NASA’s world famous Mars Exploration RoverOpportunity continues blazing a daily trail of unprecedented science first’s, still swinging her robotic arm robustly into action at a Martian “Mining Zone” on the 12th anniversary of her hair-raising Red Planet touchdown this week, a top rover scientist told Universe Today.
There are many hazards out there, eager to disrupt and dismantle the mighty machines we send out into space. How long can they survive to perform their important missions?
Every few months, an eager new spacecraft arrives on the launch pad, ready for its date with destiny. If we don’t blow it all to bits with a launch vehicle failure, it’ll be gently placed into orbit with surgical precision. Then it’ll carry out a noble mission of exploring the Solar System, analyzing the Earth, or ensuring we have an infinite number of radio stations in our cars, allowing us to never be satisfied with any of them.
Space is hostile. Not just to fragile hu-mans, but also to our anthropomorphized Number Five is alive robotic spacecraft which we uncaringly send to do our bidding. There are many hazards out there, eager to disrupt and dismantle our stalwart electronic companions. Oblivion feeds voraciously on our ever trusting space scouts and their tiny delicate robotic hearts, so many well before their time.
How long have they got? How long will our spacecraft survive as we cast them on their suicide missions to “go look at stuff on behalf of the mighty human empire”? When spacecraft are hurled into the void, all mission planners know they’re living on borrowed time.
The intrepid Mars Exploration Rovers, Spirit and Opportunity, were only expected to operate for 3 months. NASA’s Spitzer Space Telescope carried a tank of expendable helium coolant to let it see the dimmest objects in the infrared spectrum.
Sometimes the spacecraft wear down for unexpected reasons, like electronic glitches, or parts wearing out. Hubble was equipped with rotating gyroscopes that eventually wore out over time, making it more difficult to steer at its targets, and only an intervention by rescue and repair allowed the mission to keep going.
In general, a spacecraft is expected to last a few months to a few years. Spirit and Opportunity only had a planned mission of 3 months. It took Spirit more than 6 dauntless years to finally succumb to the hostile Martian environment. Opportunity is still kicking more than a decade later, thanks to some very careful driving and gusts of Martian wind clearing off its solar panels which didn’t surprise anybody.
ESA’s Rosetta spacecraft needed to survive for 10 years in a dormant state before its encounter with Comet 67/P. It’s expected to last until the end of 2015. Then its orbit will carry it too far from the Sun to operate its solar panels, then it’ll go to sleep one last time.
As a testament to luck and remarkable feats of engineering, some survive much longer than anyone ever expected. NASA’s Voyager Spacecraft, launched in 1977, are still going and communicating with Earth. It’s believed they’ll survive until 2025, when their radioisotope thermoelectric generators stop producing power.
At which point they’ll return to the Earth at the heart of a massive alien spacecraft and scare the bejeebus out of us.
… And I know what you’re thinking. Once our spacecraft stop functioning, they’ll still exist. Perhaps getting close enough to another source of solar energy to start transmitting again.
So, how long will our spacecraft hold together in something roughly robot-probe shaped? Any spacecraft orbiting a planet or Moon won’t last long geologically before they’re given a rocky kiss of death with help from a big group hug from gravity.
This might take a decade, a hundred years or a million. Eventually, that spacecraft is racing towards a well distributed grave on its new home.
A spacecraft that’s orbiting the Sun should last much longer. However, a gravitational threesome with a planet or large asteroid could drag it into a solar death spiral or hurl it into a planet. There are asteroids whipping around from the formation of the Solar System, and they haven’t crashed into anything… yet.
A lucky spacecraft might last hundreds of millions, or even billions of years. Our little robot friends that leave the gravitational pull of the Solar System have a chance of making it for the long haul.
Once they’re out in interstellar space, there will be very few micrometeorites to punch little holes in them. Unless they happen to run into another star – and that’s very unlikely – they’ll travel through space until they’re worn away over billions of years, and who knows what that means for future alien archaeology students. The golden records on the Voyager spacecraft were designed to still be playable for a billion years in space.
It’s tough to keep a spacecraft operating in space. It’s a really hostile place, ready to fry their little silicon brains, scuttle them with a micrometeorite, or just erode them away over an incomprehensible length of time.
Are horrible space agency fiends tossing our trusting big eyed robot pals to their doom on one-way missions into the abyss? Don’t worry viewers, I have it on good authority this is what the robots want.
Beloved astronaut Chris Hadfield said if Voyager had stayed at home where it’s safe, it would’ve been sad forever, because it never would have discovered things. I think he’s right, Voyager is as happy as it could be exploring the parts of our Universe the rest of us aren’t able to go and see for ourselves.
What’s your favorite spacecraft survivor story? Tell us in the comments below.
If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?
In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”
I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.
Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.
Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!
Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?
The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.
The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.
The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.
Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?
We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.
Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.
Correction, 11:33 a.m. EST: The University of Central Florida’s Phil Metzger points out that the image composition leaves out Eros, which NEAR Shoemaker landed on in 2001. This article has been corrected to reflect that and to clarify that the surfaces pictured were from “soft” landings.
And now there are eight. With Philae’s incredible landing on a comet earlier this week, humans have now done soft landings on eight solar system bodies. And that’s just in the first 57 years of space exploration. How far do you think we’ll reach in the next six decades? Let us know in the comments … if you dare.
More seriously, this amazing composition comes courtesy of two people who generously compiled images from the following missions: Rosetta/Philae (European Space Agency), Hayabusa (Japan Aerospace Exploration Agency), Apollo 17 (NASA), Venera 14 (Soviet Union), the Spirit rover (NASA) and Cassini-Huygens (NASA/ESA). Omitted is NEAR Shoemaker, which landed on Eros in 2001.
Before Philae touched down on Comet 67P/Churyumov–Gerasimenko Wednesday, the NASA Jet Propulsion Laboratory’s Mike Malaska created a cool infographic of nearly every place we’ve lived or visited before then. This week, Michiel Straathof updated the infographic to include 67P (and generously gave us permission to use it.)
And remember that these are just the SURFACES of solar system bodies that we have visited. If you include all of the places that we have flown by or taken pictures from of a distance in space, the count numbers in the dozens — especially when considering prolific imagers such as Voyager 1 and Voyager 2, which flew by multiple planets and moons.
To check out a small sampling of pictures, visit this NASA website that shows some of the best shots we’ve taken in space.
NASA’s Opportunity rover, which has been roaming Mars for more than 10 Earth years, requires a flash memory reformat to keep doing science on the Red Planet, the agency wrote in an update Aug. 29 along with its intentions for making that possible quickly.
“Flash-memory induced resets have increased in occurrence, preventing meaningful science until this problem can be corrected,” NASA said on the Opportunity website. “The project is developing plans to reformat the flash file system to correct the problem.”
The agency has experience in doing this procedure as they successfully ran it on the twin Spirit rover five years ago, before the rover got stuck in sand and died. A separate update on the Jet Propulsion Laboratory website noted there have been more than a dozen incidents on Opportunity in the past month, and it takes a day or two to recover from each one.
Flash memory, the update added, is useful because data remains on the rover even if it is turned off. But after 10 years of using the cells on Opportunity’s flash memory, the agency suspects that these cells are starting to wear out. “Reformatting clears the memory while identifying bad cells and flagging them to be avoided,” the update read.
The procedure will take place early this month. Meanwhile, NASA is flushing the flash memory by sending the data back to Earth — as well as switching the rover to a mode where it doesn’t use flash memory. Just in case the rover resets itself during the procedure, NASA is also changing up Opportunity’s communications to send data more slowly (which makes the rover more resilient to problems, the agency said.)
“The flash reformatting is a low-risk process, as critical sequences and flight software are stored elsewhere in other non-volatile memory on the rover,” stated JPL’s John Callas, project manager for NASA’s Mars Exploration Rover Project.
Opportunity is currently circling the ring of Endeavour crater and is in otherwise excellent health, NASA said. The rover has driven 25.28 miles (40.69 kilometers) since arriving on Mars in January 2004 for what was supposed to be a 90-day mission.
Science is an iterative process, with each discovery building on those made before. This means that as new evidence comes into play, you need to examine the evidence in context of what you know now, and what you knew before. Sometimes the evidence points to new theories. And sometimes, like in this case concerning Mars, it points to older ones.
The Spirit rover spent six years (2004-2010) exploring Gusev Crater, which is just a little south of the Martian equator. Scientists have been back and forth about whether it once was a vast lake of water, but some new research could swing the pendulum towards the water hypothesis.
The water track hinges on magnesium-iron carbonate minerals found in Columbia Hills, a 300-foot (91-meter) feature about two miles (3.2 kilometers) away from Spirit’s landing site. When the minerals were first found in the hills’ Comanche outcrop in 2010, scientists (which included the lead author of the study) attributed this to ancient hot springs activity.
It was a bit of a disappointment for those who had picked Gusev as a landing site from the belief that it was indeed an ancient lake. “From orbit, Gusev looked, with its southern rim breached by a meandering river channel, as if it once held a lake – and water-deposited rocks were the rover mission’s focus,” Arizona State University stated.
Spirit, however, initially found that the crater was lined with volcanic rocks and not the sediments scientists needed to support the lake theory. When it did find evidence of water in the hills, it was linked to hydrothermal activity.
The new analysis suggests that Comanche (and other outcrops in the vicinity) got their liquid from water on the surface that was of a much lower temperature than what you would find in a hot spring –which originates underground.
This is because Comanche and the surrounding area are believed to have started as a buildup of volcanic ash (called a tephra) from eruptions somewhere around Gusev. As the theory goes, waters penetrated Gusev at the south, lingered, and created a “briny solution”. Over time, the brine evaporated and what remained was carbonate minerals residue that coated the rocks.
“The lake didn’t have to be big,” stated Steve Ruff, an associate research professor at Arizona State University who led the research. “The Columbia Hills stand 300 feet high, but they’re in the lowest part of Gusev. So a deep, crater-spanning lake wasn’t needed.”
Getting more information, however, would be one way to add credence to the theory. That’s why the team is also pushing for the forthcoming NASA Mars 2020 rover to land in Gusev Crater, which would be unprecedented among Mars missions as each lander and/or rover has gone to a different spot. Site selection has not been finalized yet.
“Going back to Gusev would give us an opportunity for a second field season there, which any terrestrial geologist would understand,” stated Ruff. “After the first field season with Spirit, we now have a bunch more questions and new hypotheses that can be addressed by going back.”
Today, on the 11th anniversary of the World Trade Center attack, countless hearts and minds will be reflecting upon a day that changed our world forever and remembering those who lost their lives in the tragic collapse of the twin towers. Memorial events will be held in many locations around the planet… and even, in a small yet poignant way, on another planet. For, unknown to many, two pieces of the World Trade Center are currently on the surface of Mars: one affixed to the rover Spirit, now sitting silently next to a small rise dubbed “Home Plate”, and the other on its sister rover Opportunity, still actively exploring the rim of Endeavour crater.
Even more than scientific exploration tools, these rovers are also interplanetary memorials to all the victims of 9/11.
(The following is a repost of an article first featured on Universe Today in 2011, on the 10th anniversary of 9/11.)
In September of 2001 workers at Honeybee Robotics in lower Manhattan were busy preparing the Rock Abrasion Tools that the twin rovers Spirit and Opportunity would each be equipped with, specialized instruments that would allow scientists to study the interiors of Martian rocks. After the World Trade Center attacks occurred, the company wanted a way to memorialize those who had lost their lives.
Through what was undoubtedly some incredibly skillful use of contacts, Honeybee founder and MER science team member Stephen Gorevan – on a suggestion by JPL engineer Steve Kondos and with help from the NYC mayor’s office and rover mission leader Steve Squyres – was able to procure two pieces of aluminum from the tower debris. These were fashioned into cylindrical cable shields by a contracted metal shop in Round Rock, Texas, and had American flags adhered to each by Honeybee engineer Tom Myrick.
The image above, taken in 2004, shows the cable shield with American flag on the Rock Abrasion Tool attached to Spirit. At right is an image of the flag shield on Opportunity, acquired on September 11, 2011.
The rovers were launched in the summer of 2003 and have both successfully operated on Mars many years past their planned initial mission timelines. Spirit currently sits silent, having ceased communication in March 2010, but Opportunity is still going strong in its exploration of the Martian surface.
“It’s gratifying knowing that a piece of the World Trade Center is up there on Mars. That shield on Mars, to me, contrasts the destructive nature of the attackers with the ingenuity and hopeful attitude of Americans.”
– Stephen Gorevan, Honeybee Robotics founder and chairman
These memorials will remain on Mars long after both rovers have ceased to run, subtle memorials to thousands of lives and testaments to our ability to forge ahead in the name of hopefulness and discovery.
Atop a towering inferno of sparkling flames and billowing ash, Humankinds millennial long quest to ascertain “Are We Alone ?” soared skywards today (Nov. 26) with a sophisticated spaceship named ‘Curiosity’ – NASA’s newest, biggest and most up to date robotic surveyor that’s specifically tasked to hunt for the ‘Ingredients of Life’ on Mars, the most ‘Earth-like’ planet in our Solar System.
Curiosity’s noble goal is to meticulously gather and sift through samples of Martian soil and rocks in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it – as well as clays and sulfate minerals that may preserve evidence of habitats and environments that could support the genesis of Martian microbial life forms, past or present.
The Atlas V booster carrying Curiosity to the Red Planet vaulted off the launch pad on 2 million pounds of thrust and put on a spectacular sky show for the throngs of spectators who journeyed to the Kennedy Space Center from across the globe, crowded around the Florida Space Coast’s beaches, waterways and roadways and came to witness firsthand the liftoff of the $2.5 Billion Curiosity Mars Science Lab (MSL) rover.
The car sized Curiosity rover is the most ambitious, important and far reaching science probe ever sent to the Red Planet – and the likes of which we have never seen or attempted before.
“Science fiction is now science fact,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. “We’re flying to Mars. We’ll get it on the ground… and see what we find.”
“’Ecstatic’ – in a word, NASA is Ecstatic. We have started a new Era in the Exploration of Mars with this mission – technologically and scientifically. MSL is enormous, the equivalent of 3 missions frankly.”
“We’re exactly where we want to be, moving fast and cruising to Mars.”
NASA is utilizing an unprecedented, rocket powered precision descent system to guide Curiosity to a pinpoint touch down inside the Gale Crater landing site, with all six wheels deployed.
Gale Crater is 154 km (96 mi) wide. It is dominated by layered terrain and an enormous mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of ancient or extant Martian life.
“I hope we have more work than the scientists can actually handle. I expect them all to be overrun with data that they’ve never seen before.”
“The first images from the bottom of Gale Crater should be stunning. The public will see vistas we’ve never seen before. It will be like sitting at the bottom of the Grand Canyon,” said McCuistion.
The 197 ft tall Atlas booster’s powerful liquid and solid fueled engines ignited precisely on time with a flash and thunderous roar that grew more intense as the expanding plume of smoke and fire trailed behind the rapidly ascending rockets tail.
The Atlas rockets first stage is comprised of twin Russian built RD-180 liquid fueled engines and four US built solid rocket motors.
The engines powered the accelerating climb to space and propelled the booster away from the US East Coast as it majestically arced over in between broken layers of clouds. The four solids jettisoned 1 minute and 55 seconds later. The liquid fueled core continued firing until its propellants were expended and dropped away at T plus four and one half minutes.
The hydrogen fueled Centaur second stage successfully fired twice and placed the probe on an Earth escape trajectory at 22,500 MPH.
The Atlas V initially lofted the spacecraft into Earth orbit and then, with a second burst from the Centaur, pushed it out of Earth orbit into a 352-million-mile (567-million-kilometer) journey to Mars.
MSL spacecraft separation of the solar powered cruise stage stack from the Centaur upper stage occurred at T plus 44 minutes and was beautifully captured on a live NASA TV streaming video feed.
“Our spacecraft is in excellent health and it’s on its way to Mars,” said Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California at the briefing. “I want to thank the launch team, United Launch Alliance, NASA’s Launch Services Program and NASA’s Kennedy Space Center for their help getting MSL into space.”
“The launch vehicle has given us a first rate injection into our trajectory and we’re in cruise mode. The spacecraft is in communication, thermally stable and power positive.”
“I’m very happy.”
“Our first trajectory correction maneuver will be in about two weeks,” Theisinger added.
“We’ll do instrument checkouts in the next several weeks and continue with thorough preparations for the landing on Mars and operations on the surface.”
Curiosity is a 900 kg (2000 pound) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots.
NASA was only given enough money to build 1 rover this time.
“We are ready to go for landing on the surface of Mars, and we couldn’t be happier,” said John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the briefing. “I think this mission will be a great one. It is an important next step in NASA’s overall goal to address the issue of life in the universe.”
Curiosity is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times more than its predecessor’s science payloads.
A drill and scoop located at the end of the robotic arm will gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover. A laser will zap rocks to determine elemental composition.
“We are not a life detection mission.”
“It is important to distinguish that as an intermediate mission between the Mars Exploration Rovers, which was the search for water, and future missions, which may undertake life detection.”
“Our mission is about looking for ancient habitable environments – a time on Mars which is very different from the conditions on Mars today.”
“The promise of Mars Science Laboratory, assuming that all things behave nominally, is we can deliver to you a history of formerly, potentially habitable environments on Mars,” Grotzinger said at the briefing. “But the expectation that we’re going to find organic carbon, that’s the hope of Mars Science Laboratory. It’s a long shot, but we’re going to try.”
Today’s liftoff was the culmination of about 10 years of efforts by the more than 250 science team members and the diligent work of thousands more researchers, engineers and technicians spread around numerous locations across the United States and NASA’s international partners including Canada, Germany, Russia, Spain and France.
“Scientists chose the site they wanted to go to for the first time in history, because of the precision engineering landing system. We are going to the very best place we could find, exactly where we want to go.”
“I can’t wait to get on the ground,” said Grotzinger.
Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Are you ready to take a fun journey? One with a little Spirit? Then don’t miss the Opportunity to take the Mars Rover out for a drive. NASA has introduced a new website release which gives you page after page of awesome slideshows and entertaining text. If you’re looking for a great way to spend a few hours – be it by yourself or with kids – then you’ve got to visit “Explore Mars: Spirit’s Journey”. Here are just a few examples of what you’ll encounter…
“The first pictures I sent back showed a land of strange, dark rocks. People all over the world flocked to their televisions and the Web to see these pictures.”
“My team sent me to a football-sized rock called “Adirondack.” It had very little dust covering it. It also had a smooth surface, making it easier for me to put my arm right against it.”
“It was a rocky road to Bonneville, but worth it. Craters are good to study because they show deeper layers in their walls. The deeper the layer, the older the record of what Mars was like earlier in its history.”
“Once I got to the hills, my team faced a tough challenge. No robot had ever hiked up a hill and they didn’t know how they would get me up this massive summit.”
“After almost six months since landing, finally! Signs of past water! As I hiked up the hills, I came across a knobby looking rock. My team called it “Pot of Gold,” because this rock contains a mineral called hematite.”
But this isn’t all to the pages… just a few stops! In “Explore Mars: Spirit’s Journey” you will also find a virtual journey in 3D, an “All About Mars” program, more information on the Mars Rovers and even the opportunity to become a Martian! It’s a very entertaining way to spend some time. Enjoy!
Scientists leading NASA’s Mars rover team have selected “Spirit Point” as the name for the spot where the “Opportunity” Mars rover will arrive at her next destination – Endeavour Crater. The site was named in honor of the death of the “Spirit” Mars Exploration Rover, which NASA recently declared has ceased all communications with Earth.
Spirit’s passing comes after more than six highly productive years roving the surface of the red planet as humankind’s surrogate. NASA concluded the last attempt to communicate with Spirit in a transmission on May 25, 2011.
“First landfall at Endeavour will be at the southern end of Cape York [at Spirit Point],” Steve Squyres told me. Squyres of Cornell University, Ithaca, N.Y., is principal investigator for the rovers. Read tributes from the Spirit rover science team below.
In memory of Spirit, the last panorama she snapped on Sol 2175 in February 2010 was featured on Astronomy Picture of the Day (APOD) on May 30, 2011 and is the lead image here. The photo mosaic was created by Marco Di Lorenzo and Ken Kremer and shows some of the last scenes that Spirit ever photographed.
Endeavour’s massive rim consists of a series of ridges. Cape York is a 400 foot wide (120 meters) rim fragment at the western edge of Endeavour. Opportunity should reach “Spirit Point” before the end of this year, 2011.
“Spirit Point” was chosen as the site at Endeavour to commemorate the scientific achievements of Opportunity’s twin sister “Spirit”. Endeavour Crater was determined to be Opportunity’s long term destination nearly three ago after she departed the environs of Victoria crater.
“The Initial exploration plan will be decided when we get closer. The [science] priorities will depend on what we find,” Squyres added.
Since August 2008, the blistering pace of Opportunity’s long overland trek of about 11 miles (18 kilometers) has brought the golf cart sized robot to within about 2 miles (3 kilometers) of the rim of the humongous Endeavour crater – some 14 miles (22 kilometers) in diameter. Endeavour is more than 20 times wider than Victoria crater and by far the largest feature the Opportunity will ever explore – see route maps below.
“Spirit achieved far more than we ever could have hoped when we designed her,” according to Squyres in a NASA statement. “This name will be a reminder that we need to keep pushing as hard as we can to make new discoveries with Opportunity. The exploration of Spirit Point is the next major goal for us to strive for.”
The imaging team of Marco Di Lorenzo and Ken Kremer created a series of Spirit photomosaics from publically available images to illustrate the location and hazardous nature of Spirits final resting place – which fortuitously turned out to be a scientific goldmine revealing new insights into the flow of liquid water on Mars billions of years ago.
The western rim of Endeavour possesses geological deposits far older than any Opportunity has investigated before and which may feature environmental conditions that were more conducive to the potential formation of ancient Martian life forms.
Spirits last transmissions to Earth took place in March 2010, before she entered hibernation mode due to ebbing solar power and succumbed to the likely damaging effects of her 4th Martian winter.
Spirit was closing in on her next science target, a mysterious volcanic feature named Von Braun, when she became mired in a sand trap named “Troy” on the outskirts of the eroded volcano named “Home Plate, just about 500 feet away. See our mosaics.
Unable to escape and absent of sufficient power to run critical survival heaters, Spirit experienced temperatures colder than ever before that probably crippled fragile electronics components and connections and prevented further communications – although no one knows for sure.
NASA’s twin rovers Spirit and Opportunity have been exploring the Martian terrain on opposite sides of the red planet since the dynamic duo successfully landed over 7 years ago in January 2004.
Both robots were expected to last just three months but have accumulated a vast bonus time of exploration and discovery in numerous extended mission phases.
*** Several top members of the rover science team kindly provided me some comments (below) to sum up Spirits achievements and legacy and what’s ahead for Opportunity at Endeavour.
Ray Arvidson of Washington University, St Louis, Deputy Principal Investigator for the rovers:
“Spirit’s last communication with Earth was in March 2010 as the southern hemisphere winter season began to set in, the sun was low on the horizon, and the rover presumably stopped communicating to use all available solar power to charge the batteries.
Von Braun was one of the two destinations Spirit was traveling to when the rover became embedded in soft sands in the valley to the west of Home Plate.
Von Braun is a conically-shaped hill to the south of Home Plate, Inner Basin, Columbia Hills. Goddard is an oval-shaped shallow depression to the west of von Braun and was the second area to be visited by Spirit. Both von Braun and Goddard are suspected to be volcanic features.
During Spirit’s six year and two month mission the vehicle acquired remote sensing and in-situ observations that conclusively demonstrated that the ancient Columbia Hills in Gusev Crater expose materials that have been altered in water-related environments, including ground water corrosion and generation of sulfate and opaline minerals in volcanic steam vents and perhaps hydrothermal pools.
Together with its sister rover, Opportunity, the Mars Exploration Rover Mission, was designed to “follow the water” and return data that would allow us to test the hypothesis that water was at and near the surface during previous epochs.
Opportunity is still exploring the evidence in Meridiani for ancient shallow lakes and is on the way to outcrops on the rim of Endeavour crater, a ~20 km wide crater that exposes the old Noachian crust that shows evidence from orbital data for hydrated clay minerals.
These two rovers have performed far beyond expectations, unveiled the early, wet history of Mars, and have made an enormous scientific return on investment.”
Steve Squyres of Cornell University, Ithaca, N.Y., Principal Investigator for the rovers:
“Our best hope for hearing from Spirit was last fall. When that didn’t happen, we began a long, careful process of trying every possible approach to re-establishing contact. But it slowly became clear that it was unlikely, and I personally got used to the idea that Spirit’s mission was probably over several months ago.
Once that right front wheel failed, Spirit’s days were numbered in that kind of terrain. It wouldn’t have made any difference if we had tried to move Spirit sooner. We were very lucky to have survived as long as we did.
One of the lessons learned is to try to keep the wheels from failing.
It’s very sad to lose Spirit. But two things have softened the blow. First we’ve had a long time to get used to the idea. Second, even though Spirit is dead, she died an honorable death. If we’d lost her early in the mission, before she accomplished so much, it would have been much harder. But she accomplished so much more than any of us expected, the sadness is very much tempered with satisfaction and pride.
The big scientific accomplishments are the silica deposits at Home Plate, the carbonates at Comanche, and all the evidence for hydrothermal systems and explosive volcanism. What we’ve learned is that early Mars at Spirit’s site was a hot, violent place, with hot springs, steam vents, and volcanic explosions. It was extraordinarily different from the Mars of today.
Opportunity is heading at high speed for the rim of Endeavour Crater. First landfall will be at the southern end of Cape York. She should be there in not too many more months.
It hasn’t yet been decided where Opportunity will attempt to climb up Endeavour… we’ll see when we get there.
The phyllosilicates are a high priority, but the top priority depends on what we find.
I hope Spirits legacy will be the inspiration that people, especially kids, will take away from Spirit’s mission. I have had long, thoughtful conversations about Spirit with kids who have had a rover on Mars as long as they can remember. And my fondest hope for Spirit is that somewhere there are kids who will look at what we did with her, and say to themselves “well, that’s pretty cool… but I bet when I grow up I can do better. That’s what we need for the future of space exploration.
Spirit existed, and did what she did, because of the extraordinary team of engineers and scientists who worked so hard to make it possible. It’s a team that I’m incredibly proud to have been a small part of. Working with them has been quite literally the adventure of a lifetime.”
Jim Bell of Arizona State University, lead scientist for the rovers Pancam stereo panoramic camera:
“It is with a bittersweet sense of both sadness and pride that NASA announced the official end of the mission for the Mars Exploration Rover Spirit.
The Spirit team has seen the end coming since communications were lost with the rover in March 2010. Mission engineers made heroic efforts to reestablish contact. In the end Spirit was conquered by the extremely cold Martian winter and its two broken wheels, which prevented its dusty solar panels from pointing toward the Sun.
But what a mission! Designed to last 90 days, Spirit kept going for more than six years, with the team driving the rover almost 5 miles (8 km) across rocky volcanic plains, climbing rugged ancient hills, and scurrying past giant sand-dune fields. It eventually spent most of the mission near the region known as Home Plate, which is full of layered, hydrated minerals.
Data from the rover enabled dozens of scientific discoveries, but three stand out to me as most important:
Hydrated sulfate and high-silica soils in the Columbia Hills and around Home Plate.
These minerals, and the environment in which they occur (Home Plate is a circular-shaped, finely layered plateau that may be the eroded remains of a volcanic cone or other hydrothermal deposit), tell us that at some point in the past history of Gusev there was liquid water and there were heat sources — two key ingredients needed to consider the area habitable for life as we know it.
Carbonate minerals in some of the rocks within the Columbia Hills.
Carbonates were expected on Mars, if indeed the climate was warmer and wetter in the past. However, their detection has been elusive so far. Indeed, the Spirit team had to work hard to uncover the signature of carbonates years after the rover made the measurements. As the analysis continues the results for Mars in general could be profound.
An incredible diversity of rock types, from all over Mars, that Spirit was able to sample in Gusev crater.
Some of the rocks appear to be from local volcanic lava flows or ash deposits. But others have likely been flung in to the area over time by distant impacts or volcanoes, and a few even appear to be meteorites, flung in from outer space. Spirit’s instruments provided the team with the ability to recognize this amazing diversity, and thus to learn much more about Mars in general, not just Gusev in particular.
Spirit also helped us test an experiment: If we put all the rover’s images out on the Web for everyone in the world to see, in near real-time, would people follow along? They did!
I wonder if, maybe 10 or 15 years from now, I’ll meet some young colleagues who were turned on to space exploration by being able to check out the latest Spirit images from Mars from their classroom, or living room, every day when they were a kid. That would be extremely satisfying — and a great testament to the power of openly sharing data from space exploration missions like Spirit’s.
Meanwhile, Opportunity continues to rove on to city-size Endeavour crater, where orbital measurements have identified, for the first time in either rover’s mission, the signatures of clay minerals in the crater’s rim. Clays are also formed in water, but in less acidic, perhaps more life-friendly water than the sulfates that Opportunity has been mapping thus far.”
Rob Manning, Jet Propulsion laboratory, Pasadena, CA., Mars Rover Spacecraft System Engineering team lead
“Although Opportunity has proven her endurance, Spirit was the one we struggled with the hardest to get what she earned. Suffering from late repair and modification, a blown fuse in her power system and with possibly damaged circuits, she was very late getting out the door and onto the pad in Florida.
Unlike Opportunity, whose Hematite-laden Meridiani destination had been established long before launch, Spirit was launched with a great deal of uncertainty on where she would find herself on Mars. Would it be the flat and safe plains of Elysium? Would the intriguing but rough ancient Gusev crater with what appears to have been an ancient river flowing into a giant but now dry lake?
If Opportunity failed to get on her way to Mars, would her destination become Meridiani? Would Spirit have also been as lucky to find herself bouncing into a tiny rock-outcropped crater as Opportunity had?
Only after the successful launch of Opportunity followed by further successful rocket and airbag tests to confirm that the landing system design would work in the rougher terrain inside Gusev crater allowed us to seal her fate and her permanent home.
She would go Gusev and test the Gusev lake hypothesis. Sadly the surface of Gusev where she came to rest revealed a meteor impact-tilled lake of ancient lava. Any signs of ancient water lake beds and other fantastic discoveries would have to wait until she surmounted many more obstacles including summiting a formidable hill her designers never intended her to attempt.
Spirit, her designers, her builders, her testers, her handlers and I have a lot to be thankful for.
That NASA, the congress and the public were willing to trust us with this daunting feat is perhaps a statement about the persistent spirit of discovery that remains in all of us.