Mars Colony Will Have To Wait, Says NASA Scientists

Concept for NASA Design Reference Mission Architecture 5.0 (2009). Credit: NASA

Establishing a human settlement on Mars has been the fevered dream of space agencies for some time. Long before NASA announced its “Journey to Mars” – a plan that outlined the steps that need to be taken to mount a manned mission by the 2030s – the agency’s was planning how a crewed mission could lead to the establishing of stations on the planet’s surface. And it seems that in the coming decades, this could finally become a reality.

But when it comes to establishing a permanent colony – another point of interest when it comes to Mars missions – the coming decades might be a bit too soon. Such was the message during a recent colloquium hosted by NASA’s Future In-Space Operations (FISO) working group. Titled “Selecting a Landing Site for Humans on Mars”, this presentation set out the goals for NASA’s manned mission in the coming decades.

Continue reading “Mars Colony Will Have To Wait, Says NASA Scientists”

SpaceX Falcon 9 Dazzles with Dramatic SES-9 Sunset Launch – Photo/Video Gallery

Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40. Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40.  Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of SpaceX Falcon 9 as umbilical’s fly away from rocket carrying SES-9 satellite to orbit from Cape Canaveral Air Force Station, FL on March 4, 2016. As seen from remote camera set near rocket on launch pad 40. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – SpaceX’s Falcon 9 finally put on a dazzling sky show after the commercial booster at last took flight on the fifth launch attempt, shortly after sunset on Friday, March 4, 2014.

Launches around sunset are often the most beautiful. And the coincident clear blue and darkening skies did not disappoint, affording photographers the opportunity to capture dramatic photos and videos with brilliant hues as the accelerating rocket sped skywards to sunlight.

The primary mission for the SpaceX Falcon 9 mission was to carry the SES-9 commercial communications satellite payload to orbit providing services used by everyone 24/7, such as cable TV, high speed internet, voice and data transmissions.

SES-9 is the largest satellite dedicated to serving the Asia-Pacific region for the Luxembourg based SES. With its payload of 81 high-powered Ku-band transponder equivalents, SES-9 will be the 7th SES satellite providing unparalleled coverage to over 20 countries in the region, says SES.

Enjoy the gorgeous and expanding collection of launch photos and videos herein from myself, colleagues and friends. The view was so clear that we could see the separation of the first and second stages, and opening and jettisoning of the payload fairing halves.

Strong high altitude winds, difficulties loading the super chilled liquid oxygen propellant and boaters who apparently ignored warnings forced a total of four postponements from the originally intended launch date nearly two weeks earlier on Tuesday Feb. 25, 2016.

But with a forecast of 90 percent GO weather and moderating upper altitude wind, the SpaceX Falcon 9 soared aloft right at the opening of the launch window.

See the ignition and liftoff and initial powerful puff of exhaust up close – from my remote launch pad 40 camera above as pyros fire and the umbilicals separate and fly away from rocket.

Here’s a pair of time lapse streak shots as the rocket arcs over eastwards to Africa:

SpaceX Falcon 9 and SES-9 streak to orbit in this long time exposure image after liftoff from Cape Canaveral Air Force Station, FL on March 4, 2016.  Credit: Walter Scriptunis II
SpaceX Falcon 9 and SES-9 streak to orbit in this long time exposure image after liftoff from Cape Canaveral Air Force Station, FL on March 4, 2016. Credit: Walter Scriptunis II
SpaceX Falcon 9 and SES-9 streak to orbit in this long time exposure image after liftoff from Cape Canaveral Air Force Station, FL on March 4, 2016.  Credit: SpaceX/Ben Cooper
SpaceX Falcon 9 and SES-9 streak to orbit in this long time exposure image after liftoff from Cape Canaveral Air Force Station, FL on March 4, 2016. Credit: SpaceX/Ben Cooper

Check out these pair of launch videos taken by Mobius wide angle remote cameras set up close around the SpaceX pad at Space Launch Complex 40 on Cape Canaveral Air Force Station, FL.

Video caption: Sunset launch of the SES-9 communication satellite by a SpaceX Falcon 9 rocket on March 4, 2016 from Pad 40 of the CCAFS. Credit: Jeff Seibert/AmericaSpace

Video caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL shortly after sunset at 6:35 p.m. EST on March 4, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

This video is a focused up close view showing the umbilicals flying away moments after blastoff:

Video caption: Time lapse, SpaceX Falcon 9 strong back and upper umbilical motion before and during the launch of the SES9 telecommunication satellite launch on March 4, 2016. Credit: Jeff Seibert/AmericaSpace

The SES-9 launch marked the second successful Falcon-9 launch in a row during 2016, and the first of this year from Cape Canaveral.

The Boeing built SES-9 satellite has a dry mass of 2,835 kg and a fueled mass of 5,271 kg. The huge satellite sports a wingspan of 48 meters with two solar wings. In addition each wing is outfitted with six additional solar panels on each wing.

Watch for Ken’s onsite launch reports direct from Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016.  Credit: Alex Polimeni / Spaceflight Now
SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016. Credit: Alex Polimeni / Spaceflight Now
SpaceX Falcon 9 and SES-9 streak across the sunset sky after blastoff from Cape Canaveral Air Force Station, FL on March 4, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and SES-9 streak across the sunset sky after blastoff from Cape Canaveral Air Force Station, FL on March 4, 2016. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and SES-9 streak across the sunset sky after blastoff from Cape Canaveral Air Force Station, FL on March 4, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and SES-9 streak across the sunset sky after blastoff from Cape Canaveral Air Force Station, FL on March 4, 2016. Credit: Julian Leek
SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016.    SEKORAPHOTO  / J.D. Sekora
SpaceX SES-9 launch from Cape Canaveral AFS, FL on March 4, 2016. Credit: SEKORAPHOTO / J.D. Sekora
SpaceX Falcon 9 rockets to orbit carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rockets to orbit carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
First and second stages separate as SpaceX Falcon 9 accelerates to orbit with SES-9 telecom satellite after liftoff from Cape Canaveral Air Force Station, FL on March 4, 2016.    Credit: Ken Kremer/kenkremer.com
First and second stages separate as SpaceX Falcon 9 accelerates to orbit with SES-9 telecom satellite after liftoff from Cape Canaveral Air Force Station, FL on March 4, 2016. Credit: Ken Kremer/kenkremer.com
SpaceX SES-9 launch from Cape Canaveral AFS, FL as seen from Titusville, FL on March 4, 2016.  Credit: Joseph Carrillo
SpaceX SES-9 launch from Cape Canaveral AFS, FL as seen from Titusville, FL on March 4, 2016. Credit: Joseph Carrillo
SpaceX SES-9 launch from Cape Canaveral AFS, FL as seen from Titusville, FL on March 4, 2016.  Credit: Dawn McFall
SpaceX SES-9 launch from Cape Canaveral AFS, FL as seen from Titusville, FL on March 4, 2016. Credit: Dawn McFall
SpaceX SES-9 launch from Cape Canaveral AFS, FL as seen from Titusville, FL on March 4, 2016.  Credit: Gerald DaBose
SpaceX SES-9 launch from Cape Canaveral AFS, FL as seen from Titusville, FL on March 4, 2016. Credit: Gerald DaBose

SpaceX Stuns with Spectacular Sunset Launch of SES-9 Telecom Satellite

Sunset blastoff of SpaceX Falcon 9 carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Sunset blastoff of SpaceX Falcon 9 carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Sunset blastoff of SpaceX Falcon 9 carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL on March 4, 2016. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – After enduring four launch scrubs caused by poor weather, misguided boaters, high level winds and propellant fueling problems, SpaceX put on a stunning sky show with tonight’s sunset blastoff of their private Falcon 9 rocket boosting the high powered SES-9 commercial telecommunications satellite to orbit.

For the many spectators who stuck around, the fifth launch attempt proved to be the charm as they were richly rewarded with a spectacular sunset launch that was visible for more than five minutes all around the space coast and far beyond due to crystal clear skies. Continue reading “SpaceX Stuns with Spectacular Sunset Launch of SES-9 Telecom Satellite”

SpaceX Aims for Friday Sunset Launch After Boats and Winds Delay Falcon 9 Liftoff and Landing Attempt – Live Webcast

Sunset view of SpaceX Falcon 9 after aborted launch of SES-9 communications satellite on Feb 28, 2016. Liffoff now slated for March 4, 2016 from Pad 40 at Cape Canaveral, FL after four scrubs due to weather and technical issues. Credit: Ken Kremer/kenkremer.com
Sunset view of SpaceX Falcon 9 after aborted launch of SES-9 communications satellite on Feb 28, 2016.  Liffoff now slated for March 4, 2016 from Pad 40 at Cape Canaveral, FL after four scrubs due to weather and technical issues. Credit: Ken Kremer/kenkremer.com
Sunset view of SpaceX Falcon 9 after aborted launch of SES-9 communications satellite on Feb 28, 2016. Liffoff now slated for March 4, 2016 from Pad 40 at Cape Canaveral, FL after four scrubs due to weather and technical issues. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Alas SpaceX is now targeting Friday March 4 for the 5th attempt to launch their upgraded Falcon 9 carrying the powerful SES-9 commercial telecommunications satellite, following another pair of launch scrubs earlier this week due to errant boats and strong winds aloft.

“We’re now targeting Friday, March 4 at 6:35 pm ET for launch of SES-9,” said SpaceX spokesman Phil Larson. Sunset is at 6:25 pm. Continue reading “SpaceX Aims for Friday Sunset Launch After Boats and Winds Delay Falcon 9 Liftoff and Landing Attempt – Live Webcast”

SpaceX Resets Launch of Upgraded Falcon 9 Rocket for Serene Sunday Sunset on Feb. 28 – Watch Live

Sunset view of SpaceX Falcon 9 awaiting launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Sunset view of SpaceX Falcon 9 awaiting launch of SES-9 communications satellite on Feb. 28, 2016 from Pad 40 at Cape Canaveral, FL after two fueling scrubs. Credit: Ken Kremer/kenkremer.com
Sunset view of SpaceX Falcon 9 awaiting launch of SES-9 communications satellite on Feb. 28, 2016 from Pad 40 at Cape Canaveral, FL after two fueling scrubs. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Following a pair of back to back launch scrubs this week on Wednesday and Thursday due to rocket fueling issues with the liquid oxygen propellant, SpaceX has reset the blast off of their upgraded Falcon 9 rocket – carrying the commercial SES-9 television and communications satellite – to coincidentally coincide with a serene sunset on Sunday, Feb. 28.

Spectators have flocked to the Florida space coast in hopes of catching a glimpse of what could prove to be a spectacular evening streak to orbit after miserable mid-week weather finally departed the sunshine state in favor of glorious blue skies – to the delight of everyone!

SpaceX engineers are now targeting liftoff of the Cape’s first Falcon 9 launch of 2016 for 6:46 p.m. EST from SpaceX’s seaside Space Launch Complex 40 on Cape Canaveral Air Force Station, Fla. at the opening of a 97-minute launch window.

The first launch scrub on Wednesday was called some 45 minutes before launch.

“Out of an abundance of caution, the team opted to hold launch for today to ensure liquid oxygen temperatures are as cold as possible in an effort to maximize performance of the vehicle,” SpaceX said in a statement.”

The rocket and spacecraft were otherwise nominal.

“The Falcon 9 remains healthy in advance of SpaceX and SES’s mission to deliver the SES-9 satellite to Geostationary Transfer Orbit.”

Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The second scrub was called at 1 minute forty seconds before T zero when engineers were concerned about aspects of the liquid oxygen fuel loading and internal temperatures.

“Countdown held for the day. Teams are reviewing the data and next available launch date,” tweeted SpaceX post scrub.

SpaceX is cooling the liquid oxygen propellant in the upgraded Falcon 9 to lower temperatures compared to the rockets prior version, in order to increase its density and provide more fuel aboard the rocket for the engines to burn.

Both stages of the 229 foot tall Falcon 9 are fueled by liquid oxygen and RP-1kerosene which burn in the Merlin engines.

Air Force meteorologists are predicting an almost unheard of >95% percent chance of favorable weather conditions at launch time Sunday – which could result in an absolutely spectacular view as Falcon roars off the launch pad thunders to space, if all goes well.

The only potential concern at this time is for cumulus clouds associated with onshore flow.

A live webcast will be available at SpaceX.com/webcast beginning about 20 minutes before liftoff, at approximately 6:26 p.m. EST on Sunday, Feb. 28.

The launch window closes at approximately 8:23 p.m. EST.

The weather prognosis changes only slightly to 90 percent GO on Monday, again with a concern for cumulus clouds.

If needed, SpaceX has a backup launch opportunity reserved on the Eastern range for Monday, Feb. 29 at approximately the same time at 6:46 p.m. EST.

SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek
SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek

The goal of Sunday’s launch is to boost the commercial SES-9 television and communications satellite to a Geostationary Transfer Orbit (GTO). The satellite will be deployed approximately 31 minutes after liftoff.

The commercial launch was contracted by the Luxembourg based SES, a world-leading satellite operator. SES provides satellite-enabled communications services to broadcasters, Internet service providers, mobile and fixed network operators, and business and governmental organizations worldwide using its fleet of more than 50 geostationary satellites.

SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite launch reports direct from Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Feb 27/28: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 poised for blastoff with SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek
SpaceX Falcon 9 poised for blastoff with SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek

SpaceX Set for 1st Cape Launch of 2016 with SES-9 on Feb. 24 after Smooth Static Fire Test – Watch Live

Upgraded SpaceX Falcon 9 prior to launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Final preparations are underway for SpaceX’s first launch of a Falcon 9 rocket from Cape Canaveral during 2016 with the commercial SES-9 television and communications satellite on Wednesday evening Feb. 24, following a smooth static fire engine test on Monday. Update: Technical issue postponed launch to Feb 25 at 6:46 pm.

The 229 foot tall Falcon 9 is slated to lift off from SpaceX’s seaside Space Launch Complex 40 on Cape Canaveral Air Force Station, Fla. at 6:46 p.m. EST at the opening of a 97-minute launch window. Continue reading “SpaceX Set for 1st Cape Launch of 2016 with SES-9 on Feb. 24 after Smooth Static Fire Test – Watch Live”

Musk Says Hyperloop Could Work On Mars… Maybe Even Better!

At the recent ceremony for the Hyperloop Pod Competition, Musk announced that his concept for a high-speed train might work better on Mars. Credit: HTT

Elon Musk has always been up-front about his desire to see humans settle on the Red Planet. In the past few years, he has said that one of his main reasons for establishing SpaceX was to see humanity colonize Mars. He has also stated that he believes that using Mars as a “backup location” for humanity might be necessary for our survival, and even suggested we use nukes to terraform it.

And in his latest speech extolling the virtues of colonizing Mars, Musk listed another reason. The Hyperloop – his concept for a high-speed train that relies steel tubes, aluminum cars and maglev technology to go really fast – might actually work better in a Martian environment. The announcement came as part of the award ceremony for the Hyperloop Pod Competition, which saw 100 university teams compete to create a design for a Hyperloop podcar.

It was the first time that Musk has addressed the issue of transportation on Mars. In the past, he has spoken about establishing a colony with 80,000 people, and has also discussed his plans to build a Mars Colonial Transporter to transport 100 metric tons (220,462 lbs) of cargo or 100 people to the surface of Mars at a time (for a fee of $50,000 apiece). He has also discussed communications, saying that he would like to bring the internet to Mars once a colony was established.

Artist's concept of what a Hyperloop pod car might look like. Credit: Tesla
Artist’s concept of what a Hyperloop pod car’s interior might look like. Credit: Tesla

But in addressing transportation, Musk was able to incorporate another important concept that he has come up with, and which is also currently in development. Here on Earth, the Hyperloop would rely on low-pressure steel tubes and a series of aluminum pod cars to whisk passengers between major cities at speeds of up to 1280 km/h (800 mph). But on Mars, according to Musk, you wouldn’t even need tubes.

As Musk said during the course of the ceremony: “On Mars you basically just need a track. You might be able to just have a road, honestly. [It would] go pretty fast… It would obviously have to be electric because there’s no oxygen. You have to have really fast electric cars or trains or things.”

Essentially, Musk was referring to the fact that since Mars has only 1% the air pressure of Earth, air resistance would not be a factor. Whereas his high-speed train concept requires tubes with very low air pressure to reach the speed of sound here on Earth, on Mars they could reach those speeds out in the open. One might say, it actually makes more sense to build this train on Mars rather than on Earth!

The Hyperloop Pod Competition, which was hosted by SpaceX, took place between Jan 27th and 29th. The winning entry came from MIT, who’s design was selected from 100 different entries. Their pod car, which is roughly 2.5 meters long and 1 meter wide (8.2 by 3.2 feet), would weight 250 kg (551 lbs) and be able to achieve an estimated cruise speed of 110 m/s (396 km/h; 246 mph). While this is slightly less than a third of the speed called for in Musk’s original proposal, this figure representing cruising speed (not maximum speed), and is certainly a step in that direction.

Team MIT's Hyperloop pod car design. Credit: MIT/Twitter
Team MIT’s Hyperloop pod car design. Credit: MIT/Twitter

And while Musk’s original idea proposed that the pod be lifted off the ground using air bearings, the MIT team’s design called for the use of electrodynamic suspension to keep itself off the ground. The reason for this, they claimed, is because it is “massively simpler and more scalable.” In addition, compared to the other designs’ levitation systems, theirs had one of the lowest drag coefficients.

The team – which consists of 25 students with backgrounds in aeronautics, mechanical engineering, electrical engineering, and business management – will spend the next five months building and testing their pod. The final prototype will participate in a trial run this June, where it will run on the one-mile Hyperloop Test Track at SpaceX’s headquarters in California.

Since he first unveiled it back in 2013, Musk’s Hyperloop concept has been the subject of considerable interest and skepticism. However, in the past few years, two companies – Hyperloop Transportation Technologies (HTT) and Hyperloop Technologies – have emerged with the intention of seeing the concept through to fruition. Both of these companies have secured lucrative partnerships since their inception, and are even breaking ground on their own test tracks in California and Nevada.

And with a design for a podcar now secured, and tests schedules to take place this summer, the dream of a “fifth mode of transportation” is one step closer to becoming a reality! The only question is, which will come first – Hyperloops connecting major cities here on Earth, or running passengers and freight between domed settlements on Mars?

Only time will tell! And be sure to check out Team MIT’s video:

Further Reading: SpaceXhyperloop.it.edu

SpaceX Crew Dragon Conducts Propulsive Hover and Parachute Drop Tests; Videos

SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas. Credit: SpaceX
SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas.  Credit: SpaceX
SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas. Credit: SpaceX

On the road to restoring US Human spaceflight from US soil, SpaceX conducted a pair of key tests involving a propulsive hover test and parachute drop test for their Crew Dragon vehicle which is slated to begin human missions in 2017.

SpaceX released a short video showing the Dragon 2 vehicle executing a “picture-perfect propulsive hover test” on a test stand at the firms rocket development facility in McGregor, Texas.

The video published last week shows the Dragon 2 simultaneously firing all eight of its side mounted SuperDraco engines, during a five second test carried out on Nov. 22, 2015.

Using the SuperDragos will eventually enable pinpoint propulsive soft landings like a helicopter in place of parachute assisted landings in the ocean or on the ground.

The video clip seen below includes both full speed and slow motion versions of the test, showing the vehicle rising and descending slowly on the test stand.

Video caption: SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test firing at rocket development facility in McGregor, Texas.

The eight SuperDraco thrusters are mounted in sets 90 degrees apart around the perimeter of the vehicle in pairs called “jet packs.”

The SuperDracos generate a combined total of 33,000 lbs of thrust.

SpaceX is developing the Crew Dragon under the Commercial Crew Program (CCP) awarded by NASA to transport crews of four or more astronauts to the International Space Station.

“This test was the second of a two-part milestone under NASA’s Commercial Crew Program,” said SpaceX officials. “The first test—a short firing of the engines intended to verify a healthy propulsion system—was completed November 22, and the longer burn two-days later demonstrated vehicle control while hovering.”

The first unmanned and manned orbital test flights of the crew Dragon are expected sometime in 2017. A crew of two NASA astronauts should fly on the first crewed test before the end of 2017.

Parachute drop test for SpaceX crew Dragon involving  four red-and-white parachutes unfurled from a mass simulator high above the desert near Coolidge, Arizona. Credit NASA/SpaceX
Parachute drop test for SpaceX crew Dragon involving four red-and-white parachutes unfurled from a mass simulator high above the desert near Coolidge, Arizona. Credit NASA/SpaceX

Initially, the Crew Dragon will land via parachutes in the ocean before advancing to use of pinpoint propulsive landing.

Thus SpaceX recently conducted a parachute drop test involving deployment of four red-and-white parachutes unfurling high above the desert near Coolidge, Arizona using a mass simulator in place of the capsule.

Video Caption: SpaceX performed a successful test of its parachute system for the Crew Dragon spacecraft near Coolidge, Arizona, as part of its final development and certification work with NASA’s Commercial Crew Program. Using a weight simulant in the place of a boilerplate spacecraft, four main parachutes were rigged to deploy just as they would when the Crew Dragon returns to Earth with astronauts aboard. Credit: NASA/SpaceX

“The mass simulator and parachutes were released thousands of feet above the ground from a C-130 cargo aircraft. This test evaluated the four main parachutes, but did not include the drogue chutes that a full landing system would utilize,” said NASA.

Since the CCP program finally received full funding from Congress in the recently passed Fiscal Year 2016 NASA budget, the program is currently on track to achieve the orbital test flight milestones.

Boeing and SpaceX were awarded contracts by NASA Administrator Charles Bolden in September 2014 worth $6.8 Billion to complete the development and manufacture of the privately developed Starliner CST-100 and Crew Dragon astronaut transporters under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

The Crew Dragon will launch atop a SpaceX Falcon 9 rocket from launch Complex 39A at the Kennedy Space Center. The historic launch pad has been leased by SpaceX from NASA and is being refurbished for launches of the Falcon 9 and Falcon Heavy.

SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Weekly Space Hangout – Jan. 29, 2016: Largest Solar System, Future Missions, and Remembering Our Lost Astronauts

Host: Fraser Cain (@fcain)

Guests:
Carolyn Collins Petersen (thespacewriter.com / space.about.com / @spacewriter )
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Kimberly Cartier (@AstroKimCartier )
Dave Dickinson (www.astroguyz.com / @astroguyz)
Jolene Creighton (fromquarkstoquasars.com / @futurism)
Paul Sutter (pmsutter.com / @PaulMattSutter)

Continue reading “Weekly Space Hangout – Jan. 29, 2016: Largest Solar System, Future Missions, and Remembering Our Lost Astronauts”

Watch SpaceX Falcon 9 Rocket Almost Stick Droneship Landing, then Tip and Explode; Video

SpaceX Falcon 9 First stage approaches center of landing droneship in Pacific Ocean. Credit: SpaceX
SpaceX Falcon 9 first stage tips over and explodes on Pacific ocean droneship after landing leg fails to lock in place on Jan 17, 2016. Credit: SpaceX
SpaceX Falcon 9 first stage tips over and explodes on Pacific ocean droneship after landing leg fails to lock in place on Jan 17, 2016. Credit: SpaceX
See landing video below

SpaceX came much closer to sticking the landing of their Falcon 9 rocket on a tiny droneship at sea than initially thought, as evidenced by a dramatic video of the latest attempt to recover the booster by making a soft ocean touchdown on Sunday, Jan. 17, after successfully propelling a US-European ocean surveillance satellite to low Earth orbit. Continue reading “Watch SpaceX Falcon 9 Rocket Almost Stick Droneship Landing, then Tip and Explode; Video”