Distant Star Goes Disco

Star-forming Region IC 348 Around Protostar LRLL 54361. Credit: Credit: NASA, ESA, J. Muzerolle (STScI), E. Furlan (NOAO and Caltech), K. Flaherty (University of Arizona/Steward Observatory), Z. Balog (Max Planck Institute for Astronomy), and R. Gutermuth (University of Massachusetts, Amherst)

A disco inferno in space? Astronomers have been keeping an eye on an unusual star that unleashes a burst of light every 25 days, like an extremely slow pulsating disco ball. Similar pulsating bursts of light have been seen before, but this one, named LRLL 54361 is the most powerful beacon ever seen.

Using the Spitzer and Hubble space telescopes, astronomers have solved the mystery of this star. It is actually two newly formed protostars in a binary system, doing a little disco dance of their own. And as they spin around each other on the smoky dance floor (actually a dense cloud of gas and dust), a blast of radiation is unleashed each time the stars get close to each other in their orbits. The effect seen by the telescopes is enhanced by an optical illusion called a light echo.

NASA's Spitzer and Hubble space telescopes have teamed up to uncover a mysterious infant star that behaves like a police strobe light. Credit: NASA, ESA, J. Muzerolle (STScI), E. Furlan (NOAO and Caltech), K. Flaherty (University of Arizona/Steward Observatory), Z. Balog (Max Planck Institute for Astronomy), and R. Gutermuth (University of Massachusetts, Amherst).
NASA’s Spitzer and Hubble space telescopes have teamed up to uncover a mysterious infant star that behaves like a police strobe light. Credit: NASA, ESA, J. Muzerolle (STScI), E. Furlan (NOAO and Caltech), K. Flaherty (University of Arizona/Steward Observatory), Z. Balog (Max Planck Institute for Astronomy), and R. Gutermuth (University of Massachusetts, Amherst).

The unusual thing is, while astronomers have seen this phenomenon before, called pulsed accretion, usually it is found in later stages of star birth – and not in such a young system or with such intensity and regularity.
Astronomers say LRLL 54361 offers insights into the early stages of star formation when lots of gas and dust is being rapidly accreted to form a new binary star.

“This protostar has such large brightness variations with a precise period that it is very difficult to explain,” said James Muzerolle of the Space Telescope Science Institute. His paper recently was published in the journal Nature.

Discovered by NASA’s Spitzer Space Telescope, LRLL 54361 is a variable object inside the star-forming region IC 348, located 950 light-years from Earth. Data from Spitzer’s dust-piercing infrared cameras showed unusual outbursts in the brightness, occurring every 25.34 days, which is a very rare phenomenon.

Based on statistical analysis, the two stars are estimated to be no more than a few hundred thousand years old.

Astronomers used the Hubble Space Telescope to confirm the Spitzer observations and reveal the detailed stellar structure around LRLL 54361. Hubble observed two cavities above and below a dusty disk. The cavities are visible by tracing light scattered off their edges. They likely were blown out of the surrounding natal envelope of dust and gas by an outflow launched near the central stars. The disk and the envelope prevent the suspected binary star pair from being observed directly. By capturing multiple images over the course of one pulse event, the Hubble observations uncovered a spectacular movement of light away from the center of the system, the light echo optical illusion, where a sudden flash or burst of light is reflected off a source and arrives at the viewer some time after the initial flash.

A series of images taken by Hubble Space Telescope over  a month show the pulse of light moving through the nebula. The light is illuminating the material around the stars. Credit: NASA, ESA, and Z. Levay (STScI)
A series of images taken by Hubble Space Telescope over a month show the pulse of light moving through the nebula. The light is illuminating the material around the stars. Credit: NASA, ESA, and Z. Levay (STScI)

Muzerolle and his team hypothesized the pair of stars in the center of the dust cloud move around each other in a very eccentric orbit. As the stars approach each other, dust and gas are dragged from the inner edge of a surrounding disk. The material ultimately crashes onto one or both stars, which triggers a flash of light that illuminates the circumstellar dust. The system is rare because close binaries account for only a few percent of our galaxy’s stellar population. This is likely a brief, transitory phase in the birth of a star system.

Muzerolle’s team next plans to continue monitoring LRLL 54361 using other facilities including the European Space Agency’s Herschel Space Telescope. The team hopes to eventually obtain more direct measurements of the binary star and its orbit.

Read Muzerolle’s paper (pdf)

Source: HubbleSite

Combining Light to Reveal Monster Black Holes

NGC 3627 glows in the combined light of Hubble, Chandra, Spitzer and the Very Large Telescope in this image. Astronomers conducted a survey of 62 galaxies, including NGC 3627 to study monster black holes at their centers.

It’s not just pretty, it’s science. Like a starry watercolor, astronomers combining light from Earth and space-based observatories found 37 new supermassive black hole candidates lurking in nearby galaxies.

Included in that survey is NGC 3627 pictured above. Astronomers combined X-ray data from NASA’s Chandra X-ray Observatory, infrared data from the Spitzer Space Telescope, and optical data from the Hubble Space Telescope and the Very Large Telescope. The other images give the galaxy context but it’s the ghostly blue images from Chandra that show super bright in the X-ray images; X-ray light powered by material falling into a monster black hole.

Gas and dust slowly spins around the black hole creating a flattened disk, or accretion disk. As material falls inward, it heats up and releases large amounts of energy that shine brightly in the ultraviolet region of the spectrum.

NGC 3627, located about 30 million light-years from Earth, was just one of a survey of 62 nearby galaxies using archived data from Chandra and data from the Spitzer Infrared Nearby Galaxy Survey. Of those, 37 galaxies contained bright X-ray sources, indicating active black holes at their cores. Scientists believe that seven of those sources are new supermassive black hole candidates.

The paper describing the survey results was published in the April 10, 2011 issue of The Astrophysical Journal.

Combining ultraviolet and infrared observations confirm previous Chandra results that found that there may be many more galaxies powered by monster black holes than believed previously through optical surveys. Scientists say in the paper that low-levels of black hole activity previously may have been hidden by dust or washed out by the bright light of the galaxy.

Image caption: Bright X-ray sources glow a ghostly blue in this image in NGC 3627 from NASA’s Chandra X-ray Observatory. A study confirms previous Chandra results that indicate that more galaxies powered by monster black holes populate the cosmos.

Source: Chandra X-ray Observatory website

Now Even Further: Ancient Galaxy is Latest Candidate for Most Distant

It seems that every few months or so comes a new discovery of a new “most distant galaxy ever found.” It’s not really a surprise that new benchmarks are reached with such an amazing frequency as our telescopes get better and astronomers refine their techniques for observing faraway and ancient objects. This latest “most distant” is pretty interesting in that it was found by combining observations from two space telescopes – Hubble and Spitzer – as well as using massive galaxy clusters as gravitational lenses to magnify the distant galaxy behind them. It’s also extremely small and may not even be a fully developed galaxy at the time we are seeing it.

While this galaxy, named MACS0647-JD, appears as a diminutive blob in the new images, astronomers say it offers a peek back into a time when the universe was just 3 percent of its present age of 13.7 billion years. This newly discovered galaxy was observed 420 million years after the Big Bang, and its light has traveled 13.3 billion years to reach Earth.

“This object may be one of many building blocks of a galaxy,” said Dan Coe of the Space Telescope Science Institute, lead author of a new paper on the observations. “Over the next 13 billion years, it may have dozens, hundreds, or even thousands of merging events with other galaxies and galaxy fragments.”

The discovery comes from the Cluster Lensing And Supernova Survey with Hubble (CLASH), a program that combines the power of space telescopes with the natural zoom of gravitational lensing to reveal distant galaxies in the early Universe. Observations with Spitzer’s infrared eyes allowed for confirmation of this object.

The light from MACS0647-JD was magnified by a massive galaxy cluster named MACS J0647+7015, and without the cluster’s magnification powers, astronomers would not have seen the remote galaxy. Because of gravitational lensing, the CLASH research team was able to observe three magnified images of MACS0647-JD with the Hubble telescope. The cluster’s gravity boosted the light from the faraway galaxy, making the images appear about eight, seven, and two times brighter than they otherwise would that enabled astronomers to detect the galaxy more efficiently and with greater confidence.

“This cluster does what no manmade telescope can do,” said Marc Postman, also from STScI. “Without the magnification, it would require a Herculean effort to observe this galaxy.”

MACS0647-JD is just a fraction of the size of our Milky Way galaxy, and is so small it may not even be a fully formed galaxy. Data show the galaxy is less than 600 light-years wide. Based on observations of somewhat closer galaxies, astronomers estimate that a typical galaxy of a similar age should be about 2,000 light-years wide. For comparison, the Large Magellanic Cloud, a dwarf galaxy companion to the Milky Way, is 14,000 light-years wide. Our Milky Way is 150,000 light-years across.

Loading player…

The galaxy was observed with 17 filters, spanning near-ultraviolet to near-infrared wavelengths, using Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS). Coe discovered the galaxy in February while poring over a catalogue of thousands of gravitationally lensed objects found in Hubble observations of 17 clusters in the CLASH survey. But the galaxy appeared only in the two reddest filters.

“So either MACS0647-JD is a very red object, only shining at red wavelengths, or it is extremely distant and its light has been ‘redshifted’ to these wavelengths, or some combination of the two,” Coe said. “We considered this full range of possibilities.”

The CLASH team identified multiple images of eight galaxies lensed by the galaxy cluster. Their positions allowed the team to produce a map of the cluster’s mass, which is primarily composed of dark matter. Dark matter is an invisible form of matter that makes up the bulk of the universe’s mass. “It’s like a big puzzle,” said Coe. “We have to arrange the mass in the cluster so that it deflects the light of each galaxy to the positions observed.” The team’s analysis revealed that the cluster’s mass distribution produced three lensed images of MACS0647-JD at the positions and relative brightness observed in the Hubble image.

Coe and his collaborators spent months systematically ruling out these other alternative explanations for the object’s identity, including red stars, brown dwarfs, and red (old or dusty) galaxies at intermediate distances from Earth. They concluded that a very distant galaxy was the correct explanation.

Redshift is a consequence of the expansion of space over cosmic time. Astronomers study the distant universe in near-infrared light because the expansion of space stretches ultraviolet and visible light from galaxies into infrared wavelengths. Coe estimates MACS0647-JD has a redshift of 11, the highest yet observed.

Images of the galaxy at longer wavelengths obtained with the Spitzer Space Telescope played a key role in the analysis. If the object were intrinsically red, it would appear bright in the Spitzer images. Instead, the galaxy barely was detected, if at all, indicating its great distance. The research team plans to use Spitzer to obtain deeper observations of the galaxy, which should yield confident detections as well as estimates of the object’s age and dust content.

MACS0647-JD galaxy, however, may be too far away for any current telescope to confirm the distance based on spectroscopy, which spreads out an object’s light into thousands of colors. Nevertheless, Coe is confident the fledgling galaxy is the new distance champion based on its unique colors and the research team’s extensive analysis. “All three of the lensed galaxy images match fairly well and are in positions you would expect for a galaxy at that remote distance when you look at the predictions from our best lens models for this cluster,” Coe said.

The new distance champion is the second remote galaxy uncovered in the CLASH survey, a multi-wavelength census of 25 hefty galaxy clusters with Hubble’s ACS and WFC3. Earlier this year, the CLASH team announced the discovery of a galaxy that existed when the universe was 490 million years old, 70 million years later than the new record-breaking galaxy. So far, the survey has completed observations for 20 of the 25 clusters.

The team hopes to use Hubble to search for more dwarf galaxies at these early epochs. If these infant galaxies are numerous, then they could have provided the energy to burn off the fog of hydrogen that blanketed the universe, a process called re-ionization. Re-ionization ultimately made the universe transparent to light.

Read the team’s paper (pdf).

Sources: HubbleSite, ESA Hubble

Eye-Like Helix Nebula Turns Blue in New Image

A combined image of the Helix Nebula from the Spitzer Space Telescope,the Galaxy Evolution Explorer (GALEX) and the Wide-field Infrared Survey Explorer (WISE).. Credit: NASA/Caltech

The Helix Nebula has been called the “Eye of God,” or the “Eye of Sauron,” and there’s no denying this object appears to be a cosmic eye looking down on us all. And this new image – a combined view from Spitzer and GALEX — gives a blue tint to the eye that we’ve seen previously in gold, green and turquoise hues from other telescopes. But really, this eye is just a dying star. And it is not going down without a fight. The Helix Nebula continues to glow from the intense ultraviolet radiation being pumped out by the hot stellar core from the white dwarf star, which, by the way, is just a tiny white pinprick right at the center of the nebula.

The Helix nebula, or NGC 7293, lies 650 light-years away in the constellation of Aquarius. Planetary nebulae are the remains of Sun-like stars, and so one day – in about five billion years – our own Sun may look something like this — from a distance. Earth will be toast.

The team from the Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX) that cooperated to create this image describe what is going on:

When the hydrogen fuel for the fusion reaction runs out, the star turns to helium for a fuel source, burning it into an even heavier mix of carbon, nitrogen and oxygen. Eventually, the helium will also be exhausted, and the star dies, puffing off its outer gaseous layers and leaving behind the tiny, hot, dense core, called a white dwarf. The white dwarf is about the size of Earth, but has a mass very close to that of the original star; in fact, a teaspoon of a white dwarf would weigh as much as a few elephants!

The intense ultraviolet radiation from the white dwarf heats up the expelled layers of gas, which shine brightly in the infrared. GALEX has picked out the ultraviolet light pouring out of this system, shown throughout the nebula in blue, while Spitzer has snagged the detailed infrared signature of the dust and gas in red, yellow and green. Where red Spitzer and blue GALEX data combine in the middle, the nebula appears pink. A portion of the extended field beyond the nebula, which was not observed by Spitzer, is from NASA’s all-sky Wide-field Infrared Survey Explorer (WISE).

Source: JPL

Spitzer Provides Most Precise Measurement Yet of the Universe’s Expansion

Calibrated Period-luminosity Relationship for Cepheid variables.
Calibrated Period-luminosity Relationship for Cepheid variables. Courtesy Spitzer Space Telescope/IPAC.

This graph illustrates the Cepheid period-luminosity relationship, which scientists use to calculate the size, age and expansion rate of the Universe. Credit: NASA/JPL-Caltech/Carnegie

How fast is our Universe expanding? Over the decades, there have been different estimates used and heated debates over those approximations, but now data from the Spitzer Space Telescope have provided the most precise measurement yet of the Hubble constant, or the rate at which our universe is stretching apart. The result? The Universe is getting bigger a little bit faster than previously thought.

The newly refined value for the Hubble constant is 74.3 plus or minus 2.1 kilometers per second per megaparsec.

The most previous estimation came from a study from the Hubble Space Telescope, at 74.2 plus or minus 3.6 kilometers per second per megaparsec. A megaparsec is roughly 3 million light-years.

To make the new measurements, Spitzer scientists looked at pulsating stars called cephied variable stars, taking advantage of being able to observe them in long-wavelength infrared light. In addition, the findings were combined with previously published data from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) on dark energy. The new determination brings the uncertainty down to 3 percent, a giant leap in accuracy for cosmological measurements, scientists say.

WMAP obtained an independent measurement of dark energy, which is thought to be winning a battle against gravity, pulling the fabric of the universe apart. Research based on this acceleration garnered researchers the 2011 Nobel Prize in physics.

The Hubble constant is named after the astronomer Edwin P. Hubble, who astonished the world in the 1920s by confirming our universe has been expanding since it exploded into being 13.7 billion years ago. In the late 1990s, astronomers discovered the expansion is accelerating, or speeding up over time. Determining the expansion rate is critical for understanding the age and size of the universe.

“This is a huge puzzle,” said the lead author of the new study, Wendy Freedman of the Observatories of the Carnegie Institution for Science in Pasadena. “It’s exciting that we were able to use Spitzer to tackle fundamental problems in cosmology: the precise rate at which the universe is expanding at the current time, as well as measuring the amount of dark energy in the universe from another angle.” Freedman led the groundbreaking Hubble Space Telescope study that earlier had measured the Hubble constant.

Glenn Wahlgren, Spitzer program scientist at NASA Headquarters in Washington, said the better views of cepheids enabled Spitzer to improve on past measurements of the Hubble constant.

“These pulsating stars are vital rungs in what astronomers call the cosmic distance ladder: a set of objects with known distances that, when combined with the speeds at which the objects are moving away from us, reveal the expansion rate of the universe,” said Wahlgren.

Cepheids are crucial to the calculations because their distances from Earth can be measured readily. In 1908, Henrietta Leavitt discovered these stars pulse at a rate directly related to their intrinsic brightness.

To visualize why this is important, imagine someone walking away from you while carrying a candle. The farther the candle traveled, the more it would dim. Its apparent brightness would reveal the distance. The same principle applies to cepheids, standard candles in our cosmos. By measuring how bright they appear on the sky, and comparing this to their known brightness as if they were close up, astronomers can calculate their distance from Earth.

Spitzer observed 10 cepheids in our own Milky Way galaxy and 80 in a nearby neighboring galaxy called the Large Magellanic Cloud. Without the cosmic dust blocking their view, the Spitzer research team was able to obtain more precise measurements of the stars’ apparent brightness, and thus their distances. These data opened the way for a new and improved estimate of our universe’s expansion rate.

“Just over a decade ago, using the words ‘precision’ and ‘cosmology’ in the same sentence was not possible, and the size and age of the universe was not known to better than a factor of two,” said Freedman. “Now we are talking about accuracies of a few percent. It is quite extraordinary.”

“Spitzer is yet again doing science beyond what it was designed to do,” said project scientist Michael Werner at NASA’s Jet Propulsion Laboratory. Werner has worked on the mission since its early concept phase more than 30 years ago. “First, Spitzer surprised us with its pioneering ability to study exoplanet atmospheres,” said Werner, “and now, in the mission’s later years, it has become a valuable cosmology tool.”

The study appears in the Astrophysical Journal.

Paper on arXiv: A Mid-Infrared Calibration of the Hubble Constant

Source: JPL

Blowing a Super-duper Celestial Bubble

Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m. Zoom by John Williams/TerraZoom using Zoomify

When NASA combines images from different telescopes, they create dazzling scenes of celestial wonder and in the process we learn a few more things. Behold this wonder of combined light, known as LHA 120-N 44, or N 44 for short. Zoom into the scene using the toolbar at the bottom of the image. Click the farthest button on the right of the toolbar to see this wonder in full-screen. (Hint: press the “Esc” key to get back to work)

Continue reading “Blowing a Super-duper Celestial Bubble”

Early Galaxy Found from the Cosmic ‘Dark Ages’

In the big image at left, the many galaxies of a massive cluster called MACS J1149+2223 dominate the scene. Gravitational lensing by the giant cluster brightened the light from the newfound galaxy, known as MACS 1149-JD, some 15 times. At upper right, a partial zoom-in shows MACS 1149-JD in more detail, and a deeper zoom appears to the lower right. Image credit: NASA/ESA/STScI/JHU

Take a close look at the pixelated red spot on the lower right portion of the image above, as it might be the oldest thing humanity has ever seen. This is a galaxy from the very early days of the Universe, and the light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching the Spitzer and Hubble space telescopes. The telescopes — and the astronomers using them — had a little help from a gravitational lens effect to be able to see such a faint and distant object, which was shining way back when our Universe was just 500 million years old.

“This galaxy is the most distant object we have ever observed with high confidence,” said Wei Zheng, a principal research scientist in the department of physics and astronomy at Johns Hopkins University in Baltimore who is lead author of a new paper appearing in Nature. “Future work involving this galaxy, as well as others like it that we hope to find, will allow us to study the universe’s earliest objects and how the dark ages ended.”

This ancient and distant galaxy comes from an important time in the Universe’s history — one which astronomers know little about – the early part of the epoch of reionization, when the Universe began to move from the so-called cosmic dark ages. During this period, the Universe went from a dark, starless expanse to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy opens a window onto the deepest, most remote epochs of cosmic history.

“In essence, during the epoch of reionization, the lights came on in the universe,” said paper co-author Leonidas Moustakas, from JPL.

Because both the Hubble and Spitzer telescopes were used in this observation, this newfound galaxy, named MACS 1149-JD, was imaged in five different wavebands. As part of the Cluster Lensing And Supernova Survey with Hubble Program, the Hubble Space Telescope registered the newly described, far-flung galaxy in four visible and infrared wavelength bands. Spitzer measured it in a fifth, longer-wavelength infrared band, placing the discovery on firmer ground.

Objects at these extreme distances are mostly beyond the detection sensitivity of today’s largest telescopes. To catch sight of these early, distant galaxies, astronomers rely on gravitational lensing, where the gravity of foreground objects warps and magnifies the light from background objects. A massive galaxy cluster situated between our galaxy and MACS 1149-JD magnified the newfound galaxy’s light, brightening the remote object some 15 times and bringing it into view.

Astronomers use redshift to describe cosmic distances, and the ancient but newly-found galaxy has a redshift, of 9.6. The term redshift refers to how much an object’s light has shifted into longer wavelengths as a result of the expansion of the universe.

Based on the Hubble and Spitzer observations, astronomers think the distant galaxy was less than 200 million years old when it was viewed. It also is small and compact, containing only about 1 percent of the Milky Way’s mass. According to leading cosmological theories, the first galaxies indeed should have started out tiny. They then progressively merged, eventually accumulating into the sizable galaxies of the more modern universe.

The epoch of reionization refers to the period in the history of the Universe during which the predominantly neutral intergalactic medium was ionized by the emergence of the first luminous sources, and these first galaxies likely played the dominant role in lighting up the Universe. By studying reionization, astronomers can learn about the process of structure formation in the Universe, and find the evolutionary links between the smooth matter distribution at early times revealed by cosmic microwave background studies, and the highly structured Universe of galaxies and clusters of galaxies at redshifts of 6 and below.

This epoch began about 400,000 years after the Big Bang when neutral hydrogen gas formed from cooling particles. The first luminous stars and their host galaxies emerged a few hundred million years later. The energy released by these earliest galaxies is thought to have caused the neutral hydrogen strewn throughout the Universe to ionize, or lose an electron, a state that the gas has remained in since that time.

The paper is available here (pdf document).

Source: JPL

Nearby Magma Exoplanet is Smaller Than Earth

Caption: This artist’s concept shows what astronomers believe is an alien world just two-thirds the size of Earth. Image credit: NASA/JPL-Caltech

Astronomers have detected what could be one of the smallest exoplanets found so far, just two-thirds the size of Earth. And, cosmically speaking, it’s in our neighborhood, at just 33 light-years away. But this planet, called UCF-1.01, is not a world most Earthlings would enjoy visiting: it likely is covered in magma.

“We have found strong evidence for a very small, very hot and very near planet with the help of the Spitzer Space Telescope,” said Kevin Stevenson from the University of Central Florida in Orlando, lead author of a new paper in The Astrophysical Journal. “Identifying nearby small planets such as UCF-1.01 may one day lead to their characterization using future instruments.”

This is the first time an exoplanet has been found using Spitzer, so astronomers are now rethinking this space telescope’s role in helping discover potentially habitable, terrestrial-sized worlds.

However, the hot, new-planet candidate was found unexpectedly in Spitzer observations. Stevenson and his colleagues were studying the Neptune-sized exoplanet GJ 436b, already known to exist around the red-dwarf star GJ 436. In the Spitzer data, the astronomers noticed slight dips in the amount of infrared light streaming from the star, separate from the dips caused by GJ 436b. A review of Spitzer archival data showed the dips were periodic, suggesting a second planet might be orbiting the star and blocking out a small fraction of the star’s light.

From the data, the astronomers were able to glean some basic properties of this exoplanet: its diameter is approximately 8,400 kilometers (5,200 miles ), or two-thirds that of Earth. UCF-1.01 would revolve quite tightly around its star, GJ 436, at about seven times the distance of Earth from the moon, with its “year” lasting only 1.4 Earth days. Given this proximity to its star, far closer than the planet Mercury is to our sun, the exoplanet’s surface temperature would be almost 600 degrees Celsius (about 1,000 degrees Fahrenheit).

The planet likely does not have an atmosphere, being so close to the star UCR-1.01’s might be a hot lava world.

“The planet could even be covered in magma,” said Joseph Harrington, also of the University of Central Florida and principal investigator of the research.

In addition to UCF-1.01, the researchers noticed hints of a third planet, dubbed UCF-1.02, orbiting GJ 436. Spitzer has observed evidence of the two new planets several times each. However, even the most sensitive instruments are unable to measure exoplanet masses as small as UCF-1.01 and UCF-1.02, which are perhaps only one-third the mass of Earth. Knowing the mass is required for confirming a discovery, so the paper authors are cautiously calling both bodies exoplanet candidates for now.

While this is Spitzer’s first potential extra solar planet, the exoplant-hunting Kepler spacecraft has identified 1,800 stars as candidates for having planetary systems, and just three are verified to contain sub-Earth-sized exoplanets. Of these, only one exoplanet is thought to be smaller than the Spitzer candidates, with a radius similar to Mars, or 57 percent that of Earth.

“I hope future observations will confirm these exciting results, which show Spitzer may be able to discover exoplanets as small as Mars,” said Michael Werner, Spitzer project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Even after almost nine years in space, Spitzer’s observations continue to take us in new and important scientific directions.”

Early Black Holes were Grazers Rather than Glutonous Eaters

Faint quasars powered by black holes. Image credit NASA/ESA/Yale

Black holes powering distant quasars in the early Universe grazed on patches of gas or passing galaxies rather than glutting themselves in dramatic collisions according to new observations from NASA’s Spitzer and Hubble space telescopes.

A black hole doesn’t need much gas to satisfy its hunger and turn into a quasar, says study leader Kevin Schawinski of Yale “There’s more than enough gas within a few light-years from the center of our Milky Way to turn it into a quasar,” Schawinski explained. “It just doesn’t happen. But it could happen if one of those small clouds of gas ran into the black hole. Random motions and stirrings inside the galaxy would channel gas into the black hole. Ten billion years ago, those random motions were more common and there was more gas to go around. Small galaxies also were more abundant and were swallowed up by larger galaxies.”

Quasars are distant and brilliant galactic powerhouses. These far-off objects are powered by black holes that glut themselves on captured material; this in turn heats the matter to millions of degrees making it super luminous. The brightest quasars reside in galaxies pushed and pulled by mergers and interactions with other galaxies leaving a lot of material to be gobbled up by the super-massive black holes residing in the galactic cores.

Schawinski and his team studied 30 quasars with NASA’s orbiting telescopes Hubble and Spitzer. These quasars, glowing extremely bright in the infrared images (a telltale sign that resident black holes are actively scooping up gas and dust into their gravitational whirlpool) formed during a time of peak black-hole growth between eight and twelve billion years ago. They found 26 of the host galaxies, all about the size of our own Milky Way Galaxy, showed no signs of collisions, such as smashed arms, distorted shapes or long tidal tails. Only one galaxy in the study showed evidence of an interaction. This finding supports evidence that the creation of the most massive black holes in the early Universe was fueled not by dramatic bursts of major mergers but by smaller, long-term events.

“Quasars that are products of galaxy collisions are very bright,” Schawinski said. “The objects we looked at in this study are the more typical quasars. They’re a lot less luminous. The brilliant quasars born of galaxy mergers get all the attention because they are so bright and their host galaxies are so messed up. But the typical bread-and-butter quasars are actually where most of the black-hole growth is happening. They are the norm, and they don’t need the drama of a collision to shine.

“I think it’s a combination of processes, such as random stirring of gas, supernovae blasts, swallowing of small bodies, and streams of gas and stars feeding material into the nucleus,” Schawinski said.

Unfortunately, the process powering the quasars and their black holes lies below the detection of Hubble making them prime targets for the upcoming James Webb Space Telescope, a large infrared orbiting observatory scheduled for launch in 2018.

You can learn more about the images here.

Image caption: These galaxies have so much dust enshrouding them that the brilliant light from their quasars cannot be seen in these images from the NASA/ESA Hubble Space Telescope.

Light From a ‘SuperEarth’ Detected for the First Time

NASA's Spitzer Space Telescope was able to detect a super Earth's direct light for the first time using its sensitive heat-seeking infrared vision. Super Earth's are more massive than Earth but lighter than gas giants like Neptune. As this artist's concept shows, in visible light, a planet is lost in the glare of its star (top view). When viewed in infrared, the planet becomes brighter relative to its star. This is largely due to the fact that the planet's scorching heat blazes with infrared light. Even on our own bodies emanate more infrared light than visible due to our heat. Image credit: NASA/JPL-Caltech

[/caption]

The star 55 Cancri has been a source of joy and firsts for planet hunters. Not only was it one of the first known stars to host an extrasolar planet, but now the light from one of its five known planets has been detected directly with the Spitzer Space Telescope, the first time a ‘smaller’ exoplanet’s light has been detected directly. Planet “e” is a super-Earth, about twice as big and eight times as massive as Earth. Scientists say that while the planet is not habitable, the detection is a historic step toward the eventual search for signs of life on other planets.

“Spitzer has amazed us yet again,” said Bill Danchi, Spitzer program scientist. “The spacecraft is pioneering the study of atmospheres of distant planets and paving the way for NASA’s upcoming James Webb Space Telescope to apply a similar technique on potentially habitable planets.”


The first planet around 55 Cancri was reported in 1997 and 55 Cancri e – the innermost planet in the system — was discovered via radial velocity measurements in 2004. This planet has been studied as much as possible, and astronomers were able to determine its mass and radius.

But now, Spitzer has measured how much infrared light comes from the planet itself. The results reveal the planet is likely dark, and its sun-facing side is more than 2,000 Kelvin (1,726 degrees Celsius, 3,140 degrees Fahrenheit), hot enough to melt metal.

In 2005, Spitzer became the first telescope to detect light from a planet beyond our solar system, when it saw the infrared light of a “hot Jupiter,” a gaseous planet much larger than 55 Cancri e. Since then, other telescopes, including NASA’s Hubble and Kepler space telescopes, have performed similar feats with gas giants using the same method.

In this method, a telescope gazes at a star as a planet circles behind it. When the planet disappears from view, the light from the star system dips ever so slightly, but enough that astronomers can determine how much light came from the planet itself. This information reveals the temperature of a planet, and, in some cases, its atmospheric components. Most other current planet-hunting methods obtain indirect measurements of a planet by observing its effects on the star.

The new information about 55 Cancri e, along with knowing it is about 8.57 Earth masses, the radius is 1.63 times that of Earth, and the density is 10.9 ± 3.1 g cm-3 (the average density of Earth is 5.515 g cm-3), places the planet firmly into the categories of a rocky super-Earth. But it could be surrounded by a layer of water in a “supercritical” state where it is both liquid and gas, and topped by a blanket of steam.

“It could be very similar to Neptune, if you pulled Neptune in toward our sun and watched its atmosphere boil away,” said Michaël Gillon of Université de Liège in Belgium, principal investigator of the research, which appears in the Astrophysical Journal. The lead author is Brice-Olivier Demory of the Massachusetts Institute of Technology in Cambridge.

The 55 Cancri system is relatively close to Earth, at 41 light-years away, and the star can be seen with the naked eye. 55 Cancri e is tidally locked, so one side always faces the star. Spitzer discovered the sun-facing side is extremely hot, indicating the planet probably does not have a substantial atmosphere to carry the sun’s heat to the unlit side.

NASA’s James Webb Space Telescope, scheduled to launch in 2018, likely will be able to learn even more about the planet’s composition. The telescope might be able to use a similar infrared method to Spitzer to search other potentially habitable planets for signs of molecules possibly related to life.

“When we conceived of Spitzer more than 40 years ago, exoplanets hadn’t even been discovered,” said Michael Werner, Spitzer project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Because Spitzer was built very well, it’s been able to adapt to this new field and make historic advances such as this.”

During Spitzer’s ongoing extended mission, steps were taken to enhance its unique ability to see exoplanets, including 55 Cancri e. Those steps, which included changing the cycling of a heater and using an instrument in a new way, led to improvements in how precisely the telescope points at targets.

Source: JPL