KENNEDY SPACE CENTER, FL – The largest and most advanced version of the privately developed Cygnus cargo freighter ever built by Orbital ATK is fueled, loaded and ready to go to orbit – signifying a critical turning point towards resuming American commercial cargo launches to the space station for NASA that are critical to keep it functioning.
The enhanced and fully assembled commercial Cygnus was unveiled to the media, including Universe Today, during an exclusive tour inside the clean room facility on Friday, Nov. 13, where it is undergoing final prelaunch processing at the Kennedy Space Center (KSC).
Or will a trio of other American aerospace competitors vying for the new government contracts somehow break through? That’s the multi Billion dollar question since the cargo awards are potentially valued at 3 to 4 Billion dollars or more each.
Well despite widespread expectations that the winners of NASA’s Commercial Resupply Services (CRS) 2 contract for the orbiting outpost would be announced by week’s end, nearly everyone involved will have to wait a few more months while agency officials again postponed a decision in order to ponder the long term implications of “a complex procurement.”
NASA says it needs more time to “assess proposals” and determine which of five private companies will be awarded the governments CRS 2 contracts for the ISS resupply missions.
Although NASA had planned to award contracts to at least two winners on Thursday, Nov. 5, the agency just announced another significant delay for the CRS 2 contract via its procurement website because the decision is “complex.”
“The anticipated CRS2 award is now no later than January 30, 2016 to allow additional time for the Government to assess proposals,” NASA announced on its procurement website.
“CRS2 is a complex procurement.
This new delay follows several earlier postponements already announced this past year.
The two companies currently holding Commercial Resupply Services (CRS) contracts from NASA, namely SpaceX and Orbital ATK, are dueling with new bids from Boeing, Sierra Nevada Corp. (SNC) and Lockheed Martin.
Altogether, those five companies are known to have submitted bids for the CRS-2 procurement by the due date of March 21, 2014. Awards were expected in June 2015 but the timing was repeatedly revised.
Each company was originally expected to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware spread out over multiple cargo delivery flights to the ISS under the initial CRS contract.
So NASA truly has a lot on the line while considering CRS 2 and postponing a decision may be wise until after both firms successfully complete their upcoming ‘Return to Flight’ missions – now scheduled for Dec. 3 by Orbital ATK and early January 2016 for SpaceX.
“The anticipated award date has been revised to no later than January 30, 2016 to allow time to complete a thorough proposal evaluation and selection,” says NASA.
When asked for a comment and explanation on the decisions and delay, a NASA spokesperson responded to me as follows:
“This is all we’ll be able to say, for right now.”
“Since the agency is in the process of evaluating proposals, we are in a procurement communications blackout. For that reason, NASA cannot answer.”
However, Boeing has been told by NASA that they are out of the running for CRS 2. Earlier reports indicated that Lockheed Martin is also out of the competition.
But there is still plenty of really good news for Boeing since they were already awarded a commercial crew contract in September 2014 to develop the Starliner space taxi to launch astronauts to the ISS.
The first Boeing CST-100 Starliner capsule is already being manufactured at the Kennedy Space Center, as I detailed earlier on site – here.
For the CRS 2 contract, Boeing submitted a bid to convert Starliner into an unmanned cargo freighter.
Meanwhile Sierra Nevada Corp told Universe Today that their Dream Chaser space plane “remains in contention.”
Dream Chaser is a winged mini shuttle that lost out in NASA commercial crew program competition. SNC submitted a proposal involving an unmanned version of Dream Chaser for the CRS 2 cargo competition building on what they already developed.
“SNC received notification that NASA has delayed the award decision related to Commercial Resupply Services 2 to no later than January 30, 2016,” SNC spokesperson Krystal Scordo told Universe Today.
“SNC remains part of the competitive range. We are proud of our Dream Chaser® Program team and are pleased to remain in contention for this important work in space.”
Neither SpaceX or Orbital will comment about the details of their CRS 2 procurement proposals to Universe Today beyond stating to me that they submitted bids and await NASA’s decision.
The CRS 2 contract is a follow on to the original CRS contract which was to run through at least 2016.
In the meantime, NASA opted to extend the original CRS contract to around 2018 by granting additional interim cargo flights to both SpaceX and Orbital under terms allowed by the contract.
SpaceX was granted five additional Dragon flights and Orbital ATK was given three additional Cygnus flights, for a total of 10 Cygnus resupply missions through about 2018.
The CRS-2 contract is valued at between $1.0 Billion and $1.4 Billion per year and NASA requires this service from approximately 2018 through 2024 according to the RFI.
NASA expects delivery of 14,250 to 16,750 kilograms per year of pressurized cargo as well as 1,500 to 4,000 kg per year of unpressurized cargo and return or disposal of up to 14,250 to 16,750 kg per year of pressurized cargo under CRS 2.
Watch for my onsite reports from the Kennedy Space Center press site for the Orbital Atlas OA-4 cargo liftoff on Dec. 3.
“We are anxious to get flying again not only for our own sake, but really for NASA and the crew!” Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, said in an interview with Universe Today.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
The EPIC camera, which stands for Earth Polychromatic Imaging Camera (EPIC), is located a million miles away on the DSCOVR real time space weather monitoring satellite and is designed to take full disk color images of the sunlit side of our home planet multiple times per day.
The EPIC NASA images are literally just a finger tip away, after a 17 year wait to get the satellite into the launch queue since it was first proposed by former VP Al Gore. They are all easily viewed at NASA’s new EPIC camera website which went online today, Monday, October 19, 2015.
This EPIC image was taken on Oct.17 and shows the Australian continent and a portion of Asia.
An annotated guide map illustration identifying the visible land masses accompanies each EPIC image and follows along as the Earth rotates daily.
What a great geography learning tool for student classrooms worldwide!
DSCOVR is a joint mission between NOAA, NASA, and the U.S Air Force (USAF) that is managed by NOAA. The satellite and science instruments were provided by NASA and NOAA.
EPIC is a four megapixel CCD camera and telescope mounted on DSCOVR and orbiting around the L1 Lagrange Point – a neutral gravity point that lies on the direct line between Earth and the sun.
NASA says that once per day they will post “at least a dozen new color images of Earth acquired from 12 to 36 hours earlier” taken by the agency’s EPIC camera. The EPIC images will be stored in an archive searchable by date and continent.
The image sequence will show “the Earth as it rotates, thus revealing the whole globe over the course of a day.”
“The effective resolution of the DSCOVR EPIC camera is somewhere between 6.2 and 9.4 miles (10 and 15 kilometers),” said Adam Szabo, DSCOVR project scientist at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, in a statement.
“The color Earth images are created by combining three separate single-color images to create a photographic-quality image equivalent to a 12-megapixel camera. The camera takes a series of 10 images using different narrowband filters — from ultraviolet to near infrared — to produce a variety of science products. The red, green and blue channel images are used to create the color images. Each image is about 3 megabytes in size.”
EPIC will capture “a constant view of the fully illuminated Earth as it rotates, providing scientific observations of ozone, vegetation, cloud height and aerosols in the atmosphere.”
The couch sized probe was launched atop a SpaceX Falcon 9 on Feb. 11, 2015 from Cape Canaveral, Florida, to start the million mile journey to its deep space observation post at L1. The rocket was funded by the USAF.
The primary goal of the $340 million DSCOVR satellite is to monitor the solar wind and aid very important forecasts of space weather at Earth from L1.
L1 is located 1.5 million kilometers (932,000 miles) sunward from Earth. At L1 the gravity between the sun and Earth is perfectly balanced and the DSCOVR satellite orbits about that spot just like a planet.
The mission is vital because its solar wind observations are crucial to maintaining accurate space weather forecasts to protect US infrastructure such as power grids, aviation, planes in flight, all types of Earth orbiting satellites for civilian and military needs, telecommunications, ISS astronauts and GPS systems.
DSCOVR was first proposed in 1998 by then US Vice President Al Gore as the low cost ‘Triana’ satellite to take near continuous views of the Earth’s entire globe to feed to the internet as a means of motivating students to study math and science.
It was also dubbed “Goresat.”
The probe was eventually resurrected and partially rebuilt at NASA Goddard Space Flight Center as a much more capable Earth science satellite that would also conduct the space weather observations.
But Triana was shelved for purely partisan political reasons and the satellite was placed into storage at NASA Goddard.
Thus the practical and teachable science and daily scenes of the gorgeously rotating Earth were lost – until now!
Former VP Al Gore was clearly delighted with today’s launch of NASA’s EPIC website in this pair of tweets:
“Today @NASA launched its site for #DSCOVR’s daily images. I look forward to seeing more from #DSCOVR,” tweeted Al Gore.
“DSCOVR’s site displaying new daily images of Earth from L1 was launched today! Congratulations to all those who made this happen!”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
The biggest and heaviest Cygnus commercial cargo craft ever built by Orbital ATK is coming together at the Kennedy Space Center as the launch pace picks up steam for its critical ‘Return to Flight’ resupply mission to the space station for NASA. Cygnus is on target for an early December blastoff from Florida and the Orbital ATK team is “anxious to get flying again.”
Special Guest: Dr. Carolyn Porco is the leader of the Cassini Imaging Science team and the Director of the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the Space Science Institute in Boulder, Colorado.
The first tier of seven tiers for Crew Access Tower is moved from its construction yard to Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Sept 9, 2015. The tower will provide access at the pad for astronauts and ground support teams to the Boeing CST-100 Starliner launching atop a United Launch Alliance Atlas V rocket. Photo credit: NASA/Dmitrios Gerondidakis Story/photos updated[/caption]
“Everything is on schedule,” Howard Biegler, ULA’s Human Launch Services Lead, told Universe Today during an exclusive interview. “The new 200-foot-tall tower structure goes up rather quickly at launch pad 41.”
The access tower essentially functions as the astronauts walkway to the stars.
“We start stacking the crew access tower [CAT] after the MUOS-4 launch and prior to the next launch after that of Morelos-3,” Beigler said in a wide ranging interview describing the intricately planned pad modifications and tower construction at the Atlas V Space Launch Complex 41 facility at Cape Canaveral.
Depending on the always tricky weather at the Cape, more than half the tower should be “installed prior to MORELOS-3’s launch on Oct. 2. The balance of the CAT will take form after the launch.”
The crew access tower is a critical space infrastructure element and absolutely essential for getting Americans back to space on American rockets for the first time since NASA’s shuttles were retired in 2011. That action forced our total dependence on the Russian Soyuz capsule for astronaut ridesto the space station.
Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative. SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.
Starliner is a key part of NASA’s overarching strategy to send Humans on a “Journey to Mars” in the 2030s.
The tower is of modular design for ease of assembly at the always busy Atlas launch pad.
“The crew tower is comprised of seven major tiers, or segments,” Beigler explained. “The building of the tiers went right on schedule. Each tier is about 20 feet square and 28 feet tall.”
Five of the seven tiers will be installed ahead of the next Atlas launch in early October, depending on the weather which has been difficult at the Cape.
“Our plan is to get 5 tiers and a temporary roof installed prior to MORELOS-3’s launch on October 2.”
“We have been hit hard with weather and are hopeful we can gain some schedule through the weekend. The balance of the CAT will take form after the 10/2 launch with the 7th tier planned to go up on 10/13 and roof on 10/15,” Biegler explained.
The newly named ‘Starliner’ space taxi will launch atop a newly human-rated Atlas V booster as soon as mid-2017, say NASA, ULA and Boeing officials.
But before astronauts can even climb aboard Starliner atop the Atlas rocket, ULA and Boeing first had to design, build and install a brand new tower providing access to the capsule for the crews and technicians.
Pad 41 is currently a “clean pad” with no gantry and no walkway to ‘Starliner’ because the Atlas V has only been used for unmanned missions to date.
The CST-100 ‘Starliner’ is at the forefront of ushering in the new commercial era of space flight and will completely revolutionize how we access, explore and exploit space for the benefit of all mankind.
This is the first new Crew Access Tower to be built at the Cape in decades, going back to NASA’s heyday and the Apollo moon landing era.
The tier segments were assembled about four miles down the road at the Atlas Space Operations Center on Cape Canaveral – so as not to disrupt the chock full manifest of Atlas rockets launching on a breakneck schedule for the NASA, military and commercial customers who ultimately pay the bills to keep ULA afloat and launch groundbreaking science probes and the most critical national security payloads vital to national defense.
“Each segment was outfitted with additional steel work, as well as electrical, plumbing and the staircase. Then they will be transported 3.9 miles out to the pad, one at a time on a gold hoffer and then we start erecting.”
The first two tiers were just transported out to pad 41. Installation and stacking of one tier on top of another starts in a few days.
“We are very pleased with the progress so far,” Biegler told me. “Everything is on schedule and has gone remarkably well so far. No safety or workmanship issues. It’s all gone very well.”
“The first tier is obviously the most critical [and will take a bit longer than the others to insure that everything is being done correctly]. It has to be aligned precisely over the anchor bolts on the foundation at the pad. Then it gets bolted in place.”
“After that they can be installed every couple of days, maybe every three days or so. The pieces of the tower will go up quickly.”
The steel tiers and tower are being built by Hensel Phelps under contract to ULA.
“Construction by the Hensel Phelps team started in January 2015,” Biegler said.
Erecting the entire tower is the next step. After stacking the tiers is fully completed later this year then comes structure, testing and calibration work over the next year.
“After tower buildup comes extensive work to outfit the tower with over 400 pieces of outboard steel that have to be installed. That takes much longer,” Biegler said.
“Designed with modern data systems, communications and power networks integrated and protected from blast and vibration, plus an elevator, the Crew Access Tower has been built with several features only a fully suited astronaut could appreciate, such as wider walkways, snag-free railings and corners that are easy to navigate without running into someone,” according to NASA officials.
Just like the shuttle, “the tower will also be equipped with slide wire baskets for emergency evacuation to a staged blast-resistant vehicle.”
“At the very top is the area that protects the access arm and provides the exit location for the emergency egress system. It will all be stick built from steel out at the pad,” Biegler elaborated.
The access arm with the walkway that astronauts will traverse to the Starliner capsule is also under construction. It is about 180 feet above ground.
Astronauts will ride an elevator up the tower to the access arm, and walk through it to the white room at the end to board the Starliner capsule.
“The arm along with the white room and torque tube are being fabricated in Florida. It will all be delivered to the pad sometime around next June [2016],” Biegler stated.
“We built a test stand tower for the access arm at our Oak Hill facility to facilitate the installation process. We mount the arm and the hydraulic drive system and then run it through its paces prior to its delivery to the pad.”
“The access arm – including the torque tube out to the end – is just over 40 feet in length.”
“We will integrate it off line because we don’t have a lot of time to troubleshoot out at the pad. So we will hook up all its drive systems and electronics on the test structure stand.”
“Then we will spend about 3 months testing it and verifying that everything is right. We’ll use laser lining to know it all precisely where the arm is. So that when we bring it out to the pad we will know where it is to within fractions of an inch. Obviously there will be some minor adjustments up and down.”
“That way in the end we will know that everything in the arm and the hydraulic drive system are working within our design specs.”
When the arm is finally installed on the crew access tower it will be complete, with the white room and environmental seal already attached.
“It will stow under the crew access tower, which is located west and north of the launch vehicle. The arm will swing out about 120 degrees to the crew module to gain access and was strategically picked to best fit the features and foundation at the existing pad structure.”
Tower construction takes place in between Atlas launches and pauses in the days prior to launches. For example the construction team will stand down briefly just ahead of the next Atlas V launch currently slated for Oct. 2 with the Mexican governments Morelos-3 communications satellite.
Starliners’ actual launch date totally depends on whether the US Congress provides full funding for NASA’s commercial crew program (CCP).
Thus far the Congress has totally failed at providing the requested CCP budget to adequately fund the program – already causing a 2 year delay of the first flight from 2015 to 2017.
Boeing is making great progress on manufacturing the first CST-100 Starliner.
Barely a week ago, Boeing staged the official ‘Grand Opening’ ceremony for the craft’s manufacturing facility held at the Kennedy Space Center on Friday, Sept 4. 2015 – attended by Universe Today as I reported here.
ULA has also already started assembly of the first two Atlas V rockets designated for Starliner at their rocket factory in Decatur, Alabama.
Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander, who now leads Boeings’ CST-100 program; here and here.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX released new images today of the sleek interior of “Crew Dragon,” SpaceX’s spacecraft designed to carry humans to the International Space Station, and possibly other future destinations. If things go as hoped, the first commercial crew flights under the Commercial Crew Transportation Capability (CCtCap) program contract could take place in 2017.
UPDATE: SpaceX added a new video of the Crew Dragon in orbit, which you can see below, in addition to a video that provides views of the interior.
The futuristic interior is “designed to be an enjoyable ride,” says SpaceX. Four windows provide passengers with views of Earth, the Moon, and the wider Solar System right from their seats. The seats — which don’t look especially plush — are made from high-grade carbon fiber and Alcantara cloth.
SpaceX provided just snapshots of parts of the interior, and so its hard to get a feel for what the entire crew cabin will be like and how roomy it might be.
But with the white and black interior and the clean lines, the imagery is reminiscent of the interior of the spacecraft in “2001: A Space Odyssey.” See below for the non-HAL 9000 computer screen, and well as more images and a video scanning the interior:
NASA named four astronauts earlier this year who will fly on the first U.S. commercial spaceflights on either SpaceX or Boeing crew transportation vehicles. The agreement between NASA and the commercial companies is that at least one member of the two person crews for the initial flights will be a NASA astronaut – who will be “on board to verify the fully-integrated rocket and spacecraft system can launch, maneuver in orbit, and dock to the space station, as well as validate all systems perform as expected, and land safely,” according to a NASA statement.
The second crew member would likely be a company test pilot, but the details remain to be worked out.
There’s not been indication as of yet if the explosion of the SpaceX Falcon 9 rocket and Dragon cargo ship loaded with supplies for the International Space Station (ISS) on June 28, 2015 will have an impact on when the first crewed Dragon flights will take place. The explosion happened about 148 seconds after an initially successful launch. It was later determined an in-flight failure of a critical support strut inside the second stage liquid oxygen tank holding a high pressure helium tank in the Falcon 9 rocket was the likely cause of the accident.
SpaceX said the escape system provides a safe way to carry astronauts to safety if there is a problem and the crew would experience about the same G-forces as a ride at Disneyland.
America’s premier rocket launch services providerUnited Launch Alliance, or ULA, may be up for sale according to media reports, including Reuters and the Wall Street Journal. Any such sale would result in a major shakeup of the American rocket launching business with far reaching implications.
Aerojet-Rocketdyne has apparently made a bid to buy ULA for approximately $2 Billion in cash, based on behind the scenes information gathered from unnamed sources.
ULA was formed in 2006 as a 50:50 joint venture between aerospace giants Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.
According to Reuters, Aerojet Rocketdyne recently proffered a $2 billion cash offer to buy ULA from Lockheed Martin and Boeing.
“Aerojet Rocketdyne board member Warren Lichtenstein, the chairman and chief executive of Steel Partners LLC, approached ULA President Tory Bruno and senior Lockheed and Boeing executives about the bid in early August,” sources told Reuters.
ULA’s Bruno declined to comment on the story via twitter.
“Wish I could, but as a matter of policy, we don’t comment on this type of story,” Bruno tweeted in response to inquiries.
Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets and also enjoyed a virtual launch monopoly with the US Government and for the nations most critical national security military payloads.
And just last week, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.
Furthermore a Congressional ban on importing the Russian-made RD-180 first stage engines that power the Atlas V rocket, that takes effect in a few years, has threatened the rockets future viability. The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014.
To date the Atlas V enjoys a 100 percent success rate after over 50 launches.
In response to the Congressional RD-180 engine ban and relentless cost pressures from SpaceX, ULA CEO Tory Bruno and ULA Vice President for Advanced Concepts and Technology George Sowers announced ULA will develop a cost effective new rocket named Vulcan using American made engines.
“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” Dr. Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.
Vulcan is ULA’s next generation rocket to space and slated for an inaugural liftoff in 2019.
However, Lockheed Martin and Boeing are only providing funds to ULA on a quarterly basis to continue development of the Vulcan.
Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.
Interestingly, ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne.
The final decision on which engine to use is expected sometime in 2016.
The engine choice could clearly be impacted if Aerojet-Rocketdyne buys ULA.
Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced.
To this writer, ULA would seem to be worth far more than $2 Billion. They own manufacturing and rocket launch facilities on both coasts and in several states.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
“We are on track for the next Antares launch in early 2016,” said David Thompson, President and Chief Executive Officer of Orbital ATK in a progress update.
Resuming Antares launches is a key part of the company’s multipronged effort to fulfil their delivery commitments to NASA under the Commercial Resupply Services (CRS) contract.
“The focus all along has been to do everything we can to fulfill our commitments to delivering cargo to the space station for NASA,” Thompson stated.
“After the Antares launch failure last October … our team has been sharply focused on fulfilling that commitment.”
The key milestone was to successfully re-engine Antares with a new type of first stage engine that completely eliminates use of the original AJ26 engines that were refurbished 40 year leftovers – the NK-33 from Russia’s abandoned manned moon landing program.
After the launch failure, Orbital managers decided to ditch the trouble plagued AJ-26 and “re-engineered” the vehicle with the new RD-181 Russian-built engines that were derived from the RD-191.
Orbital ATK holds a Commercial Resupply Services (CRS) contract from NASA worth $1.9 Billion to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware spread out over eight Cygnus cargo delivery flights to the ISS.
NASA has recently supplemented the CRS contract with three additional Cygnus resupply deliveries in 2017 and 2018.
However, the Cygnus missions were put on hold when the third operational Antares/Cygnus flight was destroyed in a raging inferno about 15 seconds after liftoff on the Orb-3 mission from launch pad 0A at NASA’s Wallops Flight Facility on Virginia’s eastern shore.
Until Antares flights can safely resume, Orbital ATK has contracted with rocket maker United Launch Alliance (ULA) to launch a Cygnus cargo freighter atop an Atlas V rocket for the first time, in early December – as I reported here.
The Antares rocket is being upgraded with the new RD-181 main engines powering the modified first stage core structure that replace the troublesome AJ26 engines whose failure caused the Antares Orb-3 launch explosion on Oct. 28, 2014.
“We are making excellent progress in resuming our cargo delivery service to the International Space Station for NASA under the Commercial Resupply Services (CRS) contract,” said company officials.
Orbital ATK engineering teams have been working diligently on “integrating and testing the new RD-181 main engines.”
After engineers finished acceptance testing and certification of the RD-181, the first dual engine set was shipped to Orbital’s Wallops Island integration facility. They arrived in mid-July. A second set is due to arrive in the fall.
“The RD-181 engine provides extra thrust and higher specific impulse, significantly increasing the payload capacity of the Antares rocket. This state-of-the-art propulsion system is a direct adaptation of the RD-191 engine, which completed an extensive qualification and certification program in 2013, accumulating more than 37,000 seconds of total run time,” said Scott Lehr, President of Orbital ATK’s Flight Systems Group, in a statement.
Engineers and technicians have now “integrated the two RD-181 engines with a newly designed and built thrust frame adapter and modified first stage airframe.”
Then they will add new propellant feed lines and first stage avionics systems.
Then comes the moment of truth. A “hot fire” test on the launch pad will be conducted by either the end of 2015 or early 2016 “to verify the vehicle’s operational performance and compatibility of the MARS launch complex.”
“Significant progress has been made in the manufacture and test of the modified hardware components, avionics and software needed to support the new engines,” said Mike Pinkston, Vice President and General Manager of Orbital ATK’s Antares Program.
“We are solidly on track to resume flying Antares in 2016.”
Simultaneously, teams have been working hard to repair the Wallops launch pad which was damaged when the doomed Antares plummeted back to Earth and exploded in a hellish inferno witnessed by thousands of spectators and media including myself.
Repairs are expected to be completed by early 2016 to support a launch tentatively planned for as soon as March 2016.
SpaceX, NASA’s other commercial cargo company under contract to ship supplies to the ISS also suffered a launch failure of with their Falcon 9/Dragon cargo delivery rocket on June 28, 2015.
NASA is working with both forms to restart the critical ISS resupply train as soon as can safely be accomplished.
Be sure to read Ken’s earlier eyewitness reports about last October’s Antares failure at NASA Wallops and ongoing reporting about Orbital ATK’s recovery efforts – all here at Universe Today.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about Orbital ATK, SpaceX, Boeing, ULA, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Aug 29-31: “MUOS-4 launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings