Welcome back to another edition of Messier Monday! Today, we continue in our tribute to Tammy Plotner with a look at the M11 Wild Duck Cluster!
In the 18th century, French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky while searching for comets. Hoping to ensure that other astronomers did not make the same mistake, he began compiling a list of 1oo of them. This list came to be known as the Messier Catalog, and would have far-reaching consequences.
One of these objects is M11, otherwise known as The Wild Duck Cluster, an open cluster located in the constellation Scutum, near the northern edge of a rich Milky Way star cloud (the Scutum Cloud). This open star cluster is one of the richest and most compact of all those known, composed of a few thousand hot, young stars that are only a few million years old.
The faint green glow you see in that picture is not an early harbringer of Hallowe’en spooks. It’s hydrogen gas clouds found recently nearby W26, a future supernova in the star cluster Westerlund 1.
The European Southern Observatory’s VLT Survey Telescope in Chile spotted the hydrogen in the cluster, which has hundreds of huge stars that are only believed to be a few million years old. (Our solar system, by comparison, is about 4.5 billion years old.)
“Such glowing clouds around massive stars are very rare, and are even rarer around a red supergiant— this is the first ionised nebula discovered around such a star,” the European Southern Observatory stated.
“W26 itself would be too cool to make the gas glow; the astronomers speculate that the source of the ionizing radiation may be either hot blue stars elsewhere in the cluster, or possibly a fainter, but much hotter, companion star to W26.”
Funny enough, the nebula that surrounds the red supergiant is similar to the one surrounding SN1987A, a star that exploded as a fairly bright supernova in 1987. “Studying objects like this new nebula around W26 will help astronomers to understand the mass loss processes around these massive stars, which eventually lead to their explosive demise,” ESO added.
As Earthlings, we’re so used to thinking about planets being in simple orbits around a single star. But the Sun likely didn’t begin its life alone. It formed as part of a cluster of stars, all feeding from the same well of gas.
Could star clusters also host planets? Or do they have to wait for the little guys until the stars evolve and move further apart? Well, astronomers have actually just found planets — yes, two planets — orbiting Sun-like stars in a cluster 3,000 light-years from Earth.
These are the third and fourth star cluster planets yet discovered, but the first found “transiting” or passing across the face of their stars as seen from Earth. (The others were found through detecting gravitational wobbles in the star.)
This is no small feat for a planet to survive. In a telescope, a star cluster might look pretty benign, but up close it’s pretty darn harsh. A press release about the discovery used a lot of words like “strong radiation”, “harsh stellar winds” and “stripping planet-forming materials” in a description of what NGC 6811 would feel like.
“Old clusters represent a stellar environment much different than the birthplace of the Sun and other planet-hosting field stars,” stated lead author Soren Meibom of the Harvard-Smithsonian Center for Astrophysics.
“We thought maybe planets couldn’t easily form and survive in the stressful environments of dense clusters, in part because for a long time we couldn’t find them.”
The planets are known as Kepler-66b and Kepler-67b, and are both approaching the size of Neptune (which is four times the size of Earth). Their parent cluster, NGC 6811, is one billion years old. Astronomers are still puzzled as to how these little worlds survived for so long.
“Highly energetic phenomena including explosions, outflows and winds often associated with massive stars would have been common in the young cluster,” stated the journal paper in Nature.
“The degree to which the formation and evolution of planets is influenced by a such a dense and dynamically and radiatively hostile environment is not well understood, either observationally or theoretically.”
Check out the entire study in the latest edition of Nature.
(DING!) “The captain has turned off the safety lights – you are now free to explore the infrared Universe.”
Mounted inside the fuselage of a Boeing 747SP aircraft, NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, is capable of searching the sky in infrared light with a sensitivity impossible from ground-based instruments. Cruising at 39,000 to 45,000 feet, its 100-inch telescope operates above 99% of the atmospheric water vapor that would otherwise interfere with such observations, and thus is able to pierce through vast interstellar clouds of gas and dust to find what lies within.
Its latest discovery has uncovered a cluster of newborn stars within a giant cloud of gas and dust 6,400 light-years from Earth.
The massive stars are still enshrouded in the gas cloud from which they formed, a region located in the direction of Perseus called W3. The Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) instrument was able to peer through the cloud and locate up to 15 massive young stars clustered together in a compact region, designated W3A.
W3A’s stars are seen in various stages of formation, and their effects on nearby clouds of gas and dust are evident in the FORCAST inset image above. A dark bubble, which the arrow is pointing to, is a hole created by emissions from the largest of the young stars, and the greenish coloration surrounding it designates regions where the dust and large molecules have been destroyed by powerful radiation.
Without SOFIA’s infrared imaging capabilities newborn stars like those seen in W3A would be much harder to observe, since their visible and ultraviolet light typically can’t escape the cool, opaque dust clouds where they are located.
The radiation emitted by these massive young stars may eventually spur more star formation within the surrounding clouds. Our own Sun likely formed in this same way, 5 billion years ago, within a cluster of its own stellar siblings which have all long since drifted apart. By observing clusters like W3A astronomers hope to better understand the process of star birth and ultimately the formation of our own solar system.
The observation team’s research principal investigator is Terry Herter of Cornell University. The data were analyzed and interpreted by the FORCAST team with Francisco Salgado and Alexander Tielens of the Leiden Observatory in the Netherlands plus SOFIA staff scientist James De Buizer. These papers have been submitted for publication in The Astrophysical Journal.
There are few things in astronomy more awe inspiring and spellbinding than the birth of a star. Even though we now understand how they are formed, the sheer magnitude of it is still enough to stir the imagination of even the most schooled and cynical academics. Still, there is some degree of guesswork and chance when it comes to where stars will be born and what kind of stars they will become. For example, while some stars are single field stars (like our Sun), others form in groups of two (binary) or more, sometimes much more. This is what is known as a Star Cluster, by definition, a group of stars that share a common origin and are gravitationally bound for some length of time.
Thereare two basic categories of star clusters: Globular and Open (aka. Galactic) star clusters. Globular clusters are roughly spherical groupings of stars that range from 10,000 to several million stars packed into regions ranging from 10 to 30 light years across. They commonly consist of very old Population II stars – which are just a few hundred million years younger than the universe itself – and are mostly yellow and red. Open clusters, on the other hand, are very different. Unlike the spherically distributed globulars, open clusters are confined to the galactic plane and are almost always found within the spiral arms of galaxies. They are generally made up of young stars, up to a few tens of millions of years old, with a few rare exceptions that are as old as a few billion years. Open clusters also contain only a few hundred members within a region of up to about 30 light-years. Being much less densely populated than globular clusters, they are much less tightly gravitationally bound, and over time, will become disrupted by the gravity of giant molecular clouds and other clusters.
Star clusters are particularly useful to astronomers as they provide a way to study and model stellar evolution and ages. By estimating the age of globular clusters, scientists were able to get a more accurate picture of how old the universe is, putting it at roughly 13 billion years of age. In addition, the location of star clusters and galaxies is believed to be a good indication of the physics of the early universe. This is based on aspects of the Big Bang theory where it is believed that immediately after the creation event, following a period of relatively homogenous distribution; cosmic matter slowly gravitated to areas of higher concentration. In this way, star clusters and the position of galaxies provide an indication of where matter was more densely distributed when the universe was still young.
Some popular examples of star clusters, many of which are visible to the naked eye, include Pleiades, Hyades, the Beehive Cluster and the star nursery within the Orion Nebula.
Finding the ages of things in astronomy is hard. While it is undoubted that the properties of objects change as they age, the difficulty lies in that the initial parameters are often so varied that, for most cases, finding reliable ages is challenging. There’s some tricks to do it though. One of the best ones, taught conceptually in introductory astronomy courses, is to use the “main sequence turn-off” of a cluster. Of course, applying any of these methods is easier said than done, but a new method may help alleviate some of the challenges and allow for smaller errors.
The largest difficulty in the main sequence turn-off method lies in the inherent scatter caused by numerous sources that must be accounted for. Stars that lie along the same line of sight as the cluster being observed can add extraneous data points. Any interstellar reddening caused by gas may make stars appear more red than they should be. Close binary stars that cannot be spatially resolved appear brighter than they should be as an individual star. The amount of heavy elements in the star will also effect the fitting of the model. All of these factors and more contribute to an uncertainty in any calculation that requires an accurate Hertzsprung-Russell Diagram. Tricks to correct for some of these factors exist. Others cannot (yet) be accounted for.
Thanks to all these problems, fitting the data can often be challenging. Finding the point where the cluster “peels away” from the main sequence is difficult, so one of the tricks is to look for other points that should have significant numbers of stars to provide extra reference points for fitting. Examples of this include the horizontal branch and the red clump.
The new technique, developed by a large team of international astronomers, uses “a well defined knee located along the lower main sequence” which they refer to as the Main Sequence Knee (MSK). This “knee” appears in H-R diagrams of the clusters taken in the near-infrared and is largely independent of the age of the cluster. As such, it provides a stable reference point to improve corrections for the general main sequence turn-off method. Additionally, since this system uses infrared wavelengths, it is less prone to contamination between gas and dust.
To test this new method, the group selected a globular cluster (NGC 3201) as a test case. When their method was applied, they found that their derived age for the cluster was consistent with ages derived by other methods.
However, the new method is not without difficulties of its own. Since the knee is at the faint end of the main sequence, this requires that exposure times for target clusters be sufficiently long to bring out such faint stars. Fortunately, with new telescopes like the the James Webb Space Telescope, these faint stars should be in reach.
[/caption]
Nothing in my jewelry box compares to the Kappa Crucis Cluster, also known as NGC 4755 or simply the “Jewel Box.” This object is just bright enough to be seen with the unaided eye, but a combination of images taken by three exceptional telescopes, the Very Large Telescope, the 2.2-meter telescope at the La Silla observatory and the Hubble Space Telescope, has allowed the stunning Jewel Box star cluster to be seen in a whole new light. Above is the image from ESO’ Very Large Telescope, which zooms in for a close look at the cluster itself. This new image is one of the best ever taken of this cluster from the ground, taken with an exposure time of just 5 seconds.
The Hubble Space Telescope can capture light of shorter wavelengths than ground-based telescopes can, and this new HST image of the core of the cluster represents the first comprehensive far ultraviolet to near-infrared image of an open galactic cluster. It was created from images taken through seven filters, allowing viewers to see details never seen before. It was taken near the end of the long life of the Wide Field Planetary Camera 2, Hubble’s workhorse camera up until the recent Servicing Mission, when it was removed and brought back to Earth, and replaced with an new and improved version. Several very bright, pale blue supergiant stars, a solitary ruby-red supergiant and a variety of other brilliantly colored stars are visible in the Hubble image, as well as many much fainter ones. The intriguing colors of many of the stars result from their differing intensities at different ultraviolet wavelengths.
A new image taken with the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile shows the cluster and its rich surroundings in all their multicolored glory. The large field of view of the WFI shows a vast number of stars. Many are located behind the dusty clouds of the Milky Way and therefore appear red.
Star clusters are among the most fascinating objects in the sky. Open clusters such as NGC 4755 typically contain anything from a few to thousands of stars that are loosely bound together by gravity. Because the stars all formed together from the same cloud of gas and dust their ages and chemical makeup are similar, which makes them ideal laboratories for studying how stars evolve.