and Mars, is a fascinating one not usually addressed by the space science community.

We in the space science community are primarily interested in technological advances, and in the frontiers of human knowledge. It might be time for us to start paying attention to the legal side of things. Space exploration could turn out to have an element of courtroom drama to it.

2 By Sea, 1 By Land, 3rd Recovered Booster Joins SpaceX Siblings: Up Close Gallery

Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace.  Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX.  Composite:  Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer

Rolling rolling rolling! Yee-haw!

2 By Sea, 1 By Land. The 3rd recovered Falcon 9 booster has joined her siblings inside SpaceX’s gleaming new processing hangar, laying side-by-side at Launch Complex 39A at NASA’s Kennedy Space Center (KSC) in Florida.

What was once unfathomable science fiction has turned into science fact.

In the space of 5 short months, SpaceX has recovered three of the company’s spent Falcon 9 first stage boosters following successful rocket delivery launches to orbit for NASA and commercial customers.

The trio of landings count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

Over the weekend, the latest Falcon 9 booster recovered after nailing a spectacular middle-of-the-night touchdown on a sea based platform, was transported horizontally from a work site at Port Canaveral to the SpaceX rocket processing hanger at pad 39A at KSC.

Check out the extensive gallery of up close photos/videos herein of the boosters travels along the long and winding road from the port to KSC from my space photographer friends Jeff Seibert and Julian Leek. As well as booster trio hangar photos from SpaceX.

“Three’s company,” tweeted SpaceX’s Elon Musk, after the third booster met the first two inside the pad 39A hangar.

Video caption: Close-up video of SpaceX JCSAT-14 Falcon 9 booster rolls to SpaceX hanger at Pad 39A after removal from the drone ship where it landed on May 6th. Credit: Jeff Seibert/AmericaSpace

The 156 foot tall booster safely soft landed on the tiny drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 a week and a half ago on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time nighttime liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The used first stage then carried out an intricate propulsive soft landing on the waiting ocean going platform located some 400 miles off the east coast of Florida.

The booster was then towed into the Florida space coast at Port Canaveral where it was removed from the barge, defueled and had its four landing legs removed.

Thereafter it was tilted and lowered horizontally and placed onto the multi-wheeled transport for shipment back to SpaceX launch facilities at the Kennedy Space Center.

First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek

The newly recovered first stage joins the fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida.  Credit: SpaceX
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida. Credit: SpaceX

To date SpaceX has recovered 3 Falcon 9 first stages – 2 by sea and 1 by at land. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Musk and SpaceX officials had openly doubted a successful outcome for this landing attempt.

Nevertheless it all worked out spectacularly as seen live at the time via the SpaceX launch and landing webcast.

However, the booster and the Merlin 1D first stage engines did sustain heavy damage as seen in the up close photos and acknowledged by Musk.

“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted.

So although this cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of booster and its various components.

Apparent cracks in the recovered booster from SpaceX JCSAT-14 launch seen in this up close view revealing damage due to high velocity launch and touchdown on droneship at sea.  Credit: Jeff Seibert/AmericaSpace
The recovered booster from SpaceX JCSAT-14 launch seen in this up close view revealing possible damage due to high velocity launch and touchdown on droneship at sea. Credit: Jeff Seibert/AmericaSpace

“A few pictures show some signs of distress, this obviously was a rough re-entry,” Seibert told Universe Today.

Damage to the booster may be visible. Looking at the Falcon 9s Merlin 1D engines arranged in an octoweb configuration, the center engine appears to be held in place with restraining straps.

“It looks like the octoweb area may have been breached due to the high entry energy. It appears that for some reason, they are supporting the center Merlin engine for transport. They may be some burn through below the orange strap holding up the center engine.”

Apparent damage around Merlin 1D engines at base of recovered booster from SpaceX JCSAT-14 launch seen in this up close view showing straps around center engine.  Credit: Jeff Seibert/AmericaSpace
Apparent damage around Merlin 1D engines at base of recovered booster from SpaceX JCSAT-14 launch seen in this up close view showing straps around center engine. Credit: Jeff Seibert/AmericaSpace

Musk says the next SpaceX commercial launch is tentatively slated for late May – watch for my onsite reports.

Blastoff of the first reflown booster could follow sometime this summer.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Booster move gallery:

Recovered first stage booster after SpaceX JCSAT-14 launch rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016.  Credit: Julian Leek
Recovered first stage booster after SpaceX JCSAT-14 launch rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Base of recovered first stage booster with 9 Merlin 1D engines covered, after SpaceX JCSAT-14 launch, rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016.
Base of recovered first stage booster with 9 Merlin 1D engines covered and landing legs removed, after SpaceX JCSAT-14 launch, rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
9 Merlin 1D engines powered the recovered first stage from SpaceX JCSAT-14 launch, rolls to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016.  Credit: Jeff Seibert/AmericaSpace
9 Merlin 1D engines powered the recovered first stage from SpaceX JCSAT-14 launch, rolls to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
Credit: Jeff Seibert/AmericaSpace
Credit: Jeff Seibert/AmericaSpace
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida.  Credit: SpaceX
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida. Credit: SpaceX
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Up close look at top of recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Up close look at top of recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Scorched skin and US flag on recovered SpaceX first stage booster during roll  to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016.  Credit: Jeff Seibert/AmericaSpace
Scorched skin and US flag on recovered SpaceX first stage booster during roll to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Amazing Time-lapse Shows Recovered SpaceX Falcon 9 Moving To Land After Port Canaveral Arrival

First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. See Time-lapse below. Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 11, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The recovered SpaceX first stage booster that nailed a spectacular middle-of-the-night touchdown at sea last week sailed back to Port Canaveral, Florida, late Monday and was transferred by crane on Tuesday from the drone ship to land – as seen in an amazing time-lapse video and photos, shown above and below and obtained by Universe Today.

The exquisite up close time-lapse sequence shows technicians carefully hoisting the 15-story-tall spent booster from the drone ship barge onto a work pedestal on land some 12 hours after arriving back in port.

The time-lapse imagery (below) of the booster’s removal from the drone ship was captured by my space photographer friend Jeff Seibert on Tuesday, May 10.

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Towards the end of the video there is a rather humorous view of the technicians climbing in unison to the bottom of the hoisted Falcon.

“I particularly like the choreographed ascent by the crew to the base of the Falcon 9 near the end of the move video,” Seibert told Universe Today.

The move took place from 11:55 AM until 12:05 PM, Seibert said.

First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 10, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 11, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The booster was towed into the space coast port around 11 p.m. Monday night, as seen in further up close images captured by my space photographer friend Julian Leek.

Leek also managed to capture a stunningly unique view of the rocket floating atop the barge when it was still out at sea and some 5 miles off shore waiting to enter the port at a safe time after most of the cruise ships had departed – as I reported earlier here.

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The 156 foot tall booster safely soft landed on the drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 last week on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The first stage then carried out a propulsive soft landing on the ocean going platform located some 400 miles off the east coast of Florida.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of seperatoin from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Thus SpaceX officials and CEO Elon Musk had been openly doubtful of a successful outcome for this landing attempt.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
Up close view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The landing counts as another stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

The next step is to defuel the booster and remove the landing legs. Thereafter it will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch facilities at Cape Canaveral for refurbishment, exhaustive engine and structural testing.

The newly recovered first stage will join a fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

If all goes well the recovered booster will eventually be reflown.

The next SpaceX commercial launch is tentatively slated for the late May/early June timeframe.

Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port.  Copyright:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

When Can I Die on Mars?

When Can I Die On Mars?


I don’t know about you, but I’d like to live forever. In a few decades, the Singularity will happen, and I’ll merge with the artificial super intelligence, transcend this meat-based existence and then explore the Hubble Sphere with the disembodied voice of Scarlett Johansson as my guide. See you on the other side, suckers.

Not Elon Musk, though. He thinks we should fear our benevolent computer overlords, and make our way to Mars, where we can live out the rest of our days growing potatoes, huddling in lava tubes, and fighting a guerilla war against a spiritually enlightened and lovable artificial lifeform that really only has our best interests at heart.

In case you have no idea who I’m talking about, Elon Musk is the CEO of the revolutionary rocket company SpaceX, as well as the Tesla electric car company.

Elon Musk. Credit: SpaceX
Elon Musk. Credit: SpaceX

It might sound crazy, but the whole reason Elon Musk started SpaceX was that he wanted to help humanity explore the Solar System. But in order to do that, he’d need inexpensive rocket launches. And since those didn’t exist yet, he started a rocket company to provide launches at a fraction of the cost of the existing launch providers.

At the time I’m recording this video, SpaceX has already had many successful launches. They’ve successfully landed rockets back at their landing pad, and on a floating barge  in the Atlantic Ocean. It really looks like Elon Musk’s plans are going to work, and we’re going to become a true spacefaring civilization.

Elon Musk recently revealed  the design for what he calls the Interplanetary Transport System (ITS) – an upgraded version of his Mars Colonial Transporter (MCT). This ship, according to Musk, will ferry 100 passengers to Mars every 26 months (when the planets are closest), and says that tickets will cost $500,000 per person (at least initially).

Wow, 2024, huh? That’s pretty soon! I’m not sure if you realize how complicated and dangerous this mission will be. This guy is really serious.

An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

The plan involves using a scaled up version of SpaceX’s Falcon rocket, known as the Falcon Heavy, to test techniques for orbiting, descent, and landing on Mars. By bolting 3 Falcon boosters together, this new launch vehicle will be capable of blasting 54,000 kilograms into orbit, or 22,000 kilograms to geostationary orbit, or 13,900 kilograms to Mars.

It’ll even send 2,600 kilograms to Pluto, if that’s what you’re looking for. So far a Falcon Heavy hasn’t been tested yet, but they’re due to start flying by early 2017.

The spacecraft payload is known as the Red Dragon, an uncrewed version of the Dragon 2 which Musk plans to send to Mars in 2018. This is a specially modified version of the SpaceX Dragon capsule which has already successfully delivered cargo to the International Space Station.

Red Dragon will weigh 10 times more than NASA’s Curiosity Rover, and this is a big problem. Landing this much spacecraft on the surface on Mars is incredibly challenging. The atmosphere is just 1% the thickness of Earth’s, so it doesn’t provide any way to slow a spacecraft down from its interplanetary flight.

In the past, rocket engineers have had to develop these complicated landing systems with parachutes, airbags, and retrorockets. But there’s limit to how heavy a mass you can land this way. Curiosity pretty much tested that limit.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

Red Dragon makes it simple. It’ll be equipped with 8 SuperDraco engines built into the capsule which will fire once it enters the atmosphere, and allow it to touch down gently on the surface of Mars. If this works, there’ll be no limit to the size of payloads SpaceX can deploy to the surface of Mars. In fact, once it gets Mars right, Red Dragon should be able to land softly on pretty much any object in the Solar System.

Elon Musk does seem serious about setting up a colony on Mars. Once this first Red Dragon land on the surface, they’ll send capsule after capsule during the perfect Mars launch window that opens up every 2 years or so.

Over time, a real colony’s worth of supplies will be gathered on the surface of Mars. SpaceX will have worked out all the tricks to safely sending spacecraft to the Red Planet, and it’ll be time to send actual colonists willing to live out the rest of their lives on Mars.

We’re still not entirely sure humans can survive long term on Mars. The lack of atmosphere will suffocate you, the unfiltered radiation will fill you with cancer, and the low gravity may melt your bones. Seriously, humanity has never tried living in such an extreme environment.

Musk is so serious about this plan to send humans to Mars, that he’s stated that he’ll never take SpaceX public. The company will remain private so that it’ll prioritize the goal of colonizing Mars over any kind of short sighted shareholder cash grab.

If everything goes well, the first Red Dragon will launch for Mars in 2018. And then more will go every 2 years after that. And at some point, humans will climb into a Red Dragon capsule and blast off to begin the first human colony on Mars.

So when can we die on Mars? Musk hasn’t given us a firm date yet, but if that first Red Dragon does launch in 2018, we won’t have to wait too much longer.

First Hyperloop Technology Demo A Success

After a successful demonstration on their test track, Hyperloop One is one step closer to making Musk's "fifth mode of transportation" a reality. Credit: cbc.ca

Back in 2012, Tesla Motors, Paypal and SpaceX founder Elon Musk made headlines when he announced his idea for a “fifth form of transportation“. Known as the Hyperloop, the concept called for the creation of a high-speed train that would use a low-pressure steel tube and a series of aluminum pod cars to whisk passengers from San Francisco to Los Angeles in just 35 minutes. At the time, Musk claimed he was simply too busy with other projects to build such a system, but that others were free to take a crack at it.

Since then, two startups have emerged that are attempting to do just that. And just yesterday, the startup known as Hyperloop One (formerly Hyperloop Technologies) conducted a test on their full-scale test track located in the Nevada Desert. In what they referred to as a “Propulsion Open Air Test” (POAT), this startup passed a major developmental milestone, bringing them one step closer to making the dream of the Hyperloop a reality.

Using the same linear-accelerator motor that will one day propel podcars through a series of semi-pressurized tubes, the Hyperloop One’s engineers managed to accelerate their test vehicle down a rail track at speeds of up to 483 km/h (300 mph) before plowing it into a sand berm. While this is not quite the 1125 km/h (700 mph) that Hyperloop One hopes to get their pods up to (and there are still matter to work out, such as passenger safety) it is a major step forward.

For one, the test provided some valuable returns that showed that the startup’s eventual goal is realizable. Before it slammed into a pile of sand (on a count of the fact that they have yet to design a braking system) the engineers were able to confirm that the test car had managed to accelerate from 0 to 160 km/h (100 mph) in one second. Within a second and a half, the pod had reached 193 km/h (120 mph), reportedly pulling 2.5 Gs in the process.

Hyperloop's One future test track, which will consist of aluminum tubes under low air pressure. Credit: Hyperloop One
Hyperloop One prototype tube, which is currently under construction in the Nevada Desert. Credit: Hyperloop One

As Josh Giegel, Hyperloop One’s chief engineer, explained in a recent interview with Mashable, the test addressed their system’s linear electric motor-based propulsion. Their design is distinguished from other motors in that it has no moving parts, relying instead on a series of “blades” that measure roughly 60 centimeters long and 15 wide (24 by 6 inches). When powered, these blades create electromagnetic energy that reacts with the pod to propel it along.

Hyperloop One CEO Rob Lloyd was on hand to comment. By 2020, he hopes to sees three lines in operation, with one likely running between San Fransisco and LA and another potentially in Russia. “This was a major technology milestone,” he said. “Hyperloop is faster, greener, safer, and cheaper than any other mode of transportation… We’re building this thing.”

Lloyd also took the occasion to announce new partnerships that the company is entering into – which include architecture, engineering, finance,  freight and tunneling firms – as well as the $80 million in Series B funding they have received. But perhaps the most interesting development to coincide with the test was the decision to change their name. While the reason for this was not explained, the smart money is on it being intended to clear up confusion surrounding the company’s immediate competition.

At present, there are two major companies competing to bring Musk’s vision to life. On the one hand, there is Hyperloop One (formerly Hyperloop Technologies), while the other is Hyperloop Transportation Technologies (or HTT). This little naming scheme has caused quite a bit of confusion in the past, and it is clear at this point that Hyperloop One wants to distinguish itself as being the preeminent leader in the field.

A sled speeds down a track during the test of a Hyperloop One propulsion system Wednesday in North Las Vegas, Nev. Credit: John Locher/The Associated Press)
The test car speeds down the track during the open-air test of the Hyperloop One propulsion system in the Nevada Desert. Credit: John Locher/The Associated Press

But of course, the competition is far from over. In the past few years, HTT has announced some lucrative partnerships as well, which included signing with international engineering giant Aecom and Oerlikon, the world’s oldest vacuum technology company. Earlier this year, HTT also announced an agreement with the Slovakian government to build two Hyperloops that will connect major cities in Central Europe.

One of these lines will run between Vienna, Austria and Bratislava, Slovakia, while the other will connect Bratislava to Budapest, Hungary. The project is expected to cost $200 – $300 million, and is expected to reach an annual capacity of 10 million passengers.

Last, but not least, it is important to note that Hyperloop One’s test comes not long after the Hyperloop Pod Competition, a design competition sponsored by SpaceX that saw 100 university teams compete to create a design for a Hyperloop podcar. The winning team, which hails from MIT, will be testing their final prototype podcar on the one-mile Hyperloop Test Track at SpaceX’s headquarters in California next month.

Much is happening on the Hyperloop front! Who knows where it will all lead? One thing is clear though. Since Musk released the white paper for his concept in 2013 and companies began picking it up, this project has had no shortage of enthusiasts, skeptics and detractors. With every passing milestone, partnership and test, more and more people are beginning to seriously ask, “can it be done?”

SpaceX Dragon Returns to Earth After Splashdown with Critical NASA Science

A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station.  Credit: NASA
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX

A SpaceX cargo Dragon spacecraft loaded with nearly two tons of critical NASA science and technology experiments and equipment returned to Earth this afternoon, Wednesday, May 11, safely splashing down in the Pacific Ocean – and bringing about a successful conclusion to its mission to the International Space Station (ISS) that also brought aloft a new room for the resident crew.

Following a month long stay at the orbiting outpost, the unmanned Dragon was released from the grip of the stations Canadian-built robotic arm at 9:19 a.m. EDT by European Space Agency (ESA) astronaut Tim Peake.

After being detached from its berthing port at the Earth-facing port on the stations Harmony module by ground controllers, Peake commanded the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 to open – as the station was soaring some 260 miles (418 kilometers) over the coast of Australia southwest of Adelaide.

Dragon backed away and soon departed after executing a series of three departure burns and maneuvers to move beyond the 656-foot (200-meter) “keep out sphere” around the station.

European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. The spacecraft was released from the station’s robotic arm at 9:19 a.m. EDT. Following a series of departure burns and maneuvers Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California.  Credit: NASA
European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. Following a series of departure burns Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California. Credit: NASA

“The Dragon spacecraft has served us well, and it’s good to see it departing full of science, and we wish it a safe recovery back to planet Earth,” Peake said.

Dragon fired its braking thrusters to initiate reentry back into the Earth’s atmosphere, and survived the scorching 3000+ degree F temperatures for the plummet back home.

A few hours after departing the ISS, Dragon splashed down in the Pacific Ocean at 2:51 p.m. EDT today, descending under a trio of huge orange and white main parachutes about 261 miles southwest of Long Beach, California.

“Good splashdown of Dragon confirmed, carrying thousands of pounds of @NASA science and research cargo back from the @Space_Station,” SpaceX notified via Twitter.

It was loaded with more than 3,700 pounds of NASA cargo, science and technology demonstration samples including a final batch of human research samples from former NASA astronaut Scott Kelly’s historic one-year mission that concluded in March.

“Thanks @SpaceX for getting our science safely back to Earth! Very important research,” tweeted Kelly soon after the ocean splashdown.

Among the study samples returned are those involving Biochemical Profile, Cardio Ox, Fluid Shifts, Microbiome, Salivary Markers and the Twins Study.

The goal of Kelly’s one-year mission was to support NASA’s plans for a human ‘Journey to mars’ in the 2030s. Now back on the ground Kelly continues to support the studies as a human guinea pig providing additional samples to learn how the human body adjusts to weightlessness, isolation, radiation and the stress of long-duration spaceflight.

Among the other items returned was a faulty spacesuit worn by NASA astronaut Tim Kopra. It will be analyzed by engineers to try and determine why a small water bubble formed inside Kopra’s helmet during his spacewalk in January that forced it to end prematurely as a safety precaution.

Dragon was plucked from the ocean by SpaceX contracted recovery ships and is now on its way to port in Long Beach, California.

“Dragon recovery team on site after nominal splashdown in Pacific,” said SpaceX.

“Some cargo will be removed and returned to NASA, and then be prepared for shipment to SpaceX’s test facility in McGregor, Texas, for processing,” says NASA.

Currently Dragon is the only station resupply craft capable of returning significant quantities of cargo and science samples to Earth.

The Dragon CRS-8 cargo delivery mission began with a spectacular blastoff atop an upgraded version of the two stage SpaceX Falcon 9 rocket, boasting over 1.5 million pounds of thrust on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Relive the launch via this video of the SpaceX Falcon 9/Dragon CRS-8 liftoff from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The SpaceX commercial cargo freighter was jam packed with more than three and a half tons of research experiments, essential crew supplies and a new experimental inflatable habitat for it deliver run.

After a two day orbital chase it reached the ISS and the gleeful multinational crew of six astronauts and cosmonauts on Sunday, April 10.

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marked the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter arrived two weeks earlier on March 26 and is now installed at a neighboring docking port on the Unity module.

The Dragon spacecraft delivered almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.

BEAM is a prototype inflatable habitat that the crew plucked from the Dragon’s truck with the robotic arm for installation on a side port of the Tranquility module on April 16.

Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra
Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra

Minutes after the successful April 8 launch, SpaceX accomplished their secondary goal – history’s first upright touchdown of a just flown rocket onto a droneship at sea.

The recovered booster arrived back at Port Canaveral a few days later and was transported back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

The next NASA contracted cargo launch to the ISS by SpaceX is currently slated for late June from Cape Canaveral.

The next Orbital ATK Cygnus cargo launch is slated for July from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module. Credits: Bigelow Aerospace
This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module.
Credits: Bigelow Aerospace

Recovered SpaceX Falcon 9 Booster Headed Back to Port: Launch/Landing – Photos/Videos

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The SpaceX Falcon 9 first stage booster that successfully launched a Japanese satellite to a Geostationary Transfer Orbit (GTO) just 3 days ago and then nailed a safe middle of the night touchdown on a drone ship at sea minutes minutes later, is headed back to port and may arrive overnight or soon thereafter.

The 156 foot tall booster was spotted offshore earlier today while being towed back to her home port at Port Canaveral, Florida.

The SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket is lurking off Port Canaveral waiting to enter the port until after the cruise ships depart for safety reasons. Pictured above at 7:40 a.m.

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

Musk was clearly ecstatic with the result, since SpaceX officials had been openly doubtful of a successful outcome with the landing.

Barely nine minutes after liftoff the Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

The drone ship was named “Of Course I Still Love You.”

The Falcon 9 landed dead center in the bullseye.

Check out the incredible views herein from SpaceX of the Falcon 9 sailing serenely atop the “Of Course I Still Love You.”

Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Relive the launch through these pair of videos from remote video cameras set at the SpaceX launch pad 40 facility.

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on 5/6/2016 Pad 40 CCAFS. Credit: Jeff Seibert/AmericaSpace

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

The landing counts as nother stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

SpaceX Maiden Falcon Heavy Launch May Carry Satellite In November

An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX
An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX

Move over Arianespace and United Launch Alliance. SpaceX’s Falcon Heavy rocket is set for its maiden launch this November. The long-awaited Falcon Heavy should be able to outperform both the Ariane 5 and the ULA Delta-4 Heavy, at least in some respects.

The payload for the maiden voyage is uncertain so far. According to Gwynne Shotwell, SpaceX’s President and CEO, a number of companies have expressed interest in being on the first flight. Shotwell has also said that it might make more sense for SpaceX to completely own their first flight, without the pressure to keep a client happy. But a satellite payload for the first launch hasn’t been ruled out.

Delivering a payload into orbit is what the Falcon Heavy, and its competitors the Ariane5 and the ULA Delta-4 Heavy, are all about. Since one of the main competitive points of the Falcon Heavy is its ability to put larger payloads into geo-stationary orbits, accomplishing that feat on its first flight would be a great coming out party for the Falcon Heavy.

This artist's illustration of the Falcon Heavy shows the rocket in flight prior to releasing its two side boosters. Image: SpaceX
This artist’s illustration of the Falcon Heavy shows the rocket in flight prior to releasing its two side boosters. Image: SpaceX

SpaceX has promised that it will make its first Falcon Heavy launch useful. They say that they will use the flight either to demonstrate to its commercial customers the rocket’s capability to deliver a payload to GTO, or to demonstrate to national security interests its ability to meet their needs.

National security satellites require different capabilities from launch vehicles than do commercial communication satellites. Since these spacecraft are top secret, and are used to spy on communications, they need to be placed directly into their GTO, avoiding the lower-altitude transfer orbit of commercial satellites.

The payload for the first launch of the Falcon Heavy is not the only thing in question. There’s some question whether the November launch date can be achieved, since the Falcon Heavy has faced some delays in the past.

The inaugural flight for the big brother to the Falcon 9 was originally set for 2013, but several delays have kept bumping the date. One of the main reasons for this was the state of the Falcon 9. SpaceX was focussed on Falcon 9’s landing capabilities, and put increased manpower into that project, at the expense of the Falcon Heavy. But now that SpaceX has successfully landed the Falcon 9, the company seems poised to meet the November launch date for the Heavy.

One of the main attractions to the Falcon Heavy is its ability to deliver larger payloads to geostationary orbit (GEO). This is the orbit occupied by communications and weather satellites. These types of satellites, and the companies that build and operate them, are an important customer base for SpaceX. SpaceX claims that the Falcon Heavy will be able to place payloads of 22,200 kg (48,940 lbs) to GEO. This trumps the Delta-4 Heavy (14,200 kg/31,350 lbs) and the Ariane5 (max. 10,500 kg/23,100 lbs.)

There’s a catch to these numbers, though. The Falcon Heavy will be able to deliver larger payloads to GEO, but it’ll do it at the expense of reusability. In order to recover the two side-boosters and central core stage for reuse, some fuel has to be held in reserve. Carrying that fuel and using it for recovery, rather than burning it to boost larger payloads, will reduce the payload for GEO to about 8,000 kg (17,637 lbs.) That’s significantly less than the Ariane 5, and the upcoming Ariane 6, which will both compete for customers with the Falcon Heavy.

The Falcon Heavy is essentially four Falcon 9 rockets configured together to create a larger rocket. Three Falcon 9 first stage boosters are combined to generate three times as much thrust at lift-off as a single Falcon 9. Since each Falcon 9 is actually made of 9 separate engines, the Falcon Heavy will actually have 27 separate engines powering its first stage. The second stage is another single Falcon 9 second-stage rocket, consisting of a single Merlin engine, which can be fired multiple times to place payloads in orbit.

The three main boosters for the Falcon Heavy will all be built this summer, with construction of one already underway. Once complete, they will be transported from their construction facility in California to the testing facility in Texas. After that, they will be transported to Cape Canaveral.

Once at Cape Canaveral, the launch preparations will have all of the 27 engines in the first stage fired together in a hold-down firing, which will give SpaceX its first look at how all three main boosters operate together.

Eventually, if everything goes well, the Falcon Heavy will launch from Pad 39A at Cape Canaveral. Pad 39A is the site of the last Shuttle launches, and is now leased from NASA by SpaceX.

The Falcon Heavy will be the most powerful rocket around, once it’s operational. The versatility to deliver huge payloads to orbit, or to keep its costs down by recovering boosters, will make its first flight a huge achievement, whether or not it does deliver a satellite into orbit on its first launch.

SpaceX Taps Superhero Designer For Its Spacesuits

Designer Jose Fernandez has been hired by SpaceX to design spacesuits. Fernandez has designed many superhero costumes, including the Bat Armor, pictured here in a collectible from Hot Toys. Image: Sideshow Collectibles
Designer Jose Fernandez has been hired by SpaceX to design spacesuits. Fernandez has designed many superhero costumes, including the Bat Armor, pictured here in a collectible from Hot Toys. Image: Sideshow Collectibles

Everything about SpaceX seems exciting right now. In April, SpaceX successfully landed their reusable rocket, the Falcon 9, on a droneship at sea. Also in April, SpaceX announced that they intend to send a Dragon capsule to Mars by 2018. Now, Elon Musk’s private space company has hired Jose Fernandez, superhero movie costume designer, to design spacesuits for his astronauts.

Fernandez, with his company Ironhead Studio, has quite a resume when it comes to costume design. He’s designed superhero costumes for movies like Batman vs Superman: Dawn of Justice and Captain America: Civil War. He’s also designed costumes for X-Men movies, for Wonder Woman, Tron, and for The Penguin in Batman Returns.

Spacesuits have been slaves to function for a long time. The extreme environments in space have constrained their design to utilitarian forms, out of necessity. But now that Elon Musk has hired Fernandez, things could change. Considerably.

Jose Fernanzed heads Ironhead Studios, where he and his team create stunning super-hero costumes. Image: Jose Fernandez/Ironhead Studios
Jose Fernanzed heads Ironhead Studios, where he and his team create stunning super-hero costumes. Image: Jose Fernandez/Ironhead Studios

Whatever designs Fernandez comes up with, they will still have to have functionality as their primary concern. There’s no escaping that. But having someone with excellent visual design skills will certainly spice things up.

SpaceX had four other companies working on bids for this design work, but in the end it was Fernandez that won. This is no surprise given Fernandez’ long track record of making great costumes for superheroes. Over a twenty year span, he has also created costumes for Wolverine, Spiderman, The Fantastic Four, and Thor. That is an enviable collection of designs.

It will be super interesting to see what Fernandez comes up with, and how design will meld with engineering requirements to create a safe, effective spacesuit. After all, the people wearing them won’t be actors, and they will require the absolute best performance possible.

Purists may scoff at having someone from Hollywood involved in spacesuit design. After all, this is serious business. The surface of Mars is not a movie set, it’s a dangerous, alien world. But there’s no telling what Fernandez will come up with. If his success in movie costumes is any indication, he might convert any nay-sayers into supporters.

The ESA and NASA are also working on new spacesuit designs. The video below is a good discussion of spacesuit design. Compare the blocky, clunky look of the first spacesuits to what astronauts now use.

SpaceX Scores Double Whammy with Nighttime Delivery of Japanese Comsat to Orbit and 2nd Successful Ocean Landing

Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Streak shot of SpaceX Falcon 9 delivering JCSAT-14 Japanese communications satellite to orbit after blastoff on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

SpaceX scored a double whammy of successes this morning, May 6, following the stunning nighttime launch of a Japanese comsat streaking to orbit on the firm’s Falcon 9 rocket and nailing the breathtaking touchdown of the spent first stage just minutes later – furthering the goal of rocket reusability

Under clear Florida starlight, the upgraded SpaceX Falcon 9 soared to orbit on 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT this morning from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The spectacular launch and dramatic landing were both broadcast in real time on a live launch webcast from SpaceX.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Dawn Leek Taylor
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Dawn Leek Taylor

Today’s Falcon launch was the 4th this year for SpaceX and took place less than 4 weeks after the last launch (on an ISS cargo mission for NASA) and sea based barge landing.

Barely nine minutes after liftoff the 156 foot tall Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

“First stage landing on drone ship in Atlantic confirmed,” said a SpaceX official during the webcast, which showed a glowing body approaching the horizon.

“Woohoo!!” tweeted SpaceX CEO and billionaire founder Elon Musk.

This marked the second successful landing at sea for SpaceX following the prior history making touchdown success last month.

“May need to increase size of rocket storage hangar,” tweeted Musk.

“Yeah, this was a three engine landing burn, so triple deceleration of last flight. That’s important to minimize gravity losses.”

Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Falcon 9 first stage touchdown on ocean platform after successful JCSAT-14 launch on May 6, 2016 from Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

After a brief reignition of the second stage, the spacecraft successfully separated from the upper stage and was deployed some 32 minutes after liftoff – as seen via the live SpaceX webcast.

“The Falcon 9 second stage delivered JCSAT-14 to a Geosynchronous Transfer Orbit,” said SpaceX.

Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.

The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.

It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.

JCSAT-14 is equipped with C-band and Ku-Band transponders that will extend JCSAT-2A’s geographical footprint across the Asia-Pacific region.

The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX
The JCSAT-14 communications satellite from SKY Perfect JSAT Corporation stands ready for encapsulation in the Falcon 9 payload fairing. Credit: SpaceX

The Falcon 9 soft landed on the “Of Course I Still Love You” drone ship positioned some 400 miles (650 kilometers) off shore in the Atlantic Ocean.

Prior to the launch, SpaceX officials had rated the chances of a successful landing as “unlikely” due to “this launch mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”

“Rocket reentry is a lot faster and hotter than last time, so odds of making it are maybe even, but we should learn a lot either way,” said Musk.

Nevertheless, despite those difficulties, the landing turned out to be another stunning success for SpaceX CEO Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
SpaceX JCSAT-14 mission patch. Credit: SpaceX
SpaceX JCSAT-14 mission patch. Credit: SpaceX