Astronomy Without A Telescope – Stellar Archaeology

Artist's impression of Population 3 stars born over 13 billion years ago - the earliest, oldest and presumably now extinct star types. Credit: NASA.

[/caption]

Although, as we look further and deeper into the sky, we are always looking into the past – there are other ways of gaining information about the universe’s ancient history. Low mass, low metal stars may be remnants of the early universe and carry valuable information about the environment of that early universe.

The logic of stellar archaeology involves tracking generations of stars back to the very first stars seen in our universe. Stars born in recent eras, say within the last five or six billion years, we call Population I stars – which includes our Sun. These stars were born from an interstellar medium (i.e. gas clouds etc) that had been seeded by the death throes of a previous generation of stars we call Population II stars.

Population II stars were born from an interstellar medium that existed maybe 12 or 13 billion years ago – and which had been seeded by the death throes of Population III stars, the first stars ever seen in our universe.

And when I say death throes seeding the interstellar medium this includes average sized stars blowing off a planetary nebula at the end of their red giant phase – or bigger stars exploding as supernovae.

So for example, the low metal spectral signature of HE 0107-5240 matches that predicted for a very early low mass Population II star built from the end-products of a Population III supernova.

This is about as close as we can get gathering any information about Population III stars. Telescopes that can look deeper into space (and hence look further back in time) may eventually spot one – but it’s unlikely that any still exist. Theory has it that Population III stars formed from a homogenous interstellar medium of hydrogen and helium. The homogeneity of this medium meant that any stars that formed were all massive – in the order of hundreds of solar masses.

Stars of this scale, not only have short life spans but explode with such a force that the star literally blows itself to bits as a ‘pair-instability’ supernova – leaving no remnant neutron star or black hole behind. Supernova SN2006gy was probably a pair-instability supernova – mimicking the last gasps of Population III stars that lived more than 13 billion years ago.

Recipe for a pair instability supernova. In very massive stars, gamma rays radiating from the core become so energetic that they can undergo pair production after interaction with a nucleus. Essentially, the gamma ray creates a paired particle and antiparticle (commonly an electron and a positron). The loss of radiation pressure as gamma rays convert to particles results in gravitational collapse of the star's core - and kaboom! Credit: chandra.harvard.edu

It was only after Population III stars had seeded the interstellar medium with heavier elements that fine structure cooling resulted in disruption of thermal equilibrium and fragmentation of gas clouds – enabling smaller, and hence longer lived, Population II stars to be born.

Around the Milky Way, we can find very old Population II stars in orbiting dwarf galaxies. These stars are also common in the galactic halo and in globular clusters. However, in ‘the guts’ of the galaxy we find lots of young Population I stars.

This all leads to the view that the Milky Way is a gravitational hub nearly as old as the universe itself – which has been steadily growing in size and keeping itself looking young by maintaining a steady diet of ancient dwarf galaxies – which, deprived of such a diet, have remained largely unchanged since their formation in the early universe.

Further reading:

A. Frebel. Stellar Archaeology – Exploring the Universe with Metal-Poor Stars http://arxiv4.library.cornell.edu/abs/1006.2419

Stunning Science Using Nature’s Telescope

3Star-birth in SMM J2135-0102 (Credit: M. Swinbank et al./Nature, ESO, APEX; NASA, ESA, SMA)

[/caption]
Einstein started it all, back in 1915.

Eddington picked up the ball and ran with it, in 1919.

And in the last decade or so astronomers have used a MACHO to OLGE CASTLES … yes, I’m talking about gravitational lensing.

Now LABOCA and SABOCA are getting into the act, using Einstein’s theory of general relativity to cast a beady eye upon star birth most fecund, in a galaxy far, far away (and long, long ago).

APEX at Chajnantor (Andreas Lundgren)

How galaxies evolved is one of the most perplexing, challenging, and fascinating topics in astrophysics today. And among the central questions – as yet unanswered – are how quickly stars formed in galaxies far, far away (and so long, long ago), and how such star formation differed from that which we can study, up close and personal, in our own galaxy (and our neighbors). There are lots of clues to suggest that star formation happened very much faster long ago, but because far-away galaxies are both dim and small, and because Nature drapes veils of opaque dust over star birth, there’s not much hard data to put the numerous hypotheses to the test.

Until last year that is.

“One of the brightest sub-mm galaxies discovered so far,” say a multi-national, multi-institution team of astronomers, was “first identified with the LABOCA instrument on APEX in May 2009” (you’d think they’d give it a name like, I don’t know, “LABOCA’s Stunner” or “APEX 1”, but no, dubbed “the Cosmic Eyelash”; formally it’s called SMMJ2135-0102). “This galaxy lies at [a redshift of] 2.32 and its brightness of 106 mJy at 870 μm is due to the gravitational magnification caused by a massive intervening galaxy cluster,” and “high resolution follow-up with the sub-mm array resolves the star-forming regions on scales of just 100 parsecs. These results allow study of galaxy formation and evolution at a level of detail never before possible and provide a glimpse of the exciting possibilities for future studies of galaxies at these early times, particularly with ALMA.” Nature’s telescope giving astronomers ALMA-like abilities, for free.

OK, so what did Mark Swinbank and his colleagues find? “The star-forming regions within SMMJ2135-0102 are ~100 parsecs across, which is 100 times larger than dense giant molecular cloud (GMC) cores, but their luminosities are approximately 100 times higher than expected for typical star-forming regions. Indeed, the luminosity densities of the star-forming regions within SMMJ2135-0102 are comparable to dense GMC cores, but with luminosities ten million times larger. Thus, it is likely that each of the star-forming regions in SMMJ2135-0102 comprises ~ten million dense GMC cores.” That’s pretty mind-blowing; imagine the Orion Nebula (M42, approximately 400 parsecs distant) as one of these star-forming regions!

James Dunlop of the University of Edinburgh suggests that such galaxies as SMMJ2135-0102 formed stars so abundantly because the galaxies still had plenty of gas – the raw material for making stars – and the gravity of the galaxies had had enough time to pull the gas together into cold, compact regions. Before about 10 billion years ago, gravity hadn’t yet drawn enough clumps of gas together, while at later times most galaxies had already run out of gas, he suggests.

But I’m saving the best for last: “the energetics of the star-forming regions within SMMJ2135-0102 are unlike anything found in the present day Universe,” Swinbank et al. write (now there’s an understatement if ever I’ve heard one!), “yet the relations between size and luminosity are similar to local, dense GMC cores, suggesting that the underlying physics of the star-forming processes is similar. Overall, these results suggest that the recipes developed to understand star-forming processes in the Milky Way and local galaxies can be used to model the star formation processes in these high-redshift galaxies.” It’s always good to get confirmation that our understanding of the physics at work so long ago is consistent and sound.

Einstein would have been delighted, and Eddington too.

Sources: “Intense star formation within resolved compact regions in a galaxy at z = 2.3” (Nature), “The Properties of Star-forming Regions within a Galaxy at Redshift 2” (ESO Messenger No. 139), Science News, SciTech, ESO. My thanks to debreuck (ESO’s Carlos De Breuck?) for setting the record straight re the name.

Massive Repeated Explosions Halted Star Formation in Early Universe

An artist's representation showing outflow from a supermassive black hole inside the middle of a galaxy. Credit: NASA/CXC/M.Weiss

[/caption]

Scientists have found evidence of a catastrophic event they believe was responsible for halting the birth of stars in a galaxy in the early Universe. According to their findings, just 3 billion years after the Big Bang, a massive galaxy exploded in a series of blasts trillions of times more powerful than any caused by an atomic bomb. The blasts happened every second for millions of years. “We are looking into the past and seeing a catastrophic event that essentially switched off star formation and halted the growth of a typical massive galaxy in the local Universe,” said lead author Dr. Dave Alexander from Durham University.

Using the Gemini Observatory’s Near-Infrared Integral Field Spectrometer (NIFS), scientists looked at SMM J1237+6203 and noticed properties seen in other massive galaxies near to our own Milky Way, which suggest that a major event rapidly turned off star formation in early galaxies and halted their expansion.

This is an observation showing gas in the galaxy SMM J1237+6203 seen using the Gemini Observatory’s Near-Infrared Integral Field Spectrometer (NIFS). The contours show how the blast of energy is traveling through the galaxy. Credit: Dave Alexander/Mark Swinbank, Durham University, and Gemini Observatory

This catastrophic event occurred when the Universe was a quarter of its present age. The explosions scattered the gas needed to form new stars by helping it escape the gravitational pull of the galaxy called, effectively regulating its growth, the scientists added.

They believe the huge surge of energy was caused by either the outflow of debris from the galaxy’s black hole or from powerful winds generated by dying stars called supernovae.

Theorists, including scientists at Durham University, have argued that this could be due to outflows of energy blowing galaxies apart and preventing further new stars from forming, but evidence of this has been lacking until now. The team hopes the new findings can increase our understanding about the formation and development of galaxies.

“Effectively the galaxy is regulating its growth by preventing new stars from being born,” said Alexander. “Theorists had predicted that huge outflows of energy were behind this activity, but it’s only now that we have seen it in action. We believe that similar huge outflows are likely to have stopped the growth of other galaxies in the early Universe by blowing away the materials needed for star formation.”

The Durham-led team now plans to study other massive star-forming galaxies in the early Universe to see if they display similar characteristics.

The research is published in the Monthly Notices of the Royal Astronomical Society.

Source: Royal Astronomical Society

Youngsters Caught Gorging – on Gas

Typical massive galaxy at z=1.1 (left: V, I (Hubble); right: CO 3-2 mm emission (IRAM); copyright MPE/IRAM)

[/caption]
Galaxies long, long ago were very fecund; they gave birth to stars at a rate at least ten times what we see today.

Why? Was there more stuff around then, to make stars? Or were galaxies back then more efficient at star-making? Or something else??

Dr. Linda Tacconi, from Germany’s Max-Planck-Institut für extraterrestrische Physik, led an international team of astronomers to find out why … and the answer seems to be that young galaxies were stuffed to the gills with gas.

“We have been able, for the first time, to detect and image the cold molecular gas in normal star forming galaxies, which are representative of the typical massive galaxy populations shortly after the Big Bang,” said Dr Tacconi.

The challenging observations yield the first glimpse how galaxies, or more precisely the cold gas in these galaxies, looked a mere 3 to 5 billion years after the Big Bang (equivalent to a cosmological redshift z~2 to z~1). At this age, galaxies seem to have formed stars more or less continuously with at least ten times the rate seen in similar mass systems in the local Universe.

It is now reasonably well-established that galaxies formed from proto-galaxies, which themselves formed in local over-densities, dominated by cold dark matter – dark matter halos – where the newly neutral hydrogen and helium collected and cooled. Through collisions and mergers, and some on-going gas accretion, the proto-galaxies formed young galaxies, a few billion years after the Big Bang – in short, hierarchical formation.

The Plateau de Bure millimetre interferometer in the southern French Alps. Copyright: IRAM

Detailed observations of the cold gas and its distribution and dynamics hold a key role in disentangling the complex mechanisms responsible for turning the first proto-galaxies into modern galaxies, such as the Milky-Way. A major study of distant, luminous star forming galaxies at the Plateau de Bure millimeter interferometer has now resulted in a breakthrough by having a direct look at the star formation “food”. The study took advantage of major recent advances in the sensitivity of the radiometers at the observatory to make the first systematic survey of cold gas properties (traced by a rotational line of the carbon monoxide molecule) of normal massive galaxies when the Universe was 40% (z=1.2) and 24% (z=2.3) of its current age. Previous observations were largely restricted to rare, very luminous objects, including galaxy mergers and quasars. The new study instead traces massive star forming galaxies representative of the ‘normal’, average galaxy population in this mass and redshift range.

“When we started the programme about a year ago”, says Dr. Tacconi, “we could not be sure that we would even detect anything. But the observations were successful beyond our most optimistic hopes. We have been able to demonstrate that massive normal galaxies at z~1.2 and z~2.3 had five to ten times more gas than what we see in the local Universe. Given that these galaxies were forming gas at a high rate over long periods of time, this means that gas must have been continuously replenished by accretion from the dark matter halos, in excellent agreement with recent theoretical work.”

Another important result of these observations is the first spatially resolved images of the cold gas distribution and motions in several of the galaxies. “This survey has opened the door for an entirely new avenue of studying the evolution of galaxies,” says Pierre Cox, the director of IRAM. “This is really exciting and there is much more to come.”

“These fascinating findings provide us with important clues and constraints for next-generation theoretical models that we will use to study the early phases of galaxy development in more detail,” says Andreas Burkert, specialist for star formation and the evolution of galaxies at Germany’s Excellence Cluster Universe. “Eventually these results will help to understand the origin and the development of our Milky Way.”

About the EGS 1305123 image: Spatially resolved optical and millimeter images of a typical massive galaxy at redshift z=1.1 (5.5 billion years after the Big Bang). The left image was taken with the Hubble Space Telescope in the V- and I-optical bands, as part of the AEGIS survey of distant galaxies. The right image is an overlay of the CO 3-2 emission observed with the PdBI (red/yellow colors) superposed on the I-image (grey). For the first time these observations clearly show that the molecular line emission and the optical light from massive stars trace a massive, rotating disk of diameter ~60,000 light years. This disk is similar in size and structure as seen in z~0 disk galaxies, such as the Milky Way. However, the mass of cold gas is in this disk is about an order of magnitude larger than in typical z~0 disk galaxies. This explains why high-z galaxies can form continuously at about ten times the rate of typical z~0 galaxies.

Sources: Max Planck Institute for Extraterrestrial Physics, Tacconi et al. (2010), Nature 463, 781 (preprint: arXiv:1002.2149)

Twin Tails Tell a Crazy Tale of Star Formation

Twin tails of gas are forming stars outside a galaxy. Credit: Chandra X-Ray Observatory

[/caption]

Stars forming outside a galaxy? That’s what a new observation with the Chandra X-ray Observatory appears to show. “This system is really crazy because where we’re seeing the star formation is well away from any galaxy,” said Megan from Michgan State University. “Star formation happens primarily in the disks of galaxies. What we’re seeing here is very unexpected.”

The image shows two distinct long tails of gas that are more than 200,000 light years in length and extends well outside any galaxy. The gas tails are located in the southern hemisphere near a constellation called Triangulum Australe, in a giant cluster of galaxies called Abell 3627. It is associated with a galaxy known as ESO 137-001 which is about 219 million light years from our own Milky Way Galaxy.

While a similar type of gas tail are places where stars form, usually this happens within the confines of a galaxy.

“The double tail is very cool – that is, interesting – and ridiculously hard to explain,” said Donahue. “It could be two different sources of gas or something to do with magnetic fields. We just don’t know.”

This gas tail was originally spotted by astronomers three years ago using a multitude of telescopes, including NASA’s Chandra X-ray Observatory and the Southern Astrophysical Research telescope in Chile. The new observations show a second tail, and a fellow galaxy, ESO 137-002, that also has a tail of hot X-ray-emitting gas.

How these newly formed stars came to be in this particular place remains a mystery as well. Astronomers theorize this gas tail might have “pulled” star-making material from nearby gases, creating what some have called “orphan stars.”

“This system continues to surprise us as we get better observations of it,” Donahue said.

Donahue was part of an international team of astronomers who published a paper on the twin tails in Astrophysical Journal.

Paper: Spectacular X-Ray Tails and Intracluster Star Formation

source: MSU

Latest from Hubble: Star Formation Fizzling Out in Nearby Galaxy

NGC 2976.. NASA, ESA, and J. Dalcanton and B. Williams (University of Washington, Seattle)

[/caption]
Most galaxies are throughout the universe are happenin’ places, with all sorts of raucous star formation going on. But for a nearby, small spiral galaxy, the star-making party is almost over. In this latest Hubble release, astronomers were surprised to find that star-formation activities in the outer regions of NGC 2976 are fizzling out, and any celebrating is confined to a few die-hard partygoers huddled in the galaxy’s inner region.

The reason? Well, the star birth began when another party-crashing galaxy interacted with NGC 2976. But that happened long ago, and now star formation in the galaxy is fizzling out in the outer parts as some of the gas was stripped away and the rest collapsed toward the center. With no gas left to fuel the party, more and more regions of the galaxy are going to sleep.

“Astronomers thought that grazing encounters between galaxies can cause the funneling of gas into a galaxy’s core, but these Hubble observations provide the clearest view of this phenomenon,” explains astronomer Benjamin Williams of the University of Washington in Seattle, who directed the Hubble study, which is part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. “We are catching this galaxy at a very interesting time. Another 500 million years and the party will be over.”

NGC 2976 does not look like a typical spiral galaxy. It has a star-forming disk, but no obvious spiral pattern. Its gas is centrally concentrated, but it does not have a central bulge of stars. The galaxy resides on the fringe of the M81 group of galaxies, located about 12 million light-years away in the constellation Ursa Major.

“The galaxy looks weird because an interaction with the M81 group about a billion years ago stripped some gas from the outer parts of the galaxy, forcing the rest of the gas to rush toward the galaxy’s center, where it is has little organized spiral structure,” Williams says.

The galaxy’s relatively close distance to Earth allowed Hubble’s Advanced Camera for Surveys (ACS) to resolve hundreds of thousands of individual stars. What look like grains of sand in the image are actually individual stars. Studying the individual stars allowed astronomers to determine their color and brightness, which provided information about when they formed.

The image was taken over a period in late 2006 and early 2007.

“This type of observation is unique to Hubble,” Williams says. “If we had not been able to pick out individual stars, we would have known that the galaxy is weird, but we would not have dug up evidence for a significant gas rearrangement in the galaxy, which caused the stellar birth zone to shrink toward the galaxy’s center.”

Simulations predict that the same “gas-funneling” mechanism may trigger starbursts in the central regions of other dwarf galaxies that interact with larger neighbors. The trick to studying the effects of this process in detail, Williams says, is being able to resolve many individual stars in galaxies to create an accurate picture of their evolution.

Williams’ results will appear in the January 20, 2010 issue of The Astrophysical Journal.

Source: HubbleSite

Time-Lapse Movie Shows Massive Stars Form Similarly to Smaller Stars

It has been difficult for astronomers to see how massive stars form, since these stars are rare, form quickly and tend to be enshrouded in dense, dusty material which obscures them from view. But astronomers using the Very Long Baseline Array (VLBA) radio telescope were able to take images of the wavelengths of light emitted by a massive young star located 1,350 light years away in the Orion constellation. The created a ‘movie’ from the data, which they say shows the first evidence that young massive stars form from an accretion disk, just as smaller stars form.

“It is the first really ironclad confirmation that massive young stars are surrounded by orbiting accretion disks, and the first strong suggestion that these disks launch magnetically driven winds,” said Mark Krumholz, from the University of California at Santa Cruz.

The astronomers, led by Lynn D. Matthews from the Haystack Observatory at MIT, were able to see a disk of gas swirling close to the young massive star, known as Source I (said like “Source Eye”) in the high-resolution time-lapse movie they created.

By assembling 19 individual images of Source I taken by the VLBA at monthly intervals between March 2001 and December 2002, the high-resolution movie reveals thousands of masers, radio emitting gas clouds that can be thought of as naturally occurring lasers, located close to the massive star. According to Matthews, only three massive stars in the entire galaxy are known to have silicon monoxide masers. Because the silicon monoxide masers emit beams of intense radiation that can pierce the dusty material surrounding Source I, the scientists could probe the material close to the star and measure the motions of individual gas clumps.

Click here to see the time-lapse movie.

For almost 20 years, astronomers have known that low-mass stars form as a result of disk-mediated accretion, or from material formed from a structure rotating around a central body and driven by magnetic winds. But it had been impossible to confirm whether this was true for massive stars, which are eight to 100 times larger than low-mass stars. Without any hard data, theorists proposed many models for how massive stars might form, such as via collisions of smaller stars.

“This work should rule out many of them,” Krumholz said.

Because massive stars are believed to be responsible for creating most of the chemical elements in the universe that are critical for the formation of Earth-like planets and life, understanding how they form may help unravel mysteries about the origins of life.

The VLBA consists of a network of 10 radio telescope dishes located across North America, and can be thought of as a virtual telescope 5,000 miles in diameter. Used as a zoom lens to penetrate the dusty cloud surrounding the massive star, the VLBA captured images up to 1,000 times sharper than those previously obtained by other telescopes, including NASA’s Hubble Space Telescope.

The team’s paper was published in the Jan. 1 issue of the Astrophysical Journal.

Lead image caption: Artist’s conception of the rotating disk of hot, ionized gas surrounding Orion Source I, blocking the star from our view. A cool wind of gas is driven from the upper and lower surfaces of the disk and is sculpted into an hourglass shape by tangled magnetic field lines. Image: Bill Saxton, National Radio Astronomy Observatory/Associated Universities, Incorporated/National Science Foundation

Source: MIT

New Studies on the Vela Star Forming Region

A false-color infrared image of the star forming complex in Vela. Two new studies have measured for the first time the dust emission at very long infrared wavelengths, and found a set of young stars that are accreting material and flaring. Credit: NASA and the Spitzer Space Telescope
A false-color infrared image of the star forming complex in Vela. Two new studies have measured for the first time the dust emission at very long infrared wavelengths, and found a set of young stars that are accreting material and flaring. Credit: NASA and the Spitzer Space Telescope

[/caption]

This week at the AAS meeting scientists revealed two new studies on a star forming region in Vela. The first used the Balloon-borned Large Aperture Submillimeter Telescope (BLAST, a proptotype detector for the one on the new Herschel Space Telescope) to classify the young stars and begin mapping the warm dust in the region. The second searched the nebula for flaring young stars. Both studies are to appear in an upcoming publication of the Astrophysical Journal.

Although star formation has been well modeled and understood theoretically, observational astronomy is often made more difficult due to the fact that it occurs shrouded in dusty nebulae. Visible light absorbed by the nebula and reemitted as lower energy infrared light. Most of the wavelengths in this region cannot permeate Earth’s atmosphere.

In order to study regions like this, astronomers are forced to use balloon based and space observatories. Astronomers Massimo Marengo, Giovanni Fazio, and Howard Smith, together with an international team of scientists used BLAST to study just such a star forming region in Vela. The first of their studies searched the nebula for newly formed stars. To do this, they searched for behaviors shown to be indicative of star formation, “such as proto-stellar jets and molecular outflows.” Additionally, to truly classify as a proto-star, the object was required to show up at more than one wavelength. In searching for these candidates, they confirmed 13 cores originally reported by a previous team, but discounted one because it did not have the proper spectral characteristics (although they may still later collapse to form stars).

By analyzing the mass of the forming regions, the team was also able to show that the Core Mass Function (CMF, a function that describes the frequencies of proto-star cores of various masses) is very similar to the Initial Mass Function (IMF, which is the same thing but for already formed stars). Although this is unsurprising, it is a necessary observation to confirm our understanding of how stars form and to show that stars do indeed come from such nebulae.

Another unsurprising confirmation of stellar formation models is that forming cores in the nebula are notably warmer when they’ve reached the density sufficient to create fusion in the core and have an embedded protostar. These results, “can thus provide guidelines
for understanding the physical conditions where the transition between pre- and proto-stellar cores takes place.”

The second of their studies analyzed known young stars to search for large flares thought to be caused by material being accreted onto the young star. The region was imaged once and then a second time six months later. Over this period, 47 of some 170,000 observed stars had increases in brightness consistent with what was expected for flaring. Closer inspection of these stars 19 had the further characteristics (mass, age, environment) expected of such flares. Eight showed evidence of being extremely young (on the order of a hundred thousand years or less) and were still enshrouded in gravitationally bound disks of dust.

Although this cannot confirm the prediction of such youthful flares being due to infalling material (as opposed to magnetic fields or interactions with a companion) it does show that BLAST and its successor, Herschel, will be a powerful tool for further study.

Incredible New Hubble Image is Full of Stars!

This is a Hubble image of the star cluster R136 at the heart of the Tarantula Nebula. It's a starburst region that's home to several extremely massive stars, including R136a1, which is almost 200 times more massive than the Sun. Image Credit: By NASA, ESA, F. Paresce (INAF-IASF, Bologna, Italy), R. O'Connell (University of Virginia, Charlottesville), and the Wide Field Camera 3 Science Oversight Committee

A brand new Hubble image from Wide Field Camera 3 shows the most detailed view of the largest stellar nursery in our local galactic neighborhood. The massive, young stellar grouping, called R136, is only a few million years old and resides in the 30 Doradus Nebula, a turbulent star-birth region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. There is no known star-forming region in our galaxy as large or as prolific as 30 Doradus. Many of the diamond-like icy blue stars are among the most massive stars known. Several of them are over 100 times more massive than our Sun. In a few million years, this region should provide an incredible show: that’s when these hefty stars are destined to pop off like a string of firecrackers, as supernovas.

The image, taken in ultraviolet, visible, and red light by Hubble’s Wide Field Camera 3, spans about 100 light-years. The nebula is close enough to Earth that Hubble can resolve individual stars, giving astronomers important information about the birth and evolution of stars in the universe. The Hubble observations were taken Oct. 20-27, 2009. The blue color is light from the hottest, most massive stars; the green from the glow of oxygen; and the red from fluorescing hydrogen.

Ground-based version of the Doradus Constellation. Credit: A. Fujii
Ground-based version of the Doradus Constellation. Credit: A. Fujii

The LMC is located 170,000 light-years away and is a member of the Local Group of Galaxies, which also includes the Milky Way.

Click here for larger (and eye-popping!) versions of this image.

You can also “zoom” in and out of this image here on the “Starry Critters” website.
Source: HubbleSite

Magnetic Fields Have Key Influence on Star Formation

[/caption]

When a giant cloud of interstellar gas and dust collapses to form a new cluster of stars, only a small fraction of the cloud’s mass ends up in stars. Scientists have never been sure why.  But a new study provides insights into the role magnetic fields might play in star formation, and suggests more than the influence of gravity should be taken into account in computer models of stellar birth.

Gravity favors star formation by drawing material together, so if most material does not coalesce into stars, some additional force must hinder the process. Magnetic fields and turbulence are the two leading candidates. Magnetic fields channel flowing gas, making it hard to draw gas from all directions, while turbulence stirs the gas and induces an outward pressure that counteracts gravity.

“The relative importance of magnetic fields versus turbulence is a matter of much debate,” said astronomer Hua-bai Li of the Harvard-Smithsonian Center for Astrophysics. “Our findings serve as the first observational constraint on this issue.”

Li and his team studied 25 dense patches, or cloud cores, each one about a light-year in size. The cores, which act as seeds from which stars form, were located within molecular clouds as much as 6,500 light-years from Earth.

The degree of polarization of light from the clouds is influenced by the direction and strength of the local magnetic fields, so the researchers measured polarization to determine magnetic field strength. The fields within each cloud core were compared to the fields in the surrounding, tenuous nebula.

The magnetic fields tended to line up in the same direction, even though the relative size scales (1 light-year-sized cores versus 1000 light-year-sized nebulas) and densities were different by orders of magnitude. Since turbulence would tend to churn the nebula and mix up magnetic field directions, their findings show that magnetic fields dominate turbulence in influencing star birth.

“Our result shows that molecular cloud cores located near each other are connected not only by gravity but also by magnetic fields,” said Li. “This shows that computer simulations modeling star formation must take strong magnetic fields into account.”

In the broader picture, this discovery aids understanding of how stars and planets form and, therefore, how the universe has come to look the way it is today.

Source: Harvard-Smithsonian Center for Astrophysics