This Particle Only Has Mass When Moving in One Direction

The quasiparticle, called a semi-Dirac fermion, was first theorized 16 years ago, but was only recently spotted inside a crystal of semi-metal material called ZrSiS. The observation of the quasiparticle opens the door to future advances in a range of emerging technologies from batteries to sensors, according to researchers who made the discovery. Credit: Yinming Shao / Penn State

Particle physics is not everyone’s cup of tea.  A team of physicists have theorised the existence of a strange type of particle that behaves differently depending on its direction of travel—massless in one direction but possessing mass when moving the other way! This strange, elusive particle, known as a semi-Dirac fermion or “quasiparticle,” has actually been observed in action. To detect it, researchers cooled a semi-metal crystal to near absolute zero, exposed it to a powerful magnetic field and infrared light, and successfully captured the signal of these unusual quasiparticles.

Continue reading “This Particle Only Has Mass When Moving in One Direction”

What is Einstein’s Theory of Relativity?

Einstein Lecturing
Albert Einstein during a lecture in Vienna in 1921. Credit: National Library of Austria/F Schmutzer/Public Domain

In the history of science and physics, several scholars, theories, and equations have become household names. In terms of scientists, notable examples include Pythagoras, Aristotle, Galileo, Newton, Planck, and Hawking. In terms of theories, there’s Archimede’s “Eureka,” Newton’s Apple (Universal Gravitation), and Schrodinger’s Cat (quantum mechanics). But the most famous and renowned is arguably Albert Einstein, Relativity, and the famous equation, E=mc2. In fact, Relativity may be the best-known scientific concept that few people truly understand.

For example, Einstein’s Theory of Relativity comes in two parts: the Special Theory of Relativity (SR and the General Theory of Relativity (GR). And the term “Relativity” itself goes back to Galileo Galilee and his explanation for why motion and velocity are relative to the observer. As you can probably tell, explaining how Einstein’s groundbreaking theory works require a deep dive into the history of physics, some advanced concepts, and how it all came together for one of the greatest minds of all time!

Continue reading “What is Einstein’s Theory of Relativity?”

Beyond “Fermi’s Paradox” XV: What is the Percolation Hypothesis?

Artist's impression of the Milky Way Galaxy. Credit: ESO

Welcome back to our Fermi Paradox series, where we take a look at possible resolutions to Enrico Fermi’s famous question, “Where Is Everybody?” Today, we examine the possibility that Earth hasn’t been visited by aliens because interstellar travel is not very practical!

In 1950, Italian-American physicist Enrico Fermi sat down to lunch with some of his colleagues at the Los Alamos National Laboratory, where he had worked five years prior as part of the Manhattan Project. According to various accounts, the conversation turned to aliens and the recent spate of UFOs. Into this, Fermi issued a statement that would go down in the annals of history: “Where is everybody?

This became the basis of the Fermi Paradox, which refers to the disparity between high probability estimates for the existence of extraterrestrial intelligence (ETI) and the apparent lack of evidence. Since Fermi’s time, there have been several proposed resolutions to his question, which includes the very real possibility that interstellar colonization follows the basic rule of Percolation Theory.

Continue reading “Beyond “Fermi’s Paradox” XV: What is the Percolation Hypothesis?”

NASA’s New Video Shows You What it’s Like Traveling Close to the Speed of Light

Credit: NASA/GSFC/GMS

If you’re a fan of science fiction, chances are you encountered a few franchises where humanity has spread throughout the known Universe. The ships that allow them to do this, maybe they use a warp drive, maybe they “fold space,” maybe have a faster-than-light (FTL) or “jump” drive. It’s a cool idea, the thought of “going interstellar!” Unfortunately, the immutable laws of physics tell us that this is simply not possible.

However, the physics that govern our Universe do allow for travel that is close to the speed of light, even though getting to that speed would require a tremendous amount of energy. Those same laws, however, also tell us that near-light-speed travel comes with all sorts of challenges. Luckily for all of us, NASA addresses these in a recently-released animed video that covers all the basics of interstellar travel!

Continue reading “NASA’s New Video Shows You What it’s Like Traveling Close to the Speed of Light”

Pulsars Confirm One of Einstein’s Best Ideas, That Freefall Really Feels Like You’re Experiencing a Lack of Gravity

This artist’s impression shows the exotic double object that consists of a tiny, but very heavy neutron star that spins 25 times each second, orbited every two and a half hours by a white dwarf star. The neutron star is a pulsar named PSR J0348+0432 that is giving off radio waves that can be picked up on Earth by radio telescopes. Although this unusual pair is very interesting in its own right it is also a unique laboratory for testing the limits of physical theories. This system is radiating gravitational radiation, ripples in spacetime. Although these waves cannot be yet detected directly by astronomers on Earth they can be detected indirectly by measuring the change in the orbit of the system as it loses energy. As the pulsar is so small the relative sizes of the two objects are not drawn to scale.

Six and a half decades after he passed away, famed theoretical physicist Albert Einstein is still being proven right! In addition to General Relativity (GR) being tested under the most extreme conditions, lesser-known aspects of his theories are still being validated as well. For example, GR predicts that gravity and inertia are often indistinguishable, in what is known as the gravitational Strong Equivalence Principle (SEP).

Thanks to an international team of researchers, it has been proven under the strongest conditions to date. By precisely tracking the motion of a pulsar, the team demonstrated that gravity causes neutron stars and white dwarf stars to fall with equal accelerations. This confirms Einstein’s prediction that freefall accurately simulates zero-gravity conditions in all inertial reference frames.

Continue reading “Pulsars Confirm One of Einstein’s Best Ideas, That Freefall Really Feels Like You’re Experiencing a Lack of Gravity”

Time Travel Into The Future Is Totally Possible

The ESA's CHEOPS launching aboard a Soyuz-FG rocket from Kourou, French Guiana. Image Credit: ESA - S. Corvaja

Believe it or not, time travel is possible.

In fact, you’re doing it right now. Every single second of every single day you are advancing into your own future. You are literally moving through time, the same way you would move through space. It may seem pedantic, but it’s a very important point. Movement through time is still movement, and you are reaching your own future (whether you like it or not).

Continue reading “Time Travel Into The Future Is Totally Possible”

First Ever Image of Quantum Entanglement

Credit: Science Advances (2019). DOI: 10.1126/sciadv.aaw2563

During the 1930s, venerable theoretical physicist Albert Einstein returned to the field of quantum mechanics, which his theories of relativity helped to create. Hoping to develop a more complete theory of how particles behave, Einstein was instead horrified by the prospect of quantum entanglement – something he described as “spooky action at a distance”.

Despite Einstein’s misgivings, quantum entanglement has gone on to become an accepted part of quantum mechanics. And now, for the first time ever, a team of physicists from the University of Glasgow took an image of a form of quantum entanglement (aka. Bell entanglement) at work. In so doing, they managed to capture the first piece of visual evidence of a phenomenon that baffled even Einstein himself.

Continue reading “First Ever Image of Quantum Entanglement”

You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space

Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.
Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.

Special Relativity. It’s been the bane of space explorers, futurists and science fiction authors since Albert Einstein first proposed it in 1905. For those of us who dream of humans one-day becoming an interstellar species, this scientific fact is like a wet blanket. Luckily, there are a few theoretical concepts that have been proposed that indicate that Faster-Than-Light (FTL) travel might still be possible someday.

A popular example is the idea of a wormhole: a speculative structure that links two distant points in space time that would enable interstellar space travel. Recently, a team of Ivy League scientists conducted a study that indicated how “traversable wormholes” could actually be a reality. The bad news is that their results indicate that these wormholes aren’t exactly shortcuts, and could be the cosmic equivalent of “taking the long way”!

Continue reading “You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space”

What Would a Camera on a Breakthrough Starshot Spacecraft See if it’s Going at High Velocity?

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity's first interstellar voyage. Credit: breakthroughinitiatives.org

In April of 2016, Russian billionaire Yuri Milner announced the creation of Breakthrough Starshot. As part of his non-profit scientific organization (known as Breakthrough Initiatives), the purpose of Starshot was to design a lightsail nanocraft that would be capable of achieving speeds of up to 20% the speed of light and reaching the nearest star system – Alpha Centauri (aka. Rigel Kentaurus) – within our lifetimes.

At this speed – roughly 60,000 km/s (37,282 mps) – the probe would be able to reach Alpha Centauri in 20 years, where it could then capture images of the star and any planets orbiting it. But according to a recent article by Professor Bing Zhang, an astrophysicist from the University of Nevada, researchers could get all kinds of valuable data from Starshot and similar concepts long before they ever reached their destination.

The article appeared in The Conversation under the title “Observing the universe with a camera traveling near the speed of light“. The article was a follow-up to a study conducted by Prof. Zhang and Kunyang Li – a graduate student from the Center for Relativistic Astrophysics at the Georgia Institute of Technology – that appeared in The Astrophysical Journal (titled “Relativistic Astronomy“).

Prof. Albert Einstein at the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in 1934. Credit: AP Photo

To recap, Breakthrough Starshot seeks to leverage recent technological developments to mount an interstellar mission that will reach another star within a single generation. The spacecraft would consist of an ultra-light nanocraft and a lightsail, the latter of which would accelerated by a ground-based laser array up to speeds of hundreds of kilometers per second.

Such a system would allow the tiny spacecraft to conduct a flyby mission of Alpha Centauri in about 20 years after it is launched, which could then beam home images of possible planets and other scientific data (such as analysis of magnetic fields). Recently, Breakthrough Starshot held an “industry day” where they submitted a Request For Proposals (RFP) to potential bidders to build the laser sail.

According to Zhang, a lightsail-driven nanocraft traveling at a portion of the speed of light would also be a good way to test Einstein’s theory of Special Relativity.  Simply put, this law states that the speed of light in a vacuum is constant, regardless of the inertial reference frame or motion of the source. In short, such a spacecraft would be able to take advantage of the features of Special Relativity and provide a new mode to study astronomy.

Based on Einstein’s theory, different objects in different “rest frames” would have different measures of the lengths of space and time. In this sense, an object moving at relativistic speeds would view distant astronomical objects differently as light emissions from these objects would be distorted. Whereas objects in front of the spacecraft would have the wavelength of their light shortened, objects behind it would have them lengthened.

This diagram shows the difference between unshifted, redshifted and blueshifted targets. Credit: NASA

This phenomenon, known as the “Doppler Effect”, results in light being shifted towards the blue end (“blueshift”) or the red end (“redshift”) of the spectrum for approaching and retreating objects, respectively. In 1929, astronomer Edwin Hubble used redshift measurements to determine that distant galaxies were moving away from our own, thus demonstrating that the Universe was in a state of expansion.

Because of this expansion (known as the Hubble Expansion), much of the light in the Universe is redshifted and only measurable in difficult-to-observe infrared wavelengths. But for a camera moving at relativistic speeds, according to Prof. Zhang, this redshifted light would become bluer since the motion of the camera would counteract the effects of cosmic expansion.

This effect, known as “Doppler boosting”, would cause the faint light from the early Universe to be amplified and allow distant objects to be studied in more detail. In this respect, astronomers would be able to study some of the earliest objects in the known Universe, which would offer more clues as to how it evolved over time. As Prof. Zhang explained to Universe Today via email, this would allow for some unique opportunities to test Special Relativity:

“In the rest frame of the camera, the emission of the objects in the hemisphere of the camera motion is blue-shifted. For bright objects with detailed spectral observations from the ground, one can observe them in flight. By comparing their blue-shifted flux at a specific blue-shifted frequency with the flux of the corresponding (de-blueshifted) frequency on the ground, one can precisely test the Doppler boosting prediction in Special Relativity.”

Observed image of nearby galaxy M51 (left) and how the image would look through a camera moving at half the speed of light (right). Credit: Zhang & Li, 2018, The Astrophysical Journal, 854, 123, CC BY-ND

In addition, the frequency and intensity of light – and also the size of distant objects – would also change as far as the observer was concerned. In this respect, the camera would act as a lens and a wide-field camera, magnifying the amount of light it collects and letting astronomers observe more objects within the same field of view. By comparing the observations collected by the camera to those collected by a camera from the ground, astronomers could also test the probe’s Lorentz Factor.

This factor indicates how time, length, and relativistic mass change for an object while that object is moving, which is another prediction of Special Relativity. Last, but not least, Prof. Zhang indicates that probes traveling at relativistic speeds would not need to be sent to any specific destination in order to conduct these tests. As he explained:

“The concept of “relativistic astronomy” is that one does not really need to send the cameras to specific star systems. No need to aim (e.g. to Alpha Centauri system), no need to decelerate. As long as the signal can be transferred back to earth, one can learn a lot of things. Interesting targets include high-redshift galaxies, active galactic nuclei, gamma-ray bursts, and even electromagnetic counterparts of gravitational waves.”

However, there are some drawbacks to this proposal. For starters, the technology behind Starshot is all about accomplishing the dream of countless generations – i.e. reaching another star system (in this case, Alpha Centauri) – within a single generation.

And as Professor Abraham Loeb – the Frank B. Baird Jr. Professor of Science at Harvard University and the Chair and the Breakthrough Starshot Committee – told Universe Today via email, what Prof. Zhang is proposing can be accomplished by other means:

>“Indeed, there are benefits to having a camera move near the speed of light toward faint sources, such as the most distant dwarf galaxies in the early universe. But the cost of launching a camera to the required speed would be far greater than building the next generation of large telescopes which will provide us with a similar sensitivity. Similarly, the goal of testing special relativity can be accomplished at a much lower cost.”

Of course, it will be many years before a project like Starshot can be mounted, and many challenges need to be addressed in the meantime. But it is exciting to know that in meantime, scientific applications can be found for such a mission that go beyond exploration. In a few decades, when the mission begins to make the journey to Alpha Centauri, perhaps it will also be able to conduct tests on Special Relativity and other physical laws while in transit.

Further Reading: The Conversation, The Astrophysical Journal

What is the Speed of Light?

Artist's impression of a spaceship making the jump to "light speed". Credit: NASA/Glenn Research Center

Since ancient times, philosophers and scholars have sought to understand light. In addition to trying to discern its basic properties (i.e. what is it made of – particle or wave, etc.) they have also sought to make finite measurements of how fast it travels. Since the late-17th century, scientists have been doing just that, and with increasing accuracy.

In so doing, they have gained a better understanding of light’s mechanics and the important role it plays in physics, astronomy and cosmology. Put simply, light moves at incredible speeds and is the fastest moving thing in the Universe. Its speed is considered a constant and an unbreakable barrier, and is used as a means of measuring distance. But just how fast does it travel?

Speed of Light (c):

Light travels at a constant speed of 1,079,252,848.8 (1.07 billion) km per hour. That works out to 299,792,458 m/s, or about 670,616,629 mph (miles per hour). To put that in perspective, if you could travel at the speed of light, you would be able to circumnavigate the globe approximately seven and a half times in one second. Meanwhile, a person flying at an average speed of about 800 km/h (500 mph), would take over 50 hours to circle the planet just once.

Illustration showing the distance between Earth and the Sun. Credit: LucasVB/Public Domain
Illustration showing the distance light travels between the Earth and the Sun. Credit: LucasVB/Public Domain

To put that into an astronomical perspective, the average distance from the Earth to the Moon is 384,398.25 km (238,854 miles ). So light crosses that distance in about a second. Meanwhile, the average distance from the Sun to the Earth is ~149,597,886 km (92,955,817 miles), which means that light only takes about 8 minutes to make that journey.

Little wonder then why the speed of light is the metric used to determine astronomical distances. When we say a star like Proxima Centauri is 4.25 light years away, we are saying that it would take – traveling at a constant speed of 1.07 billion km per hour (670,616,629 mph) – about 4 years and 3 months to get there. But just how did we arrive at this highly specific measurement for “light-speed”?

History of Study:

Until the 17th century, scholars were unsure whether light traveled at a finite speed or instantaneously. From the days of the ancient Greeks to medieval Islamic scholars and scientists of the early modern period, the debate went back and forth. It was not until the work of Danish astronomer Øle Rømer (1644-1710) that the first quantitative measurement was made.

In 1676, Rømer observed that the periods of Jupiter’s innermost moon Io appeared to be shorter when the Earth was approaching Jupiter than when it was receding from it. From this, he concluded that light travels at a finite speed, and estimated that it takes about 22 minutes to cross the diameter of Earth’s orbit.

Prof. Albert Einstein uses the blackboard as he delivers the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in the auditorium of the Carnegie Institue of Technology Little Theater at Pittsburgh, Pa., on Dec. 28, 1934. Using three symbols, for matter, energy and the speed of light respectively, Einstein offers additional proof of a theorem propounded by him in 1905 that matter and energy are the same thing in different forms. (AP Photo)
Prof. Albert Einstein delivering the 11th Josiah Willard Gibbs lecture at the Carnegie Institute of Technology on Dec. 28th, 1934, where he expounded on his theory of how matter and energy are the same thing in different forms. Credit: AP Photo

Christiaan Huygens used this estimate and combined it with an estimate of the diameter of the Earth’s orbit to obtain an estimate of 220,000 km/s. Isaac Newton also spoke about Rømer’s calculations in his seminal work Opticks (1706). Adjusting for the distance between the Earth and the Sun, he calculated that it would take light seven or eight minutes to travel from one to the other. In both cases, they were off by a relatively small margin.

Later measurements made by French physicists Hippolyte Fizeau (1819 – 1896) and Léon Foucault (1819 – 1868) refined these measurements further – resulting in a value of 315,000 km/s (192,625 mi/s). And by the latter half of the 19th century, scientists became aware of the connection between light and electromagnetism.

This was accomplished by physicists measuring electromagnetic and electrostatic charges, who then found that the numerical value was very close to the speed of light (as measured by Fizeau). Based on his own work, which showed that electromagnetic waves propagate in empty space, German physicist Wilhelm Eduard Weber proposed that light was an electromagnetic wave.

The next great breakthrough came during the early 20th century/ In his 1905 paper, titled “On the Electrodynamics of Moving Bodies”, Albert Einstein asserted that the speed of light in a vacuum, measured by a non-accelerating observer, is the same in all inertial reference frames and independent of the motion of the source or observer.

A laser shining through a glass of water demonstrates how many changes in speed it undergoes - from 186,222 mph in air to 124,275 mph through the glass. It speeds up again to 140,430 mph in water, slows again through glass and then speeds up again when leaving the glass and continuing through the air. Credit: Bob King
A laser shining through a glass of water demonstrates how many changes in speed (in mph) it undergoes as it passes from air, to glass, to water, and back again. Credit: Bob King

Using this and Galileo’s principle of relativity as a basis, Einstein derived the Theory of Special Relativity, in which the speed of light in vacuum (c) was a fundamental constant. Prior to this, the working consensus among scientists held that space was filled with a “luminiferous aether” that was responsible for its propagation – i.e. that light traveling through a moving medium would be dragged along by the medium.

This in turn meant that the measured speed of the light would be a simple sum of its speed through the medium plus the speed of that medium. However, Einstein’s theory effectively  made the concept of the stationary aether useless and revolutionized the concepts of space and time.

Not only did it advance the idea that the speed of light is the same in all inertial reference frames, it also introduced the idea that major changes occur when things move close the speed of light. These include the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer (i.e. time dilation, where time slows as the speed of light approaches).

His observations also reconciled Maxwell’s equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations by doing away with extraneous explanations used by other scientists, and accorded with the directly observed speed of light.

During the second half of the 20th century, increasingly accurate measurements using laser inferometers and cavity resonance techniques would further refine estimates of the speed of light. By 1972, a group at the US National Bureau of Standards in Boulder, Colorado, used the laser inferometer technique to get the currently-recognized value of 299,792,458 m/s.

Role in Modern Astrophysics:

Einstein’s theory that the speed of light in vacuum is independent of the motion of the source and the inertial reference frame of the observer has since been consistently confirmed by many experiments. It also sets an upper limit on the speeds at which all massless particles and waves (which includes light) can travel in a vacuum.

One of the outgrowths of this is that cosmologists now treat space and time as a single, unified structure known as spacetime – in which the speed of light can be used to define values for both (i.e. “lightyears”, “light minutes”, and “light seconds”). The measurement of the speed of light has also become a major factor when determining the rate of cosmic expansion.

Beginning in the 1920’s with observations of Lemaitre and Hubble, scientists and astronomers became aware that the Universe is expanding from a point of origin. Hubble also observed that the farther away a galaxy is, the faster it appears to be moving. In what is now referred to as the Hubble Parameter, the speed at which the Universe is expanding is calculated to 68 km/s per megaparsec.

This phenomena, which has been theorized to mean that some galaxies could actually be moving faster than the speed of light, may place a limit on what is observable in our Universe. Essentially, galaxies traveling faster than the speed of light would cross a “cosmological event horizon”, where they are no longer visible to us.

Also, by the 1990’s, redshift measurements of distant galaxies showed that the expansion of the Universe has been accelerating for the past few billion years. This has led to theories like “Dark Energy“, where an unseen force is driving the expansion of space itself instead of objects moving through it (thus not placing constraints on the speed of light or violating relativity).

Along with special and general relativity, the modern value of the speed of light in a vacuum has gone on to inform cosmology, quantum physics, and the Standard Model of particle physics. It remains a constant when talking about the upper limit at which massless particles can travel, and remains an unachievable barrier for particles that have mass.

Perhaps, someday, we will find a way to exceed the speed of light. While we have no practical ideas for how this might happen, the smart money seems to be on technologies that will allow us to circumvent the laws of spacetime, either by creating warp bubbles (aka. the Alcubierre Warp Drive), or tunneling through it (aka. wormholes).

Until that time, we will just have to be satisfied with the Universe we can see, and to stick to exploring the part of it that is reachable using conventional methods.

We have written many articles about the speed of light for Universe Today. Here’s How Fast is the Speed of Light?, How are Galaxies Moving Away Faster than Light?, How Can Space Travel Faster than the Speed of Light?, and Breaking the Speed of Light.

Here’s a cool calculator that lets you convert many different units for the speed of light, and here’s a relativity calculator, in case you wanted to travel nearly the speed of light.

Astronomy Cast also has an episode that addresses questions about the speed of light – Questions Show: Relativity, Relativity, and more Relativity.

Sources: