Big or Small, All Stars Form the Same Way

IRAS 13481-6124 (upper left is about twenty times the mass of our sun and five times its radius. It is surrounded by its pre-natal cocoon. Image credit: NASA/JPL-Caltech/ESO/Univ. of Michigan

[/caption]
How do massive stars form? This has been one of the more hotly debated questions in astronomy. Do big stars form by accretion like low-mass stars or do they form through the merging of low mass protostars? Since massive stars tend to be quite far away and usually are surrounded by a shroud of dust, they are difficult to observe, said Stefan Kraus from the University of Michigan. But Kraus and his team have obtained the first image of a dusty disc closely encircling a massive baby star, providing direct evidence that, big or small, all stars form the same way.

“Our observations show a disc surrounding an embryonic young, massive star, which is now fully formed,” said Kraus. “It’s the first time something like this has been observed, and the disk very much resembles what we see around young stars that are much smaller, except everything is scaled up and more massive.”

Not only that, but Kraus and his team found hints at a potential planet-forming region around the nascent star.

Using ESO’s Very Large Telescope Interferometer Kraus and his team focused on IRAS 13481-6124, a star located about 10,000 light-years away in the constellation Centaurus, and about 20 times more massive than our sun. “We were able to get a very sharp view into the innermost regions around this star by combining the light of separate telescopes,” Kraus said, “basically mimicking the resolving power of a telescope with an incredible 85-meter (280-foot) mirror.”

Kraus added that the resulting resolution is about 2.4 milliarcseconds, which is equivalent to picking out the head of a screw on the International Space Station from Earth, or more than ten times the resolution possible with current visible-light telescopes in space.

They also made complementary observations with the 3.58-meter New Technology Telescope at La Silla. The team chose this region by looking at archived images from the Spitzer Space Telescope as well as from observations done with the APEX 12-meter submillimeter telescope, where they discovered the presence of a jet.

“Such jets are commonly observed around young low-mass stars and generally indicate the presence of a disc,” says Kraus.

Astronomers have obtained the first clear look at a dusty disk closely encircling a massive baby star, providing direct evidence that massive stars do form in the same way as their smaller brethren -- and closing an enduring debate. This artist's concept shows what such a massive disk might look like. Image credit: ESO/L. Calçada

From their observations, the team believes the system is about 60,000 years old, and that the star has reached its final mass. Because of the intense light of the star — 30,000 times more luminous than our Sun — the disc will soon start to evaporate. The disc extends to about 130 times the Earth–Sun distance — or 130 astronomical units (AU) — and has a mass similar to that of the star, roughly twenty times the Sun. In addition, the inner parts of the disc are shown to be devoid of dust, which could mean that planets are forming around the star.

“In the future, we might be able to see gaps in this and other dust disks created by orbiting planets, although it is unlikely that such bodies could survive for long,” Kraus said. “A planet around such a massive star would be destroyed by the strong stellar winds and intense radiation as soon as the protective disk material is gone, which leaves little chance for the development of solar systems like our own.”

Kraus looks forward to observations with the Atacama Large Millimeter/submillimeter Array (ALMA), currently under construction in Chile, which may be able to resolve the disks to an even sharper resolution.

Previously, Spitzer detected dusty disks of planetary debris around more mature massive stars, which supports the idea that planets may form even in these extreme environments. (Read about that research here.) .

Sources: ESO, JPL

Spitzer Spies Earliest Black Holes

This artist's conception illustrates one of the most primitive supermassive black holes known (central black dot) at the core of a young, star-rich galaxy. Image credit: NASA/JPL-Caltech

[/caption]
The Spitzer Space Telescope has found what appear to be two of the earliest and most primitive supermassive black holes known. “We have found what are likely first-generation quasars, born in a dust-free medium and at the earliest stages of evolution,” said Linhua Jiang of the University of Arizona, Tucson, lead author of a paper published this week in Nature.

A quasar is a compact region in the center of a massive galaxy surrounding the central supermassive black hole.

As shown by the image we posted earlier today from the Planck mission, our galaxy – and the Universe – is littered with dust. But scientists believe the very early universe didn’t have any dust — which tells them that the most primitive quasars should also be dust-free. But nobody had seen any “clean” quasars — until now.

Spitzer has identified two — the smallest on record — about 13 billion light-years away from Earth. The quasars, called J0005-0006 and J0303-0019, were first unveiled in visible light using data from the Sloan Digital Sky Survey. That discovery team, which included Jiang, was led by Xiaohui Fan, a coauthor of the recent paper. NASA’s Chandra X-ray Observatory had also observed X-rays from one of the objects. X-rays, ultraviolet and optical light stream out from quasars as the gas surrounding them is swallowed.

“Quasars emit an enormous amount of light, making them detectable literally at the edge of the observable universe,” said Fan.

These two data plots from NASA's Spitzer Space Telescope show a primitive supermassive black hole (top) compared to a typical one. Image credit: NASA/JPL-Caltech

When Jiang and his colleagues set out to observe J0005-0006 and J0303-0019 with Spitzer between 2006 and 2009, their targets didn’t stand out much from the usual quasar bunch. Spitzer measured infrared light from the objects along with 19 others, all belonging to a class of the most distant quasars known. Each quasar is anchored by a supermassive black hole weighing more than 100 million suns.

Of the 21 quasars, J0005-0006 and J0303-0019 lacked characteristic signatures of hot dust, the Spitzer data showed. Spitzer’s infrared sight makes the space telescope ideally suited to detect the warm glow of dust that has been heated by feeding black holes.

“We think these early black holes are forming around the time when the dust was first forming in the universe, less than one billion years after the Big Bang,” said Fan. “The primordial universe did not contain any molecules that could coagulate to form dust. The elements necessary for this process were produced and pumped into the universe later by stars.”

The astronomers also observed that the amount of hot dust in a quasar goes up with the mass of its black hole. As a black hole grows, dust has more time to materialize around it. The black holes at the cores of J0005-0006 and J0303-0019 have the smallest measured masses known in the early universe, indicating they are particularly young, and at a stage when dust has not yet formed around them.

The Spitzer observations were made before the telescope ran out of its liquid coolant in May 2009, beginning its “warm” mission.

Source: JPL

This Week’s astro-ph Preprints: Jean Tate’s Best Pick

Examples of ring objects (Mizuno et al./Spitzer)

It goes by the super-catchy (not!) title “A Catalog of MIPSGAL Disk and Ring Sources”. I chose it, over 213 competitors, because it’s pure astronomy, and because it’s something you don’t need a PhD to be able to do, or even a BSc.

Oh, and also because Don Mizuno and co-authors may have found two, quite local, spiral galaxies that no one has ever seen before!

Some quick background: arXiv has been going for several years now, and provides preprints, on the web, of papers “in the fields of physics, mathematics, non-linear science, computer science, quantitative biology and statistics”. It’s owned, operated and funded by Cornell University. astro-ph is the collection of preprints classified as astro physics; the “recent” category in astro-ph is the new preprints submitted in the last week.

When I have any, one of my favorite spare-time activities is browsing astro-ph (Hey, I did say, in my profile, that I am hooked on astronomy!)

Briefly, what Mizuno and his co-authors did was get hold of some of the images from Spitzer (something that anyone can do, provided their internet connection has enough bandwidth), and eyeball them, looking for things which look like disks and rings. Having found over 400 of them, they did what the human brain does superbly well: they grouped them by similarity of appearance, and gave the groups names. They then checked out other images – from different parts of Spitzer’s archive, and from IRAS – and checked to see how many had already been cataloged.

And what did they find? Well, first, that most of the objects they found had not been cataloged before, and certainly not given definite classifications! Many, perhaps most, of the new objects are planetary nebulae, and their findings may help address a long-standing puzzle in this part of astronomy.

MGE314.2378+00.9793 (Mizuno et al./Spitzer)
MGE351.2381-00.0145 (Mizuno et al./Spitzer)

But they also may have found two local spiral galaxies, which had not been noticed before because they are obscured by the gas-and-dust clouds in the Milky Way plane. How cool is that!

Here’s the ‘credits’ section of the preprint: “This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA in part through an award issued by JPL/Caltech. This research made use of the SIMBAD database and the Vizier catalog access tool, operated by the Centre de Donnees Astronomique de Strasbourg. This research has also made use of NASA’s Astrophysics Data System Bibliographic Services.”

And here’s the preprint itself: arXiv:1002.4221 A Catalog of MIPSGAL Disk and Ring Sources; D.R. Mizuno(1), K. E. Kraemer(2), N. Flagey(3), N. Billot(4), S. Shenoy(5), R. Paladini(3), E. Ryan(6), A. Noriega-Crespo(3), S. J. Carey(3). ((1) Institute for Scientific Research, (2) Air Force Research Laboratory, (3) Spitzer Science Center, (4) NASA Herschel Science Center, (5) Ames Research Center, (6) University of Minnesota)

PS, going over the Astronomy Cast episode How to be Taken Seriously by Scientists is what motivated me to pick this preprint (however, I must tell you, in all honesty, that there are at least ten other preprints that are equally pickable).

Spitzer, the Wallpaper Factory, Does it Again

Infrared portrait of the Small Magellanic Cloud, made by NASA's Spitzer Space Telescope

At the end of the proverbial day, space-based missions like Spitzer produce millions of observations of astronomical objects, phenomena, and events. And those terabytes of data are used to test hypotheses in astrophysics which lead to a deeper understanding of the universe and our home in it, and perhaps some breakthrough whose here-on-the-ground implementation leads to a major, historic improvement in human welfare and planetary ecosystem health.

But such missions also leave more immediate legacies, in terms of the pleasure they bring millions of people, via the beauty of their images (not to mention posters, computer wallpaper and screen savers, and even inspiration for avatars).

Some recent results from one of Spitzer’s programs – SAGE-SMC – are no exception.

The image shows the main body of the Small Magellanic Cloud (SMC), which is comprised of the “bar” on the left and a “wing” extending to the right. The bar contains both old stars (in blue) and young stars lighting up their natal dust (green/red). The wing mainly contains young stars. In addition, the image contains a galactic globular cluster in the lower left (blue cluster of stars) and emission from dust in our own galaxy (green in the upper right and lower right corners).

The data in this image are being used by astronomers to study the lifecycle of dust in the entire galaxy: from the formation in stellar atmospheres, to the reservoir containing the present day interstellar medium, and the dust consumed in forming new stars. The dust being formed in old, evolved stars (blue stars with a red tinge) is measured using mid-infrared wavelengths. The present day interstellar dust is weighed by measuring the intensity and color of emission at longer infrared wavelengths. The rate at which the raw material is being consumed is determined by studying ionized gas regions and the younger stars (yellow/red extended regions). The SMC is one of very few galaxies where this type of study is possible, and the research could not be done without Spitzer.

This image was captured by Spitzer’s infrared array camera and multiband imaging photometer (blue is 3.6-micron light; green is 8.0 microns; and red is combination of 24-, 70- and 160-micron light). The blue color mainly traces old stars. The green color traces emission from organic dust grains (mainly polycyclic aromatic hydrocarbons). The red traces emission from larger, cooler dust grains.

The image was taken as part of the Spitzer Legacy program known as SAGE-SMC: Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low Metallicity Small Magellanic Cloud.

The Small Magellanic Cloud (SMC), and its larger sister galaxy, the Large Magellanic Cloud (LMC), are named after the seafaring explorer Ferdinand Magellan, who documented them while circling the globe nearly 500 years ago. From Earth’s southern hemisphere, they can appear as wispy clouds. The SMC is the further of the pair, at 200,000 light-years away.

Recent research has shown that the galaxies may not, as previously suspected, orbit around our galaxy, the Milky Way. Instead, they are thought to be merely sailing by, destined to go their own way. Astronomers say the two galaxies, which are both less evolved than a galaxy like ours, were triggered to create bursts of new stars by gravitational interactions with the Milky Way and with each other. In fact, the LMC may eventually consume its smaller companion.

Karl Gordon, the principal investigator of the latest Spitzer observations at the Space Telescope Science Institute in Baltimore, Maryland, and his team are interested in the SMC not only because it is so close and compact, but also because it is very similar to young galaxies thought to populate the universe billions of years ago. The SMC has only one-fifth the amount of heavier elements, such as carbon, contained in the Milky Way, which means that its stars haven’t been around long enough to pump large amounts of these elements back into their environment. Such elements were necessary for life to form in our solar system.

Studies of the SMC therefore offer a glimpse into the different types of environments in which stars form.

“It’s quite the treasure trove,” said Gordon, “because this galaxy is so close and relatively large, we can study all the various stages and facets of how stars form in one environment.” He continued: “With Spitzer, we are pinpointing how to best calculate the numbers of new stars that are forming right now. Observations in the infrared give us a view into the birthplace of stars, unveiling the dust-enshrouded locations where stars have just formed.”

Little Galaxy with a Tail (Small Magellanic Cloud imaged by Spitzer)

This image shows the main body of the SMC, which is comprised of the “bar” and “wing” on the left and the “tail” extending to the right. The tail contains only gas, dust and newly formed stars. Spitzer data has confirmed that the tail region was recently torn off the main body of the galaxy. Two of the tail clusters, which are still embedded in their birth clouds, can be seen as red dots.

Source: Spitzer

Rocky Planets May Form Around Most Sun-like Stars

earthlike-planets.thumbnail.jpg

Astronomers have found numerous Jupiter-like planets orbiting other stars. But because of the limits of our current technology, they haven’t yet found any other terrestrial Earth-like planets out in the universe. But new findings from the Spitzer Space Telescope suggest that terrestrial planets might form around many, if not most, of the nearby sun-like stars in our galaxy. So perhaps, other worlds with the potential for life might be more common than we thought.

A group of astronomers led by Michael Meyer of the University of Tucson, Arizona used Spitzer to survey six sets of stars with masses comparable to our sun, and grouped them by age.

“We wanted to study the evolution of the gas and dust around stars similar to the sun and compare the results with what we think the solar system looked like at earlier stages during its evolution,” Meyer said. Our sun is about 4.6 billion years old.

They found that at least 20 percent, and possibly as many as 60 percent, of stars similar to the sun are candidates for forming rocky planets.

The Spitzer telescope does not detect planets directly. Instead, using its infrared capability, it detects dust — the rubble left over from collisions as planets form — at a range of infrared wavelengths. Because dust closer to the star is hotter than dust farther from the star, the “warm” dust indicates material orbiting the star at distances comparable to the distance between Earth and Jupiter.

Meyer said that about 10 to 20 percent of the stars in the four youngest age groups shows ‘warm’ dust, but not in stars older than 300 million years. That is comparable to the theoretical models of our own solar system, which suggests that Earth formed over a span of 10 to 50 million years from collisions between smaller bodies.

But the numbers are vague on how many stars are actually forming planets because there’s more than one way to interpret the Spitzer data. “An optimistic scenario would suggest that the biggest, most massive disks would undergo the runaway collision process first and assemble their planets quickly. That’s what we could be seeing in the youngest stars. Their disks live hard and die young, shining brightly early on, then fading,” Meyer said.

“However, smaller, less massive disks will light up later. Planet formation in this case is delayed because there are fewer particles to collide with each other.”

If this is correct and the most massive disks form their planets first and then the smaller disks take 10 to 100 times longer, then up to 62 percent of the surveyed stars have formed, or may be forming, planets. “The correct answer probably lies somewhere between the pessimistic case of less than 20 percent and optimistic case of more than 60 percent,” Meyer said.

In October 2007, another group of astronomers used similar Spitzer data to observe the formation of a star system 424 light-years away, with another possible Earth-like planet being created.

More definitive data on formation of rocky planets will come with the launch the Kepler mission in 2009, which will search to find if terrestrial planets like Earth could be common around stars like the sun.

Original News Source: JPL Press Release