While 2014 budget negotiations are not finalized yet, there’s already some noise of concern in different space communities that depend on NASA. Here’s a brief roundup of some of the news lately:
Could the Cassini Saturn mission get the axe? Wired’s Adam Mann warns that NASA may not be able to fund all of its planetary science missions in the coming year. Based on a statement that Jim Green, NASA’s planetary science director, made to an agency advisory council earlier this month, Mann narrows in on the Curiosity and Cassini missions as the big flagship missions that are requiring the most in terms of resources. Cassini is functioning perfectly and providing reams of data from Saturn and its moons, causing concern from planetary scientists about losing it early.
Only one commercial crew partner? NASA issued a cautious news release this week saying it is prepared to launch Americans from their own soil in 2017, “subject to the availability of adequate funding.” The agency is now moving into a new phase of its commercial crew program called Commercial Crew Transportation Capability (CCtCap), saying it is prepared to “award one or more CCtCap contracts no later than September 2014.” That means that the three companies currently funded — Boeing Co., Sierra Nevada Corp. and SpaceX — may face stiff competition for more money.
New report suggesting stopping NASA’s human spaceflight program: Before reading any further, do not jump to conclusions — making recommendations like this is a common practice by the Congressional Budget Office, which looks at all possibilities as it presents options for spending. Still, Space Politics’ Jeff Foust presents the report and generates some interesting comments after his story about the value of human spaceflight. For context, NASA and its international agency partners will need to make a decision fairly soon about continuing space station operations past 2020, so it’s possible the human spaceflight program could change.
What do you think of these proposals? Let us know in the comments.
Did you take a moment to look at that August video of the Grasshopper rocket deliberately going sideways and then appearing to hover for a bit before returning to Earth? For more video fodder, there’s also this high-flying test the rocket took in October.
We hope you enjoyed these views, because Grasshopper is being retired. SpaceX now wants to focus its energy and resources on to the larger Falcon 9-R first stage, which should see its first test flight in New Mexico this December.
It sounds like SpaceX would have loved to go further, in a sense. “In some ways we’ve kind of failed on the Grasshopper program because we haven’t pushed it to its limit,” SpaceX president Gwynne Shotwell said at the International Symposium for Personal and Commercial Spaceflight (ISPCS) in New Mexico last week, as reported in the NewSpace Journal. “We haven’t broken it.”
Grasshopper took eight test flights during its flight history, which spanned about a year between September 2012 and October 2013. It was intended to test Vertical Takeoff Vertical Landing technology (VTVL). The strange appearance of a rocket leaving Earth and gently, deliberately touching back down again turned heads — even in the general public.
We have coverage — and videos! — of most of its past test flights here (the dates below are flight dates, not publication dates)
Most rockets are single-use only and are discarded either in orbit or (better yet, for space debris concerns) are put in a path to burn up in Earth’s atmosphere. SpaceX, however, wants its next-generation Falcon 9 rocket to have a reusable first stage to cut down on launch costs. (Grasshopper was about 10 storeys high, while the Falcon 9 will be about 14 storeys tall when carrying a Dragon spacecraft on board.)
As for the Falcon 9 series, a rocket flight in September delivered its payload (which included the Canadian Cassiope satellite) to space successfully, but faced some technical problems with the upper stage — and the first stage, as the rocket was supposed to be slowed down for splashdown.
As Space News reported, two burns were planned. The first worked, but the second burn took place while the rocket was spinning, which affected the flow of fuel. A picture shown by SpaceX demonstrated the rocket was intact three meters above the ocean, although it did not survive after it hit.
“Between the flights we’ve been doing with Grasshopper and this demonstration that we brought that stage back, we’re really close to full and rapid reuse of stages,” Shotwell said in the report.
Commercial space took another major leap forward this morning, Oct 22., when the privately developed Cygnus cargo vehicle undocked from the International Space Station on its historic maiden flight and successfully completed a highly productive month long stay during its demonstration mission – mostly amidst the US government shutdown.
The Cygnus was maneuvered about 10 meters (30 feet) away from the station and held in the steady grip of the stations fully extended robotic arm when astronauts Karen Nyberg and Luca Parmitano unlatched the arm and released the ship into free space at 7:31 a.m. EDT today – signifying an end to joint flight operations.
The next Cygnus resupply vessel is due to blast off in mid-December and is already loaded with new science experiments for microgravity research and assorted gear and provisions.
After the Expedition 37 crew members quickly pulled the arm back to a distance 1.5 meters away from Cygnus, ground controllers issued a planned “abort” command to fire the ships thrusters and safely depart from the massive orbiting lab complex.
“It’s been a great mission. Nice work today!” radioed Houston Mission Control at NASA’s Johnson Space Center.
The vehicles were flying over the Atlantic Ocean and off the east coast of Argentina as Cygnus left the station some 250 miles (400 km) overhead in low Earth orbit.
The event was carried live on NASA TV and Cygnus was seen moving rapidly away.
Barely five minutes later Cygnus was already 200 meters away, appeared very small in the cameras view and exited the imaginary “Keep Out Sphere” – a strictly designated safety zone around the million pound station.
The Cygnus resupply ship delivered about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the six person Expedition 37 crew.
After the crew unloaded all that cargo, they packed the ship with 2,850 pounds of no longer needed trash.
On Wednesday (Oct. 23), a pair of deorbit burns with target Cygnus for a destructive reentry back into the Earth’s atmosphere at 2:18 p.m. EDT, to plummet harmlessly into the Pacific Ocean.
Cygnus was developed by Orbital Sciences Corp. with seed money from NASA in a public-private partnership between NASA and Orbital Sciences under NASA’s COTS commercial transportation initiative.
SpaceX Corp. was also awarded a COTS contract to develop the Dragon cargo carrier so that NASA would have a dual capability to stock up the station.
COTS was aimed at fostering the development of America’s commercial space industry to deliver critical and essential supplies to the ISS following the retirement of the Space Shuttle program.
“Congratulations to the teams at Orbital Sciences and NASA who worked hard to make this demonstration mission to the International Space Station an overwhelming success,” NASA Administrator Charles Bolden said in a statement.
“We are delighted to now have two American companies able to resupply the station. U.S. innovation and inspiration have once again shown their great strength in the design and operation of a new generation of vehicles to carry cargo to our laboratory in space. Orbital’s success today is helping make NASA’s future exploration to farther destinations possible.”
America completely lost its capability to send humans and cargo to the ISS when NASA’s space shuttles were forcibly retired in 2011. Orbital Sciences and SpaceX were awarded NASA contracts worth over $3 Billion to restore the unmanned cargo resupply capability over 20 flights totally.
“Antares next flight is scheduled for mid December,” according to Frank Culbertson, former astronaut and now Orbital’s executive Vice President responsible for the Antares and Cygnus programs.
This is an absolutely awesome view of the latest test flight of the SpaceX Grasshopper. The footage is shot with a camera attached to a hexacopter drone, and provides the closest view yet during a Grasshopper test of the operating rocket stage. During this test, Grasshopper flew to 744 meters (2,440 feet).
Grasshopper is a 10-story Vertical Takeoff Vertical Landing (VTVL) vehicle that SpaceX has designed to test the technologies needed to return a rocket back to Earth intact. It consists of a Falcon 9 rocket first stage tank, Merlin 1D engine, four steel and aluminum landing legs with hydraulic dampers, and a steel support structure.
While most rockets are designed to burn up in the atmosphere during reentry, SpaceX’s rockets are being designed to return to the launch pad for a vertical landing. “The Grasshopper VTVL vehicle represents a critical step towards this goal,” says SpaceX.
One of the ‘hot’ memes these days are collections of sayings by various groups or persons, classified under the “S*** [insert name] Says” genre of videos, articles and websites. A new site making the rounds among the space community is “S*** Elon Says” which includes an assemblage of over 40 actual quotes from SpaceX and Tesla founder Elon Musk. Besides listing some of the most awesome, peculiar and downright futuristic quotes from Musk, this site is also one of the most thoroughly researched in this type of meme, as each quote links to transcripts of press conferences, news shows and conference panels where Musk actually said these things.
When the US Space Surveillance Network indicated they were tracking additional objects in orbit following Sunday’s maiden launch of SpaceX’s next generation rocket, speculation began among satellite trackers that the upper stage of the Falcon 9 v1.1. rocket may have exploded. But SpaceX issued a statement today that their data indicates no such explosion occurred, and that insulation may have come off the second stage, creating extra objects.
Meanwhile, SpaceX CEO Elon Musk confirmed via Twitter that reports of a “fuzzy” UFO over South Africa following the launch came from liquid oxygen released by the Falcon 9 rocket’s second stage.
@DebbieViviers@SpaceX Yes, upper stage venting of liquid oxygen created a fast moving fuzzy white sphere in space over SA
In the September 29 launch from Vandenberg Air Force Base in California, SpaceX successfully launched and deployed the Canadian Space Agency’s CASSIOPE weather satellite (Cascade, Smallsat, and Ionospheric Polar Explorer) and six additional small satellites.
SpaceTrack was tracking 20 objects from the launch, but only fourteen should have been in orbit (CASSIOPE, 6 small sats, 4 spacers from the POPACS satellite trio, the second stage and two fairings) leaving ssix objects unaccounted for.
“Regarding the rumors you may have heard about the Falcon 9 second stage, in short, our data confirms there was no rupture of any kind on the second stage,” SpaceX spokeswoman Emily Shanklin wrote in an email on October 1.
SpaceX gave this account of what likely happened after launch:
Following separation of the satellites to their correct orbit, the Falcon 9 second stage underwent a controlled venting of propellants (fuel and pressure were released from the tank) and the stage was successfully safed. During this process, it is possible insulation came off the fuel dome on the second stage and is the source of what some observers incorrectly interpreted as a rupture in the second stage. This material would be in several pieces and be reflective in the Space Track radar. It is also possible the debris came from the student satellite separation mechanisms onboard.
The new, more powerful version of the Falcon 9 is powered by a cluster of nine of the new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines and can therefore boost a much heavier cargo load to the ISS and beyond. The Falcon 9 v.1.1 is taller than a standard Falcon 9: about 22 stories high vs. 13.
Musk told reporters at a post-launch news conference that they attempted to reignite the upper stage after payload separation for demonstrating the capability of putting satellites into a geostationary transfer orbit. However, the reignition sequence was aborted after a problem was detected.
Several images and videos were posted online of a UFO seen over South Africa, Madagascar, Botswana, and Malawi. But it was quickly determined to be a cloud of rocket propellant surrounding the spent Falcon 9 upper stage.
SpaceX said they will continue to review their data to help identify the source of the extra debris.
Top of the Rock – New York City
Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT – weather permitting – after blastoff from NASA Wallops, VA. Credit: Orbital Sciences See more Antares launch trajectory viewing graphics below[/caption]
WALLOPS ISLAND, VA – “All Systems Are GO” for the Sept. 18 launch of Orbital Sciences Antares commercial rocket carrying the first ever fully functional Cygnus commercial resupply vehicle to orbit on the history making first flight blasting off from NASA’s Wallops Island Facility– along the eastern shore of Virginia and bound for the International Space Station (ISS).
Here’s our guide on “How to See the Antares/Cygnus Launch” – complete with viewing maps and trajectory graphics from a variety of prime viewing locations courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus spaceship aimed at keeping the ISS fully operational for science research.
And although the launch is slated for late morning it should still be visible to millions of spectators along a lengthy swath of the US East Coast from North Carolina to Connecticut – weather permitting – who may have never before witnessed such a mighty rocket launch.
The daylight liftoff of the powerful two stage Antares rocket is scheduled for Wednesday, Sept 18 at 10:50 a.m. EDT from Launch Pad 0A at the Mid-Atlantic Regional Spaceport at NASA Wallops Island, Virginia. The launch window extends 15 minutes to 11:05 a.m.
Up top is the view as anticipated from “The Top of the Rock” or Rockefeller Center in New York City. See below the extraordinary image of LADEE’s launch from “Top of the Rock” by Ben Cooper to compare the day and night time sighting delights.
In anticipation of liftoff, the Antares rocket was rolled out to Pad 0A on Friday morning Sept. 13 and I was on hand for the entire event – see my rollout photos here and upcoming.
Here’s a hi res version of the viewing map courtesy of NASA Wallops Flight Facility:
The Antares launch follows closely on the heels of the spectacularly bright Sept. 6 nighttime Moon shot blastoff of the Minotaur V rocket that successfully injected NASA’s LADEE lunar orbiter into its translunar trajectory.
And just as was the case with the Minotaur V and LADEE, you don’t have to be watching locally to join in and experience all the fun and excitement. As with any NASA launch, you can also follow along with up to the minute play by play by watching the NASA TV webcast online or on smartphones, iPods or laptops.
It’s hard to say exactly how long and how bright the rockets flames and exhaust trail will be visible since it depends on the constantly changing lighting, prevailing clouds and overall weather conditions.
But one thing is for sure. If you don’t go outside and watch you’re giving up a great opportunity.
And keep in mind that Antares will be moving significantly slower than the Minotaur V.
Herein are a series of graphics showing the Antares trajectory and what you should see during firings of both stages from the perspective of standing on the ground or skyscrapers at a variety of popular destinations including Annapolis, the US Capitol, Lincoln Memorial, National Air and Space Museum, Atlantic City, NJ, New York City and more.
The goal of the mission is to demonstrate the safe and successful launch, rendezvous and docking of the privately developed Cygnus cargo carrier with the International Space Station (ISS) and delivery of 1300 pounds of essential supplies, food, clothing, spare parts and science gear to the six person resident human crews – currently Expedition 37.
Although it’s the 2nd launch of Antares following the maiden flight in April, this is the first flight of the Cygnus commercial delivery system. The demonstration and testing will be the same as what SpaceX accomplished in 2012 with their competing Falcon 9/Dragon architecture.
The mission is designated Orb-D1 and is funded with seed money by NASA’s COTS program to replace the cargo delivery duties of NASA’s now retired Space Shuttle orbiters.
For those who are traveling to witness the launch locally in the Chincoteague, Va., area, there will be two public viewing sites said Jeremy Eggers, NASA Wallops Public Affairs Officer in an interview with Universe Today.
“There will be are two local sites open to the public,” Eggers told me. “Folks can watch at either the NASA Wallops Flight facility Visitors Center (http://sites.wff.nasa.gov/wvc) or the beach at Assateague National Seashore (http://www.nps.gov/asis/index.htm).”
“There will be loudspeakers to follow the progress of the countdown, but no TV screens as done with the LADEE launch.”
So far the weather outlook is promising with a 75% chance of “GO” with favorable conditions at launch time.
NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).
Be sure to watch for my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.
Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations
Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA
Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM
Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
SpaceX proved yesterday that their Grasshopper prototype Vertical Takeoff Vertical Landing (VTVL) vehicle can do more than just go straight up and down. The goal of the test, said SpaceX CEO Elon Musk on Twitter was, “hard lateral deviation, stabilize & hover, rapid descent back to pad.”
On August 13th, the Grasshopper did just that, completing a divert test, flying to a 250-meter altitude with a 100-meter lateral maneuver before returning to the center of the pad. SpaceX said the test demonstrated the vehicle’s ability to perform more aggressive steering maneuvers than have been attempted in previous flights.
While most rockets are designed to burn up in the atmosphere during reentry, SpaceX is looking to make their next generation of Falcon 9 rocket be able to return to the launch pad for a vertical landing.
This isn’t easy. The 10-story Grasshopper provides a challenge in controlling the structure. The Falcon 9 with a Dragon spacecraft is 48.1 meters (157 feet) tall, which equates to about 14 stories high. SpaceX said diverts like this are an important part of the trajectory in order to land the rocket precisely back at the launch site after reentering from space at hypersonic velocity.
Also on Twitter this morning, NASA’s Jon Cowert (who is now working with the Commercial Crew program) provided a look back at NASA’s foray into VTVL vehicles with the Delta Clipper Experimental vehicle,(DC-X). The video below is from July 7, 1995, and the Delta Clipper was billed as the world’s first fully reusable rocket vehicle. This eighth test flight proved that the vehicle could turn over into a re-entry profile and re-orient itself for landing. This flight took place at the White Sands Missile Range in southern New Mexico.
But after some problems (fires and the spacecraft actually fell over when a landing strut didn’t extend) NASA decided to try and focus on the X-33 VentureStar, which would land like an airplane…. and that didn’t work out very well either.
This week, SpaceX founder and billionaire Elon Musk (who also founded electric vehicle manufacturer Tesla Motors) released his vision for a futuristic transportation system. Called hyperloop, it’s supposed to be better than flying supersonic over short distances. To give you a quick overview, we’ve summarized a portion of his paper below.
What is a hyperloop? In Musk’s words, a hyperloop is a system to “build a tube over or under the ground that contains a special environment.” Cars would basically be propelled in this tube. One example could be a huge sort of pneumatic tube where high-speed fans would compress and push the air — although the friction implications make Musk skeptical that it would work. Another option is having a vacuum in the tube and using electromagnetic suspension instead. Musk acknowledges it is hard to maintain a vacuum (one small leak in hundreds of miles of tubing, and the system shuts down), but there are pumping solutions to overcome this. He favors the second solution.
What is the motivation? Musk is seeking an alternative to flying or driving that would be “actually better than flying or driving.” He expressed disappointment that a proposed high-speed rail project in California is actually one of the slowest and most expensive of its type in the world, and speculated that there must be a better way.
What is the biggest technical challenge? Overcoming something called the Kantrowitz limit. Musk describes this as the “top speed law for a given tube to pod area ratio”. More simply, if you have a vehicle moving into an air-filled tube, there needs to be a minimum distance between the walls of the vehicle and the walls of the tube. Otherwise, Musk writes, “the capsule will behave like a syringe and eventually be forced to push the entire column of air in the system. Not good.”
How will Musk overcome that challenge? The principal ways of getting around it is to move slowly or quickly. A hyperfast speed would be a “dodgy prospect”, Musk writes, so his solution is to put an electric compressor fan on the capsule nose that would move high-pressure air from the front to the back of the vehicle. As a bonus, this would reduce friction. Yes, there are batteries available that would have enough power to keep the fan running for the journey’s length, he says.
How is hyperloop powered? Solar panels would be placed on top of the tube, providing enough juice to keep the vehicles moving, according to Musk’s calculations.
What about earthquakes? Musk acknowledges that a long-range system is susceptible to earthquakes. “By building a system on pylons, where the tube is not rigidly fixed at any point, you can dramatically mitigate earthquake risk and avoid the need for expansion joints,” he writes.
Where would hyperloop be used? In a description of the system, Musk says the hyperloop would be best served in “high-traffic city pairs that are less than about 1,500 km or 900 miles apart.” Anything more distant, and supersonic travel would be the best solution. (Short distance supersonic travel isn’t efficient because the plane would spend most of its time ascending and descending.)
Is it cost-effective? Musk estimates the tube would be “several billion dollars”, which he describes as low compared to the “tens of billion [sic] proposed for the track of the California rail project.” The individual capsules would be several hundred million dollars. Moreover, building a tube instead of a railway offers advantages, Musk says: it can be built on pylons (meaning you don’t need to buy the land), it’s less noisy, and there’s no need for fencing.
I want more information. Musk wrote a technical proposal that spans several dozens of pages, which you can check out here. He calls his system an open-source one and seems to be open to ideas to improve it.
Feel free to leave your feedback in the comments. Does this look feasible? Is there anything that could be added to make it a better system?
Just the fact’s ma’am. This week SpaceX rolled out the new updated look for their website and put out this fact-filled 2-minute drill on the Falcon 9: what it has achieved and the tests for future vertical landings. Enjoy the imagery and the music to get you pumped up.