Star Clusters on a Clandestine Collision Course

Astronomers originally thought that just one massive star cluster shone brightly in a huge star forming region of the Tarantula Nebula, also known as 30 Doradus. But closer analysis using data from the Hubble Space Telescope shows that it is actually two different clusters that are just starting to collide and merge. A team of astronomers led by Elena Sabbi of the Space Telescope Science Institute noticed that different stars in the same region were of different ages, by at least one million years. Besides the age differences, the scientists also noticed two distinct regions, with one having the elongated “look” of a merging cluster.

“Stars are supposed to form in clusters,” said Sabbi, “but there are many young stars outside 30 Doradus that could not have formed where they are; they may have been ejected at very high velocity from 30 Doradus itself.”


Sabbi and her team were initially looking for runaway stars — fast-moving stars that have been kicked out of their stellar nurseries where they first formed.

But they noticed something unusual about the cluster when looking at the distribution of the low-mass stars detected by Hubble. It is not spherical, as was expected, but has features somewhat similar to the shape of two merging galaxies where their shapes are elongated by the tidal pull of gravity.

Some models predict that giant gas clouds out of which star clusters form may fragment into smaller pieces. Once these small pieces precipitate stars, they might then interact and merge to become a bigger system. This interaction is what Sabbi and her team think they are observing in 30 Doradus.

There are also an unusually large number of runaway, high-velocity stars around 30 Doradus, and after looking more closely at the clusters, the astronomers believe that these runaway stars were expelled from the core of 30 Doradus as the result of the dynamical interactions between the two star clusters. These interactions are very common during a process called core collapse, in which more-massive stars sink to the center of a cluster by dynamical interactions with lower-mass stars. When many massive stars have reached the core, the core becomes unstable and these massive stars start ejecting each other from the cluster.

The big cluster R136 in the center of the 30 Doradus region is too young to have already experienced a core collapse. However, since in smaller systems the core collapse is much faster, the large number of runaway stars that has been found in the 30 Doradus region can be better explained if a small cluster has merged into R136.

The entire 30 Doradus complex has been an active star-forming region for 25 million years, and it is currently unknown how much longer this region can continue creating new stars. Smaller systems that merge into larger ones could help to explain the origin of some of the largest known star clusters, Sabbi and her team said.

Follow-up studies will look at the area in more detail and on a larger scale to see if any more clusters might be interacting with the ones observed. In particular the infrared sensitivity of NASA’s planned James Webb Space Telescope (JWST) will allow astronomers to look deep into the regions of the Tarantula Nebula that are obscured in visible-light photographs. In these areas cooler and dimmer stars are hidden from view inside cocoons of dust. Webb will better reveal the underlying population of stars in the nebula.

The 30 Doradus Nebula is particularly interesting to astronomers because it is a good example of how star-forming regions in the young universe may have looked. This discovery could help scientists understand the details of cluster formation and how stars formed in the early Universe.

Science Paper by: E. Sabbi, et al. (ApJL, 2012) (PDF document)

Source: HubbleSite

Fireworks Erupt From Newborn Star

Just in time for summer fireworks season, the Hubble science team has released an image of Herbig-Haro 110, a young star with geysers of hot gas skyrocketing away through interstellar space. Twin jets of heated gas are being ejected in opposite directions from this star that is still in the formation process. The Hubble team says these outflows are fueled by gas falling onto the young star, which is surrounded by a disc of dust and gas. If the disc is the fuel tank, the star is the gravitational engine, and the jets are the exhaust. And even though the plumes of gas look like whiffs of smoke, they are actually billions of times less dense than the smoke from a fireworks display.

More information about this image from the HubbleSite:

Herbig-Haro (HH) objects come in a wide array of shapes, but the basic configuration stays the same. Twin jets of heated gas, ejected in opposite directions away from a forming star, stream through interstellar space. Astronomers suspect that these outflows are fueled by gas accreting onto a young star surrounded by a disk of dust and gas. The disk is the “fuel tank,” the star is the gravitational engine, and the jets are the exhaust.

When these energetic jets slam into colder gas, the collision plays out like a traffic jam on the interstate. Gas within the shock front slows to a crawl, but more gas continues to pile up as the jet keeps slamming into the shock from behind. Temperatures climb sharply, and this curving, flared region starts to glow. These “bow shocks” are so named because they resemble the waves that form at the front of a boat.

In the case of the single HH 110 jet, astronomers observe a spectacular and unusual permutation on this basic model. Careful study has repeatedly failed to find the source star driving HH 110, and there may be good reason for this: perhaps the HH 110 outflow is itself generated by another jet.

Astronomers now believe that the nearby HH 270 jet grazes an immovable obstacle — a much denser, colder cloud core — and gets diverted off at about a 60-degree angle. The jet goes dark and then reemerges, having reinvented itself as HH 110.

The jet shows that these energetic flows are like the erratic outbursts from a Roman candle. As fast-moving blobs of gas catch up and collide with slower blobs, new shocks arise along the jet’s interior. The light emitted from excited gas in these hot blue ridges marks the boundaries of these interior collisions. By measuring the current velocity and positions of different blobs and hot ridges along the chain within the jet, astronomers can effectively “rewind” the outflow, extrapolating the blobs back to the moment when they were emitted. This technique can be used to gain insight into the source star’s history of mass accretion.

This image is a composite of data taken with Hubble’s Advanced Camera for Surveys in 2004 and 2005 and the Wide Field Camera 3 in April 2011.

Source: HubbleSite, ESA

The Care And Feeding Of Teenage Galaxies… And By The Way, They Need Gas

Images of the six galaxies with detected inflows taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Most of these galaxies have a disk-like, spiral structure, similar to that of the Milky Way. Star formation activity occurring in small knots is evident in several of the galaxies' spiral arms. Because the spirals appear tilted in the images, Rubin et al. concluded that we are viewing them from the side, rather than face-on. This orientation meshes well with a scenario of 'galactic recycling' in which gas is blown out of a galaxy perpendicular to its disk, and then falls back in at different locations along the edge of the disk. Credit: K. Rubin, MPIA

[/caption]

Got a teenager? Then you know the story. Go to look for your favorite bag of chips and they’re gone. You eat one portion of meat and they need three. If you like those cookies, then you better have a darn good place to stash them. And, while you’re at it, their car needs gas. Apparently there’s a reason for the word “universal”, because teenage galaxies aren’t much different. Thanks to some new studies done by ESO’s Very Large Telescope, astronomers have been able to take a much closer look at adolescent galaxies and their “feeding habits” during their evolution. Some 3 to 5 billion years after the Big Bang they were happiest when just provided with gas, but later on they developed a voracious appetite… for smaller galaxies!

Scientists have long been aware that early galaxy structures were much smaller than the grand spirals and hefty ellipticals which fill the present Universe. However, figuring out exactly how galaxies put on weight – and where the bulk supply comes from – has remained an enigma. Now an international group of astronomers have taken on more than a hundred hours of observations taken with the VLT to help determine how gas-rich galaxies developed.

“Two different ways of growing galaxies are competing: violent merging events when larger galaxies eat smaller ones, or a smoother and continuous flow of gas onto galaxies.” explains team leader, Thierry Contini (IRAP, Toulouse, France). “Both can lead to lots of new stars being created.”

The undertaking is is MASSIV – the Mass Assembly Survey with the VIsible imaging Multi-Object Spectrograph, a powerful camera and spectrograph on the VLT. It’s incredible equipment used to measure distance and properties of the surveyed galaxies Not only did the survey observe in the near infrared, but also employed a integral field spectrograph and adaptive optics to refine the images. This enables astronomers to map inner galaxy movements and content, as well as leaving room for some very surprising results.

“For me, the biggest surprise was the discovery of many galaxies with no rotation of their gas. Such galaxies are not observed in the nearby Universe. None of the current theories predict these objects,” says Benoît Epinat, another member of the team.

“We also didn’t expect that so many of the young galaxies in the survey would have heavier elements concentrated in their outer parts — this is the exact opposite of what we see in galaxies today,” adds Thierry Contini.

These results point towards a major change during the galactic “teenage years”. At some time during the young Universe state, smooth gas flow was a considerable building block – but mergers would later play a more important role.

“To understand how galaxies grew and evolved we need to look at them in the greatest possible detail. The SINFONI instrument on ESO’s VLT is one of the most powerful tools in the world to dissect young and distant galaxies. It plays the same role that a microscope does for a biologist,” adds Thierry Contini.

The team plans on continuing to study these galaxies with future instruments on the VLT as well as using ALMA to study the cold gas in these galaxies. However, their work with gas isn’t the only “station” on the block. In a separate study led by Kate Rubin (Max Planck Institute for Astronomy), the Keck I telescope on Mauna Kea, Hawaii, has been used to examine gas associated with a hundred galaxies at distances between 5 and 8 billion light-years – the older teens. They have found initial evidence of gas flowing back into distant galaxies that are actively forming new stars.

Images of the six galaxies with detected inflows taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Most of these galaxies have a disk-like, spiral structure, similar to that of the Milky Way. Star formation activity occurring in small knots is evident in several of the galaxies' spiral arms. Because the spirals appear tilted in the images, Rubin et al. concluded that we are viewing them from the side, rather than face-on. This orientation meshes well with a scenario of 'galactic recycling' in which gas is blown out of a galaxy perpendicular to its disk, and then falls back in at different locations along the edge of the disk. Credit: K. Rubin, MPIA

Apparently, like a teenager with the munchies, matter finds its way into those galactic tummies. One feeding theory is an inflow from huge low-density gas reservoirs filling the intergalactic voids… another is huge cosmic matter cycle. While there is very little evidence to support either hypothesis, gases have been observed to flow away from some galaxies and may be moshed around by several different sources – such as supernovae events or peer pressure from gigantic stars.

“As this gas drifts away, it is pulled back by the galaxy’s gravity, and could re-enter the same galaxy in time scales of one to several billion years. This process might solve the mystery: the gas we find inside galaxies may only be about half of the raw material that ends up as fuel for star formation.” says Dr. Rubin. “Large amounts of gas are caught in transit, but will re-enter the galaxy in due time. Add up the galaxy’s gas and the gas currently undergoing cosmic recycling, and there is a sufficient amount of raw matter to account for the observed rates of star formation.”

It might very well be a case of cosmic recycling… but I’d feel safer hiding my cookies.

Original Story Sources: ESO News Release and MPIA Science News Release. For Further Reading: Research Paper 1, Research Paper 2, Research Paper 3 and Research Paper 4.

Astronomers See Stars Changing Right Before Their Eyes in Orion Nebula

This new view of the Orion nebula highlights fledging stars hidden in the gas and clouds. Image credit: NASA/ESA/JPL-Caltech/IRAM

[/caption]

A gorgeous new image from the tag team effort of the Herschel and Spitzer Space telescopes shows a rainbow of colors within the Orion nebula. The different colors reflect the different wavelengths of infrared light captured by the two space observatories, and by combining their observations, astronomers can get a more complete picture of star formation. And in fact, astronomers have spotted young stars in the Orion nebula changing right before their eyes, over a span of just a few weeks!

Astronomers with Herschel mapped this region of the sky once a week for six weeks in the late winter and spring of 2011. Notice the necklace of stars strung across the middle of the image? Over just that short amount of time, a discernible change in the stars took place as they appeared to be rapidly heating up and cooling down. The astronomers wondered if the stars were actually maturing from being star embryos, moving towards becoming full-fledged stars.

To monitor for activity in protostars, Herschel’s Photodetector Array Camera and Spectrometer stared in long infrared wavelengths of light, tracing cold dust particles, while Spitzer took a look at the warmer dust emitting shorter infrared wavelengths. In this data, astronomers noticed that several of the young stars varied in their brightness by more than 20 percent over just a few weeks.

As this twinkling comes from cool material emitting infrared light, the material must be far from the hot center of the young star, likely in the outer disk or surrounding gas envelope. At that distance, it should take years or centuries for material to spiral closer in to the growing starlet, rather than mere weeks.

The astronomers said a couple of scenarios could account for this short span. One possibility is that lumpy filaments of gas funnel from the outer to the central regions of the star, temporarily warming the object as the clumps hit its inner disk. Or, it could be that material occasionally piles up at the inner edge of the disk and casts a shadow on the outer disk.

“Herschel’s exquisite sensitivity opens up new possibilities for astronomers to study star formation, and we are very excited to have witnessed short-term variability in Orion protostars,” said Nicolas Billot, an astronomer at the Institut de Radioastronomie Millimétrique (IRAM) in Grenada, Spain who is preparing a paper on the findings along with his colleagues. “Follow-up observations with Herschel will help us identify the physical processes responsible for the variability.”

Source: NASA

Young Star Cluster In Disintegrated Galaxy Reveals First-Ever Intermediate Mass Black Hole

This spectacular edge-on galaxy, called ESO 243-49, is home to an intermediate-mass black hole that may have been stripped off of a cannibalized dwarf galaxy. Credit: NASA, ESA, and S. Farrell (Sydney Institute for Astronomy, University of Sydney)

[/caption]

Score another first for NASA’s Hubble Space Telescope! Along with observations taken with the Swift X-ray telescope, a team of astronomers have identified a young stellar cluster of stars pointing the way towards the first verified intermediate mass black hole. This grouping of stars provides significant indication that black holes of this type may have been at the center of a now shredded dwarf galaxy – a finding which increases our knowledge of galaxy evolution.

“For the first time, we have evidence on the environment, and thus the origin, of this middle-weight black hole,” said Mathieu Servillat, a member of the Harvard-Smithsonian Center for Astrophysics research team.

Designated as ESO 243-49 HLX-1, this incredible intermediate mass black hole was discovered in 2009 by Sean Farrell, of the Sydney Institute for Astronomy in Australia, using the European Space Agency’s XMM-Newton X-ray space telescope. Hyper-Luminous X-ray Source 1 is a 20,000 solar mass beauty which resides at the edge of galaxy ESO 243-49 some 290 million light years away. However, the Newton’s findings weren’t the only contribution – HLX-1 was also verified with NASA’s Swift observatory in X-ray and Hubble in near-infrared, optical, and ultraviolet wavelengths. What stands out is the presence of a cluster of young stars encircling the black hole and stretching out across about 250 light years of space. While the stars themselves are too far away to be resolved, their magnitude and spectra match with other young clusters seen in similar galaxies.

Just what clued the team to the presence of a star cluster? In this case their instruments revealed the blue spectrum of hot gases being emitted from the accretion disk located at the periphery of the black hole… and there was more. They also noted the presence of red light spawned by cooler gases which may indicate the presences of stars. Time to match up the findings against computer modeling.

“What we can definitely say with our Hubble data is that we require both emission from an accretion disk and emission from a stellar population to explain the colors we see.” said Farrell.

Why is the presence of a young star cluster unusual? According to what we know so far, they just don’t occur outside a flattened disk such as HLX-1. This finding may indicate the intermediate mass black hole may have once been at the heart of a dwarf galaxy engaged in a merger event. The dwarf galaxy’s stars were stripped away, but not its capabilities to form new. During the interaction, the gas around the black hole was compressed and star formation began again… but how long ago?

“The age of the population cannot be uniquely constrained, with both very young and very old stellar populations allowed. However, the very old solution requires excessively high levels of disc reprocessing and an extremely small disc, leading us to favour the young solution with an age of ~13 Myr.” says the team. “In addition, the presence of dust lanes and the lack of any nuclear activity from X-ray observations of the host galaxy lead us to propose that a gas-rich minor merger may have taken place less than ~200 Myr ago. Such a merger event would explain the presence of the intermediate mass black hole and support a young stellar population.”

Discoveries such as HLX-1 will help astronomers further understand how supermassive black holes are formed. Current conjecture is that intermediate mass black holes may migrate together to form their larger counterparts. Studying the trajectory of this new find may provide valuable information… even if it is unknown at this point. HLX-1 may be drawn into a merger event and it may just end up orbiting ESO 243-49. Regardless of what happens, chances are it will fade away in X-ray as it exhausts its gas supply.

“This black hole is unique in that it’s the only intermediate-mass black hole we’ve found so far. Its rarity suggests that these black holes are only visible for a short time,” said Servillat.

Original Story Source: Harvard Center for Astrophysics News Release. For Further Reading: A Young Massive Stellar Population Around the Intermediate Mass Black Hole ESO 243-49 HLX-1.

‘Dark Markings of the Sky’ are Hiding Star Formation

This image from the APEX telescope, of part of the Taurus Molecular Cloud, shows a sinuous filament of cosmic dust more than ten light-years long. Could life exist in molecular clouds like this one? Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

[/caption]

This stunning new image shows a sinuous filament of cosmic dust more than ten light-years long. The makeup of filamentary cloud structures like this used to be a mystery, and in the early 20th century, Edward Emerson Barnard compiled a photographic atlas of these features, calling them “dark markings of the sky,” as these regions appeared as dark lanes, with no stars visible. Barnard correctly argued that this appearance was due to “obscuring matter in space.” Today we call segments in this particular cloud Barnard 211 and Barnard 213, or the Taurus Molecular Cloud. And we now know that these are clouds of interstellar gas and dust grains. But also, within these clouds, newborn stars are hidden, and dense clouds of gas are on the verge of collapsing to form yet more stars.

The Taurus Molecular Cloud is one of the closest regions of star formation to us. It is located in the constellation of Taurus about 450 light-years from Earth. The cosmic dust grains are so cold that observations at wavelengths of around one millimeter, such as these made with the LABOCA camera on APEX (Atacama Pathfinder Experiment) telescope in Chile, are needed to detect their faint glow.

This image shows two parts of a long filament. The dust grains — tiny particles similar to very fine soot and sand — absorb visible light, blocking our view of the rich star field behind the clouds. The Taurus Molecular Cloud is particularly dark at visible wavelengths, as it lacks the massive stars that illuminate the nebulae in other star-formation regions such as Orion.

But active star formation is taking place. This is why observations at longer wavelengths, such as the millimeter range, are essential for understanding the early stages of star formation.

Read more about this particular region at the ESO website.

Starbursts May Actually Destroy Globular Clusters

The Galactic globular cluster M80 in the constellation Scorpius contains several hundred thousand stars. Credit: HST/NASA/ESA

[/caption]

It seems logical to assume that long ago, the amount of globular clusters increased in our galaxy during star-making frenzies called ‘starbursts.’ But a new computer simulation shows just the opposite: 13 billion years ago, starbursts may have actually destroyed many of the globular clusters that they helped to create.

“It is ironic to see that starbursts may produce many young stellar clusters, but at the same time also destroy the majority of them,” said Dr. Diederik Kruijssen of the Max Planck Institute for Astrophysics. “This occurs not only in galaxy collisions, but should be expected in any starburst environment”

Astronomers have wondered why throughout the Universe, typical globular star clusters contain about the same number of stars. In contrast much younger stellar clusters can contain almost any number of stars, from fewer than 100 to many thousands.

The new computer simulation by Kruijssen and his team proposes that this difference could be explained by the conditions under which globular clusters formed early on in the evolution of their host galaxies.

In the early Universe, starbursts were common. Large galaxies were in clusters, and collisions occurred often. The computer simulation showed that during starbursts, gas, dust and stars were still being sloshed around from the galaxy collision, with the pull of gravity on the globular clusters constantly changing. This was enough to rip apart most of the globular clusters and only the biggest ones were strong enough to survive. The simulations showed most of the star clusters were destroyed shortly after their formation, when the galactic environment was still very hostile to the young clusters. But after the environment calmed down, the surviving globular clusters have survived – now living quietly – and we can still enjoy their beauty.

In their paper, the astronomers say that this explains why the number of stars contained within globular clusters is roughly the same across the entire Universe. “It therefore makes perfect sense that all globular clusters have approximately the same large number of stars,” said Kruijssen. “Their smaller brothers and sisters that didn’t contain as many stars were doomed to be destroyed.”

Kruijssen and his team said that while the very brightest and largest clusters were capable of surviving the galaxy collision due to their own gravitational attraction, numerous smaller clusters were effectively destroyed by the rapidly changing gravitational forces.

The fact that globular clusters are comparable everywhere then indicates that the environments in which they formed were very similar, regardless of the galaxy they currently reside in. Kruijssen and his team says globular clusters can therefore be used to shed more light on how the first generations of stars and galaxies were born.

“In the nearby Universe, there are several examples of galaxies that have recently undergone large bursts of star formation,” said Kruijssen. “It should therefore be possible to see the rapid destruction of small stellar clusters in action. If this is indeed found by new observations, it will confirm our theory for the origin of globular clusters.”

This new finding may also tie in with other recent findings from Spitzer and ESO that starburst activity may have only lasted around 100 million years and may have also been cut short when black holes formed at the center of galaxies.

Source: Max-Planck Institute for Astrophysics. Paper: Kruijssen et al, “Formation versus destruction: the evolution of the star cluster population in galaxy mergers”

Emerging Supermassive Black Holes Choke Star Formation

The LABOCA camera on the ESO-operated 12-metre Atacama Pathfinder Experiment (APEX) telescope reveals distant galaxies undergoing the most intense type of star formation activity known, called a starburst. This image shows these distant galaxies, found in a region of sky known as the Extended Chandra Deep Field South, in the constellation of Fornax (The Furnace). The galaxies seen by LABOCA are shown in red, overlaid on an infrared view of the region as seen by the IRAC camera on the Spitzer Space Telescope. Credit: ESO, APEX (MPIfR/ESO/OSO), A. Weiss et al., NASA Spitzer Science Center

[/caption]

Located on the Chajnantor plateau in the foothills of the Chilean Andes, ESO’s APEX telescope has been busy looking into deep, deep space. Recently a group of astronomers released their findings regarding massive galaxies in connection with extreme times of star formation in the early Universe. What they found was a sharp cut-off point in stellar creation, leaving “massive – but passive – galaxies” filled with mature stars. What could cause such a scenario? Try the materialization of a supermassive black hole…

By integrating data taken with the LABOCA camera on the ESO-operated 12-metre Atacama Pathfinder Experiment (APEX) telescope with measurements made with ESO’s Very Large Telescope, NASA’s Spitzer Space Telescope and other facilities, astronomers were able to observe the relationship of bright, distant galaxies where they form into clusters. They found that the density of the population plays a major role – the tighter the grouping, the more massive the dark matter halo. These findings are the considered the most accurate made so far for this galaxy type.

Located about 10 billion light years away, these submillimetre galaxies were once home to starburst events – a time of intense formation. By obtaining estimations of dark matter halos and combining that information with computer modeling, scientists are able to hypothesize how the halos expanding with time. Eventually these once active galaxies settled down to form giant ellipticals – the most massive type known.

“This is the first time that we’ve been able to show this clear link between the most energetic starbursting galaxies in the early Universe, and the most massive galaxies in the present day,” says team leader Ryan Hickox of Dartmouth College, USA and Durham University, UK.

However, that’s not all the new observations have uncovered. Right now there’s speculation the starburst activity may have only lasted around 100 million years. While this is a very short period of cosmological time, this massive galactic function was once capable of producing double the amount of stars. Why it should end so suddenly is a puzzle that astronomers are eager to understand.

“We know that massive elliptical galaxies stopped producing stars rather suddenly a long time ago, and are now passive. And scientists are wondering what could possibly be powerful enough to shut down an entire galaxy’s starburst,” says team member Julie Wardlow of the University of California at Irvine, USA and Durham University, UK.

Right now the team’s findings are offering up a new solution. Perhaps at one point in cosmic history, starburst galaxies may have clustered together similar to quasars… locating themselves in the same dark matter halos. As one of the most kinetic forces in our Universe, quasars release intense radiation which is reasoned to be fostered by central black holes. This new evidence suggests intense starburst activity also empowers the quasar by supplying copious amounts of material to the black hole. In response, the quasar then releases a surge of energy which could eradicate the galaxy’s leftover gases. Without this elemental fuel, stars can no longer form and the galaxy growth comes to a halt.

“In short, the galaxies’ glory days of intense star formation also doom them by feeding the giant black hole at their centre, which then rapidly blows away or destroys the star-forming clouds,” explains team member David Alexander from Durham University, UK.

Original Story Source: European Southern Observatory News. For Further Reading: Research Paper Link.

Citizen Scientist Project Finds Thousands of ‘Star Bubbles’

A prominent star bubble. Credit: NASA / The Milky Way Project / Zooniverse

[/caption]

Remember when you were a kid and blowing bubbles was such great fun? Well, stars kind of do that too. The “bubbles” are partial or complete rings of dust and gas that occur around young stars in active star-forming regions, known as stellar nurseries. So far, over 5,000 bubbles have been found, but there are many more out there awaiting discovery. Now there is a project that you can take part in yourself, to help find more of these intriguing objects.

The Milky Way Project, part of Zooniverse, has been cataloguing these cosmic bubbles thanks to assistance from the public, or “citizen scientists” – anyone can help by examining images from the Spitzer Space Telescope, specifically the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and the Multiband Imaging Photometer for Spitzer Galactic Plane Survey (MIPSGAL).

They have been seen before, but now the task is to find as many as possible in the newer, high-resolution images from Spitzer. A previous catalogue of star bubbles in 2007 listed 269 of them. Four other researchers had found about 600 of them in 2006. Now they are being found by the thousands. As of now, the new catalogue lists 5,106 bubbles, after looking at almost half a million images so far. As it turns out, humans are more skilled at identifying them in the images than a computer algorithm would be. People are better at pattern recognition and then making a judgment based on the data as to what actually is a bubble and what isn’t.

The bubbles form around hot, young massive stars where it is thought that the intense light being emitted causes a shock wave, blowing out a space, or bubble, in the surrounding gas and dust.

Eli Bressert, of the European Southern Observatory and Milky Way Project team member, stated that our galaxy “is basically like champagne, there are so many bubbles.” He adds, “We thought we were going to be able to answer a lot of questions, but it’s going to be bringing us way more questions than answers right now. This is really starting something new in astronomy that we haven’t been able to do.”

There are currently about 35,000 volunteers in the project; if you would like to take part, you can go to The Milky Way Project for more information.

“Proplyd-like” Objects Discovered in Cygnus OB2

Hubble image of a Proplyd-like object in Cygnus OB2. Credit: Z. Levay and L. Frattare, STScI
Hubble image of a Proplyd-like object in Cygnus OB2. Credit: Z. Levay and L. Frattare, STScI

[/caption]

The well known Orion Nebula is perhaps the most well known star forming regions in the sky. The four massive stars known as the trapezium illuminate the massive cloud of gas and dust busily forming into new stars providing astronomers a stunning vista to explore stellar formation and young systems. In the region are numerous “protoplanetary disks” or proplyds for short which are regions of dense gas around a newly formed star. Such disks are common around young stars and have recently been discovered in an even more massive, but less well known star forming region within our own galaxy: Cygnus OB2.

Ten times more massive than its more famous counterpart in Orion, Cygnus OB2 is a star forming region that is a portion of a larger collection of gas known as Cygnus X. The OB2 region is notable because, like the Orion nebula, it contains several exceptionally massive stars including OB2-12 which is one of the most massive and luminous stars within our own galaxy. In total the region has more than 65 O class stars, the most massive category in astronomers classification system. Yet for as bright as these stars are, Cygnus OB2 is not a popular target for amateur astronomers due to its position behind a dark obscuring cloud which blocks the majority of visible light.

But like many objects obscured in this manner, infrared and radio telescopes have been used to pierce the veil and study the region. The new study, led by Nicholas Wright at the Harvard-Smithsonian Center for Astrophysics, combines infrared and visual observations from the Hubble Space telescope. The observations revealed 10 objects similar in appearance to the Orion proplyds. The objects had long tails being blown away from the central mass due to the strong stellar winds from the central cluster similar to how proplyds in Orion point away from the trapezium. On the closer end, the objects were brightly ionized.

Yet despite the similarities, the objects may not be true proplyds. Instead, they may be regions known as “evaporating gaseous globules” or EGGs for short. The key difference between the two is whether or not a star has formed. EGGs are overdense regions within a larger nebula. Their size and density makes them resistant to the ionization and stripping that blows away the rest of the nebula. Because the interior regions are shielded from these dispersive forces, the center may collapse to form a star which is the requirement for a proplyd. So which are these?

In general, the newly discovered objects are far larger than those typically found in Orion. While Orion proplyds are nearly symmetric across an axis directed towards the central cluster, the OB2 objects have twisted tails with complex shapes. The objects are 18-113 thousand AU (1 AU = the distance between the Earth and Sun = 93 million miles = 150 million km) across making them significantly larger than the Orion proplyds and even larger than the largest known proplyds in NGC 6303.

Yet as different as they are, the current theoretical understanding of how proplyds work doesn’t put them beyond the plausible range. In particular, the size for a true proplyd is limited by how much stripping it feels from the central stars. Since these objects are further away from OB2-12 and the other massive stars than the Orion proplyds are from the trapezium, they should feel less dispersive forces and should be able to grow as large as is seen. Attempting to pierce the thick dust the objects contain and discover if central stars were present, the team examined the objects in the infrared and radio. Of the ten objects, seven had strong candidates central stellar sources.

Still, the stark differences make conclusively identifying the objects as either EGGs or proplyds difficult. Instead, the authors suggest that these objects may be the first discovery of an inbetween stage: old, highly evolved EGGs which have nearly formed stars making them more akin to young proplyds. If further evidence supports this, this finding would help fill in the scant observational details surrounding stellar formation. This would allow astronomers to more thoroughly test theories which are also tied to the understanding of how planetary systems form.