How Far Can You See in the Universe?

How Far Can You See in the Universe?

When you look into the night sky, you’re seeing tremendous distances away, even with your bare eyeball. But what’s the most distant object you can see with the unaided eye? And what if you get help with a pair of binoculars, a telescope, or even with the Hubble Space Telescope.

Standing at sea level, your head is at an altitude of 2 meters, and the horizon appears to be about 3 miles, or 5 km away. We’re able to see more distant objects if they’re taller, like buildings or mountains, or when we’re higher up in the air. If you get to an altitude of 20 meters, the horizon stretches out to about 11 km. But we can see objects in space which are even more distant with the naked eye. The Moon is 385,000 km away and the Sun is a whopping 150 million km. Visible all the way down here on Earth, the most distant object in the solar system we can see, without a telescope, is Saturn at 1.5 billion km away.

In the very darkest conditions, the human eye can see stars at magnitude 6.5 or greater. Which works about to about 9,000 individual stars. Sirius, the brightest star in the sky, is 8.6 light years. The most distant bright star, Deneb, is about 1500 light years away from Earth. If someone was looking back at us, right now, they could be seeing the election of the 52nd pope, St. Hormidas, in the 6th Century.
There are even a couple of really bright stars in the 8000 light year range, that we might just barely be able to see without a telescope. If a star detonates, we can see it much further away. The famous 1006 supernova was the brightest in history, recorded in China, Japan and the Middle East.

It was a total of 7,200 light years away and was visible in the daytime. There’s even large structures we can see. Outside the galaxy, the Large Magellanic Cloud is 160,000 light years and the Small Magellanic Cloud is almost 200,000 light years away. Unfortunately for us up North, these are only visible from Southern Hemisphere.The most distant thing we can see with our bare eyeballs is Andromeda at 2.6 million light years, which in dark skies looks like a fuzzy blob.

If we cheat and get a little help, say with binoculars – you can see magnitude 10 – fainter stars and galaxies at more than 10 million light-years away. With a telescope you can see much, much further. A regular 8-inch telescope would let you see the brightest quasars, more than 2 billion light years away. Using gravitational lensing the amazing Hubble space telescope can see galaxies, incredibly far out, where the light had left them just hundreds of millions of years after the Big Bang.

If you could see in other wavelengths, you could see different distances. Fortunately for our precious radiation sensitive organs, Gamma and X rays are blocked by our atmosphere. But if you could see in that spectrum, you could see objects exploding billions of light years away. And if you could see in the radio spectrum, you’d be able to see the cosmic microwave background radiation, surrounding us in all directions and marking the edge of the observable universe.

Wouldn’t that be cool? Well, maybe we can… just a little. Turn on your television, some of the static on the screen is this very background radiation, the afterglow of the Big Bang.

What do you think? If you could see far out in the Universe what would you like a close up view of? Tell us in the comments below.

Stunning 3D Tours of Two Well-Known Nebulae

Two videos recently released by the Hubble team take us on a tour of two famous and intriguing cosmic objects: the stellar wind-blown “celestial snow angel” Sharpless 2-106 and the uncannily equine Horsehead Nebula, imaged in infrared wavelengths by the HST.

Using Hubble imagery complemented with data from the Subaru Infrared Telescope and ESO’s Visible and Infrared Survey Telescope for Astronomy — VISTA, for short — the videos show us an approximation of the three-dimensional structures of these objects relative to the stars surrounding them, providing a perspective otherwise impossible from our viewpoint on Earth.

The stellar nursery Sharpless 2-106 is above; hop on the Horsehead Nebula tour below:
Continue reading “Stunning 3D Tours of Two Well-Known Nebulae”

What’s At The Center Of Our Galaxy?

What's At The Center Of Our Galaxy?

Dr. Andrea Ghez has spent much of her career studying the region right around the center of the Milky Way, including its supermassive black hole. In fact, she helped discover it in the first place. Dr. Ghez speaks about this amazing and dynamic region.

“Hi, I’m Dr. Andrea Ghez, and I’m a professor of physics and astronomy at UCLA. I study the center of our galaxy. The original objective was to figure out if there’s a supermassive black hole there, and in doing this, we’ve actually uncovered more questions than answers.”

What are you looking for at the center of the galaxy?

“We are tremendously privileged to be able to study the center of the galaxy, and have this exquisite laboratory to play with, to get insight into the fundamental physics of black holes, and also their astrophysical role in the formation and evolution of galaxies. You can also ask what kinds of phenomena do you expect to see around a black hole, and we have a lot of predictions about our thoughts about how galaxies form and evolve, and our ideas suggest that there’s a feedback between the galaxy and the black hole. But many of these models predict things that we simply don’t see, which again provides yet another playground.”

What’s it like around the supermassive black hole at the center of the galaxy?

“If you could get into a spaceship and get right down to the black hole, it would be a very busy place. Stars would be zooming around, like the sun, but you’d have a very busy day. You wouldn’t survive – I guess that would be another problem! You’d get torn apart. It’s just a very extreme place. The analogy that often gets made with the center of the galaxy is that it’s like the urban downtown, and we live out in the suburbs, so we live in a very calm place whereas the center of the galaxy is a a very extreme place, in almost every way you can describe an environment.”

What are some of the discoveries?

Astronomy Image Gallery
Stars at the Galactic Center. Credit: Astronomy Image Gallery

“The observations at the center of the Milky Way have taught us that one, it’s really normal to have a black hole at the center of the galaxy. I mean, our galaxy is completely ordinary, garden-variety, nothing-special-about-us, so if we have one, presumably every galaxy harbors a supermassive black hole at it’s center. We’ve also learned that the idea that a supermassive black hole should be surrounded by a very dense concentration of very old stars is not true. And that prediction is often used in other galaxies to find their black holes, because we can’t do the kinds of experiments we’ve done at the center of our own – that you look for this concentration of light, but in our galaxy we’re not seeing that, so you have a case where’s there’s absolutely clearly a supermassive black hole, yet you don’t see this collection of old stars. That’s a puzzle.

“Another puzzle that we’ve found that’s illuminating our ideas about other galaxies is that people predicted that you shouldn’t see young stars being formed near a black hole. In fact, in the early 1980’s, when people recognized that there were young stars found in the vicinity of a black hole, that was used to argue that perhaps you couldn’t possibly have a black hole because of these young stars. And yet again, we have a supermassive black hole – we know it, and those young stars are still exist, and we’ve even found stars even closer. And it’s the tidal forces that make it even more difficult to understand why the young stars should be there. The tidal forces pull the gases apart, and for star formation, you need a very fragile balls of gas and dust to collapse, so something’s amiss.”

How might those young stars get formed?

“There are so many ideas about how young stars could form at the center of the galaxy, but the one that has the most support is the idea that, at the time that these stars were being formed, that there was a much denser concentration of gas than there is today, and in that denser concentration you can get the collapse of those little clouds. We think that because as we continue to study the orbits of those stars, and what we’ve seen is that those orbits outside a certain distance start to fall into an ordered plane, like the planets orbiting the sun. We see a substantial fraction of them having a common orbital plane, and that looks very reminiscent to the solar system. The same way the planets formed out of a gas disc in the early days, that’s the same idea that is being invoked for these young stars, on a very different scale.”

Watch Gaia Go From Lab to Launch in Two Minutes

In the early pre-dawn hours on December 19, 2013, with a rumble and a roar, a Soyuz rocket blazed through the clouds above the jungle-lined coast of French Guiana, ferrying ESA’s long-awaited Gaia spacecraft into orbit and beginning its mission to map the stars of the Milky Way. The fascinating time-lapse video above from ESA shows the Gaia spacecraft inside the clean room unfurling like a flower during its sunshield deployment test, the transfer of the Soyuz from the assembly building to the pad, and then its ultimate fiery liftoff.

That’s a lot going on in two minutes! But once nestled safely in its L2 orbit 1.5 million kilometers out, Gaia will have over five years to complete its work… read more here.

Credit: ESA–S. Corvaja, M. Pedoussaut, 2013. Source: ESA

What a Star About to Go Supernova Looks Like

SBW2007 is a nebula with a giant star at its center. All indications are that it could explode as a supernova at any time. Credit: ESA/NASA, acknowledgement: Nick Rose.

No, this isn’t a distant view of the London Eye. This nebula with a giant star at its center is known as SBW2007, located in the Carina Nebula. Astronomers say it has striking similarities to a star that went supernova back in 1987, SN 1987A. Both stars had identical rings of the same size and age, which were travelling at similar speeds; both were located in similar HII regions; and they had the same brightness. We didn’t have the telescopic firepower back before 1987 like we do now, so we don’t have a closeup view of how SN 1987A looked before it exploded, but astonomers think SBW2007 is a snapshot of SN1987a’s appearance, pre-supernova.

Of course, no one can predict when a star will go supernova, and since SBW2007 is 20,000 light-years away, we don’t have any worries about it causing any problems here on Earth. But astronomers are certainly hoping they’ll have the chance to watch it happen.

SN 1987A is the closest supernova to that we’ve been able to study since the invention of the telescope and it has provided scientists with good opportunities to study the physical processes of an exploding star.

Below is the latest image of SN 1987A, courtesy of the National Radio Astronomy Observatory. You can read about their recent findings here, where they were able to image the newly formed dust from the explosion.

Composite image of supernova 1987A. ALMA data (in red) shows newly formed dust in the center of the remnant. HST (in green) and Chandra (in blue) show the expanding shockwave. Credit: R. Indebetouw et. al, A. Angelich (NRAO/AUI/NSF); NASA/STScI/CfA/R. Kirshner; NASA/CXC/SAO/PSU/D. Burrows et al.
Composite image of supernova 1987A. ALMA data (in red) shows newly formed dust in the center of the remnant. HST (in green) and Chandra (in blue) show the expanding shockwave. Credit: R. Indebetouw et. al, A. Angelich (NRAO/AUI/NSF); NASA/STScI/CfA/R. Kirshner; NASA/CXC/SAO/PSU/D. Burrows et al.

Source: NASA & ESA

Super-sensitive Camera Captures a Direct Image of an Exoplanet

The Gemini Planet Imager’s first light image of Beta Pictoris b (Processing by Christian Marois, NRC Canada)

The world’s newest and most powerful exoplanet imaging instrument, the recently-installed Gemini Planet Imager (GPI) on the 8-meter Gemini South telescope, has captured its first-light infrared image of an exoplanet: Beta Pictoris b, which orbits the star Beta Pictoris, the second-brightest star in the southern constellation Pictor. The planet is pretty obvious in the image above as a bright clump of pixels just to the lower right of the star in the middle (which is physically covered by a small opaque disk to block glare.) But that cluster of pixels is really a distant planet 63 light-years away and several times more massive — as well as 60% larger — than Jupiter!

And this is only the beginning.

GPI installed on the Gemini South 8m telescope. GPI is the boxed suite mounted under the platform. (Gemini Observatory)
GPI installed on the Gemini South 8m telescope. GPI is the boxed suite mounted beneath the platform. (Gemini Observatory)

While many exoplanets have been discovered and confirmed over the past couple of decades using various techniques, very few have actually been directly imaged. It’s extremely difficult to resolve the faint glow of a planet’s reflected light from within the brilliant glare of its star — but GPI was designed to do just that.

“Most planets that we know about to date are only known because of indirect methods that tell us a planet is there, a bit about its orbit and mass, but not much else,” said Bruce Macintosh of the Lawrence Livermore National Laboratory, who led the team that built the instrument. “With GPI we directly image planets around stars – it’s a bit like being able to dissect the system and really dive into the planet’s atmospheric makeup and characteristics.”

And GPI doesn’t just image distant Jupiter-sized exoplanets; it images them quickly.

“Even these early first-light images are almost a factor of ten better than the previous generation of instruments,” said Macintosh. ” In one minute, we were seeing planets that used to take us an hour to detect.”

Despite its large size, Beta Pictoris b is a very young planet — estimated to be less than 10 million years old (the star itself is only about 12 million.) Its presence is a testament to the ability of large planets to form rapidly and soon around newly-formed stars.

Read more: Exoplanet Confirms Gas Giants Can Form Quickly

“Seeing a planet close to a star after just one minute, was a thrill, and we saw this on only the first week after the instrument was put on the telescope!” added Fredrik Rantakyro a Gemini staff scientist working on the instrument. “Imagine what it will be able to do once we tweak and completely tune its performance.”

Another of GPI’s first-light images captured light scattered by a ring of dust that surrounds the young star HR4796A , about 237 light-years away:

GPI first-light images of HR4796A. (Processing by Marshall Perrin, Space Telescope Science Institute.)
GPI first-light images of HR4796A. (Processing by Marshall Perrin, Space Telescope Science Institute.)

The left image shows shows normal light, including both the dust ring and the residual light from the central star scattered by turbulence in Earth’s atmosphere. The right image shows only polarized light. Leftover starlight is unpolarized and hence removed. The light from the back edge of the disk (to the right of the star) is strongly polarized as it reflects towards Earth, and thus it appears brighter than the forward-facing edge.

It’s thought that the reflective ring could be from a belt of asteroids or comets orbiting HR4796A, and possibly shaped (or “shepherded,” like the rings of Saturn) by as-yet unseen planets. GPI’s advanced capabilities allowed for the full circumference of the ring to be imaged.

The GPI integration team celebrates after obtaining first light images (Gemini Observatory)
The GPI integration team celebrating after obtaining first light images (Gemini Observatory)

GPI’s success in imaging previously-known systems like Beta Pictoris and HR4796A can only indicate many more exciting exoplanet discoveries to come.

“The entire exoplanet community is excited for GPI to usher in a whole new era of planet finding,” says physicist and exoplanet expert Sara Seager of the Massachusetts Institute of Technology. “Each exoplanet detection technique has its heyday. First it was the radial velocity technique (ground-based planet searches that started the whole field). Second it was the transit technique (namely Kepler). Now, it is the ‘direct imaging’ planet-finding technique’s turn to make waves.”

This year the GPI team will begin a large-scale survey, looking at 600 young stars to see what giant planets may be orbiting them.

“Some day, there will be an instrument that will look a lot like GPI, on a telescope in space. And the images and spectra that will come out of that instrument will show a little blue dot that is another Earth.”

– Bruce Macintosh, GPI team leader

The observations above were conducted last November during an “extremely trouble-free debut.” The Gemini South telescope is located near the summit of Cerro Pachon in central Chile, at an altitude of 2,722 meters.

Source: Gemini Observatory press release

ESA’s Gaia Mission Launches to Map the Milky Way

Soyuz VS06, with Gaia space observatory, lifted off from Europe's Spaceport, French Guiana, on 19 December 2013. (ESA–S. Corvaja)

Early this morning, at 09:12 UTC, the cloudy pre-dawn sky above the coastal town of Kourou, French Guiana was brilliantly sliced by the fiery exhaust of a Soyuz VS06, which ferried ESA’s “billion-star surveyor” Gaia into space to begin its five-year mission to map the Milky Way.

Ten minutes after launch, after separation of the first three stages, the Fregat upper stage ignited, successfully delivering Gaia into a temporary parking orbit at an altitude of 175 km (108 miles). A second firing of the Fregat 11 minutes later took Gaia into its transfer orbit, followed by separation from the upper stage 42 minutes after liftoff. 46 minutes later Gaia’s sunshield was deployed, and the spacecraft is now cruising towards its target orbit around L2, a gravitationally-stable point in space located 1.5 million km (932,000 miles) away in the “shadow” of the Earth.

The launch itself was really quite beautiful, due in no small part to the large puffy clouds over the launch site. Watch the video below:

A global space astrometry mission, Gaia will make the largest, most precise three-dimensional map of our galaxy by surveying more than a billion stars over a five-year period.

“Gaia promises to build on the legacy of ESA’s first star-mapping mission, Hipparcos, launched in 1989, to reveal the history of the galaxy in which we live,” says Jean-Jacques Dordain, ESA’s Director General.

Soyuz VS06, with Gaia, lifted off from French Guiana, 19 December 2013. (ESA - S. Corvaja)
Soyuz VS06 with Gaia (ESA – S. Corvaja, 2013)

Repeatedly scanning the sky, Gaia will observe each of the billion stars an average of 70 times each over the five years. (That’s 40 million observations every day!) It will measure the position and key physical properties of each star, including its brightness, temperature and chemical composition.

By taking advantage of the slight change in perspective that occurs as Gaia orbits the Sun during a year, it will measure the stars’ distances and, by watching them patiently over the whole mission, their motions across the sky.

The motions of the stars can be put into “rewind” to learn more about where they came from and how the Milky Way was assembled over billions of years from the merging of smaller galaxies, and into “fast forward” to learn more about its ultimate fate.

“Gaia represents a dream of astronomers throughout history, right back to the pioneering observations of the ancient Greek astronomer Hipparchus, who catalogued the relative positions of around a thousand stars with only naked-eye observations and simple geometry. Over 2,000 years later, Gaia will not only produce an unrivaled stellar census, but along the way has the potential to uncover new asteroids, planets and dying stars.”

– Alvaro Giménez, ESA’s Director of Science and Robotic Exploration

Gaia will make an accurate map of the stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)
Gaia will make an accurate map of a billion stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)

Of the one billion stars Gaia will observe, 99% have never had their distances measured accurately. The mission will also study 500,000 distant quasars, search for exoplanets and brown dwarfs, and will conduct tests of Einstein’s General Theory of Relativity.

“Along with tens of thousands of other celestial and planetary objects,” said ESA’s Gaia project scientist Timo Prusti, “this vast treasure trove will give us a new view of our cosmic neighbourhood and its history, allowing us to explore the fundamental properties of our Solar System and the Milky Way, and our place in the wider Universe.”

Follow the status of Gaia on the mission blog here.

Source: ESA press release and Gaia fact sheet

Gaia's launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA's facility in French Guiana (ESA)
Gaia’s launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA’s facility in French Guiana (ESA)

When Is a Star Not a Star?

Artist's impression of a Y-dwarf, the coldest known type of brown dwarf star. (NASA/JPL-Caltech)

When it’s a brown dwarf — but where do we draw the line?

Often called “failed stars,” brown dwarfs are curious cosmic creatures. They’re kind of like swollen, super-dense Jupiters, containing huge amounts of matter yet not quite enough to begin fusing hydrogen in their cores. Still, there has to be some sort of specific tipping point, and astronomers (being the scientists that they are) would like to know: when does a brown dwarf stop and a star begin?

Researchers from Georgia State University now have the answer.

From a press release issued Dec. 9 from the National Optical Astronomy Observatory (NOAO):

For most of their lives, stars obey a relationship referred to as the main sequence, a relation between luminosity and temperature – which is also a relationship between luminosity and radius. Stars behave like balloons in the sense that adding material to the star causes its radius to increase: in a star the material is the element hydrogen, rather than air which is added to a balloon. Brown dwarfs, on the other hand, are described by different physical laws (referred to as electron degeneracy pressure) than stars and have the opposite behavior. The inner layers of a brown dwarf work much like a spring mattress: adding additional weight on them causes them to shrink. Therefore brown dwarfs actually decrease in size with increasing mass.

Read more: The Secret Origin Story of Brown Dwarfs

As Dr. Sergio Dieterich, the lead author, explained, “In order to distinguish stars from brown dwarfs we measured the light from each object thought to lie close to the stellar/brown dwarf boundary. We also carefully measured the distances to each object. We could then calculate their temperatures and radii using basic physical laws, and found the location of the smallest objects we observed (see the attached illustration, based on a figure in the publication). We see that radius decreases with decreasing temperature, as expected for stars, until we reach a temperature of about 2100K. There we see a gap with no objects, and then the radius starts to increase with decreasing temperature, as we expect for brown dwarfs. “

Dr. Todd Henry, another author, said: “We can now point to a temperature (2100K), radius (8.7% that of our Sun), and luminosity (1/8000 of the Sun) and say ‘the main sequence ends there’ and we can identify a particular star (with the designation 2MASS J0513-1403) as a representative of the smallest stars.”

The relation between size and temperature at the point where stars end and brown dwarfs begin (based on a figure from the publication) Image credit: P. Marenfeld & NOAO/AURA/NSF.
The relation between size and temperature at the point where stars end and brown dwarfs begin (based on a figure from the publication) Image credit: P. Marenfeld & NOAO/AURA/NSF.

“We can now point to a temperature (2100K), radius (8.7% that of our Sun), and luminosity (1/8000 of the Sun) and say ‘the main sequence ends there’.”

Dr. Todd Henry, RECONS Director

Aside from answering a fundamental question in stellar astrophysics about the cool end of the main sequence, the discovery has significant implications in the search for life in the universe. Because brown dwarfs cool on a time scale of only millions of years, planets around brown dwarfs are poor candidates for habitability, whereas very low mass stars provide constant warmth and a low ultraviolet radiation environment for billions of years. Knowing the temperature where the stars end and the brown dwarfs begin should help astronomers decide which objects are candidates for hosting habitable planets.

The data came from the SOAR (SOuthern Astrophysical Research) 4.1-m telescope and the SMARTS (Small and Moderate Aperture Research Telescope System) 0.9-m telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile.

Read more here.