How Do We Measure Distance in the Universe?

How Do We Measure Distance in the Universe?

This star is X light-years away, that galaxy is X million light-years away. That beginning the Universe is X billion light-years away. But how do astronomers know?

I’m perpetually in a state where I’m talking about objects which are unimaginably far away. It’s pretty much impossible to imagine how huge some our Universe is. Our brains can comprehend the distances around us, sort of, especially when we’ve got a pile of tools to help. We can measure our height with a tape measure, or the distance along the ground using an odometer. We can get a feel for how far away 100 kilometers is because we can drive it in a pretty short period of time.

But space is really big, and for most of us, our brains can’t comprehend the full awesomeness of the cosmos, let alone measure it. So how do astronomers figure out how far away everything is? How do they know how far away planets, stars, galaxies, and even the edge of the observable Universe is? Assuming it’s all trickery? You’re bang on.

Astronomers have a bag of remarkably clever tricks and techniques to measure distance in the Universe. For them, different distances require a different methodologies. Up close, they use trigonometry, using differences in angles to puzzle out distances. They also use a variety of standard candles, those are bright objects that generate a consistent amount of light, so you can tell how far away they are. At the furthest distances, astronomers use expansion of space itself to detect distances.

Fortunately, each of these methods overlap. So you can use trigonometry to test out the closest standard candles. And you can use the most distant standard candles to verify the biggest tools. Around our Solar System, and in our neighborhood of the galaxy, astronomers use trigonometry to discover the distance to objects.

They measure the location of a star in the sky at one point of the year, and then measure again 6 months later when the Earth is on the opposite side of the Solar System. The star will have moved a tiny amount in the sky, known as parallax. Because we know the distance from one side of the Earth’s orbit to the other, we can calculate the angles, and compute the distance to the star.

I’m sure you can spot the flaw, this method falls apart when the distance is so great that the star doesn’t appear to move at all. Fortunately, astronomers shift to a different method, observing a standard candle known as a Cepheid variable. These Cepheids are special stars that dim and brighten in a known pattern. If you can measure how quickly a Cepheid pulses, you can calculate its true luminosity, and therefore its distance.

Hubble Frontier Fields observing programme, which is using the magnifying power of enormous galaxy clusters to peer deep into the distant Universe.. Credit: NASA.
Hubble Frontier Fields observing programme, which is using the magnifying power of enormous galaxy clusters to peer deep into the distant Universe. Credit: NASA.

Cepheids let you measure distances to nearby galaxies. Out beyond a few dozen megaparsecs, you need another tool: supernovae. In a very special type of binary star system, one star dies and becomes a white dwarf, while the other star lives on. The white dwarf begins to feed material off the partner star until it hits exactly 1.4 times the mass of the Sun. At this point, it detonates as a Type 1A supernova, generating an explosion that can be seen halfway across the Universe. Because these stars always explode with exactly the same amount of material, we can detect how far away they are, and therefore their absolute brightness.

At the greatest scales, astronomers use the Hubble Constant. This is the discovery by Edwin Hubble that the Universe is expanding in all directions. The further you look, the faster galaxies are speeding away from us. By measuring the redshift of light from a galaxy, you can tell how fast it’s moving away from us, and thus its approximate distance. At the very end of this scale is the Cosmic Microwave Background Radiation, the edge of the observable Universe, and the limit of how far we can see.

Astronomers are always looking for new types of standard candles, and have discovered all kinds of clever ways to measure distance. They measure the clustering of galaxies, beams of microwave radiation from stars, and the surface of red giant stars – all in the hopes of verifying the cosmic distance ladder. Measuring distance has been one of the toughest problems for astronomers to crack and their solutions have been absolutely ingenious. Thanks to them, we can have a sense of scale for the cosmos around us.

What concept in astronomy do you have the hardest time holding in your brain? Tell us, in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Will Gaia Be Our Next Big Exoplanet Hunter?

ESA's Gaia is currently on a five-year mission to map the stars of the Milky Way. Image credit: ESA/ATG medialab; background: ESO/S. Brunier.

Early on the morning of Dec. 19, 2013, the pre-dawn sky above the coastal town of Kourou in French Guiana was briefly sliced by the brilliant exhaust of a Soyuz VS06 rocket as it ferried ESA’s “billion-star surveyor” Gaia into space, on its way to begin a five-year mission to map the precise locations of our galaxy’s stars. From its position in orbit around L2 Gaia will ultimately catalog the positions of over a billion stars… and in the meantime it will also locate a surprising amount of Jupiter-sized exoplanets – an estimated 21,000 by the end of its primary mission in 2019.

And, should Gaia continue observations in extended missions beyond 2019 improvements in detection methods will likely turn up even more exoplanets, anywhere from 50,000 to 90,000 over the course of a ten-year mission. Gaia could very well far surpass NASA’s Kepler spacecraft for exoplanet big game hunting!

“It is not just the number of expected exoplanet discoveries that is impressive”, said former mission project scientist Michael Perryman, lead author on a report titled Astrometric Exoplanet Detection with Gaia. “This particular measurement method will give us planet masses, a complete exoplanet survey around all types of stars in our Galaxy, and will advance our knowledge of the existence of massive planets orbiting far out from their host stars”.

Watch: ESA’s Gaia Launches to Map the Milky Way

Artist's impression of a Jupiter-sized exoplanet orbiting an M-dwarf star
Artist’s impression of a Jupiter-sized exoplanet orbiting an M-dwarf star

The planets Gaia will be able to spot are expected to be anywhere from 1 to fifteen times the mass of Jupiter in orbit around Sun-like stars out to a distance of about 500 parsecs (1,630 light-years) from our own Solar System. Exoplanets orbiting smaller red dwarf stars will also be detectable, but only within about a fifth of that distance.

While other space observatories like NASA’s Kepler and CNES/ESA’s CoRoT were designed to detect exoplanets through the transit method, whereby a star’s brightness is dimmed ever-so-slightly by the silhouette of a passing planet, Gaia will detect particularly high-mass exoplanets by the gravitational wobble they impart to their host stars as they travel around them in orbit. This is known as the astrometric method.

A select few of those exoplanets will also be transiting their host stars as seen from Earth – anywhere from 25 to 50 of them – and so will be observable by Gaia as well as from many ground-based transit-detection observatories.

Read more: Gaia is “Go” for Science After a Few Minor Hiccups

After some issues with stray light sneaking into its optics, Gaia was finally given the green light to begin science observations at the end of July and has since been diligently scanning the stars from L2, 1.5 million km from Earth.

With the incredible ability to measure the positions of a billion stars each to an accuracy of 24 microarcseconds – that’s like measuring the width of a human hair from 1,000 km – Gaia won’t be “just” an unprecedented galactic mapmaker but also a world-class exoplanet detector! Get more facts about the Gaia mission here. 

The team’s findings have been accepted for publication in The Astrophysical Journal.

Source: ESA

How Big Is The Big Dipper?

How Big Is The Big Dipper?

The Big Dipper is big. Come on, it’s right there in the name. But how big is the Big Dipper if you could see it from all angles?

Ask someone to name a constellation and they’ll usually say the Big Dipper. Anyone living in the Northern hemisphere who can draw a spoon generally can recognize it in the sky.

I am about to shake the foundations of your reality with a level of pedantry that at bare minimum should earn me a solid shaking and possibly even a face punch or two. The Big Dipper is not, and never will be a constellation.

It’s an asterism, a familiar pattern of stars in the sky. There are 88 constellations, and the Big Dipper isn’t one of them. It’s a part of the constellation of Ursa Major. In fact, the handle of your familiar spoon is actually the tail of the great bear.

Now that I’ve lulled you to sleep with some painfully uninteresting specifics, which you can bust out to make yourself unpopular at your AV Club pop and chip parties whenever someone refers to the “Big D” as a constellation. I strongly suggest whatever it is you tell them, you start off with *ACTUALLY….*

And now that you’ve made it this far, I shall reward you with what you’re seeking. Just how big is that Big Dipper? There are a couple of ways to skin this bear’s tail. We can say its size relative to the amount of sky real estate it occupies, or we can do the end to end Kessel run.

This chart shows the constellation of Carina (The Keel) and includes all the stars that can be seen with the unaided eye on a clear and dark night. This region of the sky includes some of the brightest star formation regions in the Milky Way. The location of the distant, but very bright and compact, open star cluster NGC 3603 is marked. This object is not spectacular in small telescopes, appearing as just a tight clump of stars surrounded by faint nebulosity. Credit: ESO
This chart shows the constellation of Carina (The Keel) and includes all the stars that can be seen with the unaided eye on a clear and dark night. Credit: ESO

You might be surprised to know how much of the sky it takes up. Astronomers measure the sky in degrees. 360 degrees takes you all the way around the sky, and our Moon measures half a degree across.

Dubhe and Merak are the pointer stars in the Big Dipper. You could put 11 full Moons side to side in the gap between them. And about 40 full Moons from bottom corner of the Dipper to the end of its handle. So, the Big Dipper measures about 20 degrees.

Here are some easy ways to measure sizes. Your pinkie nail, held at arm’s length is half a degree. 3 fingers is 5 degrees, your fist is 10 degrees. Rocking out with devil horns are 15 degrees and hang loose or the inspector gadget phone is 25 degrees.

Trekkers and Trekkies may prefer to use the Vulcan live long and prosper measurement, which is about the same number of degrees you are from getting a romantic companion.

Big Dipper Past. Credit: Alexander Meleg
Big Dipper Past. Credit: Alexander Meleg

So, stem to stern, how big is our giant celestial ladle? I know you know those things aren’t in anything resembling a straight line. Some of the stars are closer, and some of the stars are further out. If you could make a box that completely surrounded them, how big would it be?

The closest star in the asterism is Megrez at 58 light years. and the most distant is Dubhe at 124 light-years. And yet, they all look roughly the same brightness. This means that Dubhe is a much brighter star than Megrez, and it’s just further away. Because these stars are moving in the sky what we see as a Big Dipper today didn’t always look this way. 150,000 years ago, the Big Dipper looked like this (above).

Big Dipper Future. Credit: Alexander Meleg
Big Dipper Future. Credit: Alexander Meleg

And in 150,000 years from now it’ll look like this (left). Less dipper, more plow-like. Or maybe a shoe form? Shoes are kind of like ladles, right? Super gross, terribly unhygenic ladles.

Our brains keep from exploding by being pattern making machines. We see collections of stars in the sky and turn them into shapes. But it’s all just a matter of perspective. You’ve got to be right here and now to see the sky we do. Unless you’re looking for a giant “W” in which case you’ll always find one of those. It may not be the constellation Cassiopeia, but it’ll still be a pattern in the stars.

What’s your favorite asterism? Tell us in the comments below.

Could A Planet Be as Big as a Star?

Could A Planet Be as Big as a Star?

How big do planets get? Can they get star sized?

Everybody wants the biggest stuff.

Soft drink sizes, SUV’s, baseball caps, hot dogs and truck nuts.

Astronomers mostly measure stars in terms of mass and use the Sun as a yard stick. This star is 3 solar masses, that star is 10 solar masses, and so on.

We’re pandering to those of you who want the most massive stuff as opposed to the most volumetric stuff. So if you want the biggest truck, but don’t care if it’s got the most truck atoms in one place, this might not be for you.

How massive can planets get, and where can I order a custom one more massive than a star?

It all depends on what your planet is made of. There are two flavors of planets, gas and rock.

Gas planets, like Saturn and Jupiter are pretty much made of the same stuff as our Sun.

Jupiter’s pretty big, but it’s actually only about 1/1000th the mass of our star. If you made it more massive. by crashing about 80 Jupiters together, you’d get the same amount of mass as the smallest possible red dwarf star.

And all that mass would compress and heat up the core and it would ignite as a star.

Artist's View of Extrasolar Planet HD 189733b
Artist’s View of Extrasolar Planet HD 189733b

Extrasolar planet astronomers have turned up some pretty massive gas planets. The most massive so far contains 28.7 times the mass of Jupiter.

That’s so massive it’s more like a brown dwarf.

But if you had a planet entirely made of rock, like the Earth. It would need to be much, much larger before its core would ignite in fusion.

It would need to be dozens of times the mass of our Sun.

Stars with 8-11 stellar masses can fuse silicon. So a rocky planet would need millions of times the mass of the Earth before it would have that kind of pressure and temperature.

So you could get a situation where you have more mass than the Sun in a rock flavored world, and it wouldn’t ignite as a star. It would get pretty warm though.

No star can burn iron. In fact, when stars develop iron in their core, that’s when they shut down suddenly and you get a supernova.

Feel free to collect all the iron in the Universe together and lump it into a ridiculously huge pile and no matter how long you stare at for, it’ll never boil or turn into a star.

It might turn into a black hole, though.

Artist's impression of Kepler-10c (foreground planet)
Artist’s impression of Kepler-10c (foreground planet)

The largest rocky planet ever discovered is Kepler 10c, with 17 times the mass of Earth.

Massive, but nowhere near the smallest star.

There’s new research that says that heavier elements blasted out of supernovae might collect within huge star forming nebulae, like gold in the eddies of a river. This metal could collect into actual stars. Perhaps 1 in 10,000 stars might be made of heavier elements, and not hydrogen and helium.

Metal stars.

So, it’s theoretically possible. There might be corners of the Universe where enough metal has collected together that you could end up with a star that’s made up of planety stuff. And that’s pretty amazing.

What do you think? If we found one of these giant metal stars, what should we call it?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

On Scarves, Squirrels, and the Fate of the Universe

Are you scared of the dark, personal failure, or just feeling a tad nihilistic? Maybe you’re worried about asteroids, solar flares, or the heat death of the Universe… or perhaps you’ve just misplaced your favorite winter accessory and it’s driving you… er, nuts. If any of these are applicable (or even if none is) be sure to watch the ridiculously award-winning video above by animator Eoin Duffy. (And if you’re wondering why I’m sharing this on Universe Today, well… you’ll see.)

Click. Play. Now.

Credit: Eoin Duffy. HT to the Observation Deck @io9.

Why is Everything Spherical?

Why is Everything Spherical?

Have you ever noticed that everything in space is a sphere? The Sun, the Earth, the Moon and the other planets and their moons… all spheres. Except for the stuff which isn’t spheres. What’s going on?

Have you noticed that a good portion of things in space are shaped like a sphere? Stars, planets, and moons are all spherical.

Why? It all comes down to gravity. All the atoms in an object pull towards a common center of gravity, and they’re resisted outwards by whatever force is holding them apart. The final result could be a sphere… but not always, as we’re about to learn.

Consider a glass of water. If you could see the individual molecules jostling around, you’d see them trying to fit in as snugly as they can, tension making the top of the water smooth and even.

Imagine a planet made entirely of water. If there were no winds, it would be perfectly smooth. The water molecules on the north pole are pulling towards the molecules on the south pole. The ones on the left are pulling towards the right. With all points pulling towards the center of the mass you would get a perfect sphere.

Gravity and surface tension pull it in, and molecular forces are pushing it outward. If you could hold this massive water droplet in an environment where it would remain undisturbed, eventually the water would reach a perfect balance. This is known as “hydrostatic equilibrium”.

Stars, planets and moons can be made of gas, ice or rock. Get enough mass in one area, and it’s going to pull all that stuff into a roughly spherical shape. Less massive objects, such as asteroids, comets, and smaller moons have less gravity, so they may not pull into perfect spheres.

UT Jupiter Oval BA Chris Go
Jupiter Credit: Christopher Go

As you know, most of the celestial bodies we’ve mentioned rotate on an axis, and guess what, those ones aren’t actually spheres either. The rapid rotation flattens out the middle, and makes them wider across the equator than from pole to pole. Earth is perfect example of this, and we call its shape an oblate spheroid.

Jupiter is even more flattened because it spins more rapidly. A day on Jupiter is a short 9.9 hours long. Which leaves it a distorted imperfect sphere at 71,500 km across the equator and just 66,900 from pole to pole.

Stars are similar. Our Sun rotates slowly, so it’s almost a perfect sphere, but there are stars out there that spin very, very quickly. VFTS 102, a giant star in the Tarantula nebula is spinning 100 times faster than the Sun. Any faster and it would tear itself apart from centripetal forces.

This oblate spheroid shape helps indicate why there are lots of flattened disks out there. This rapid spinning, where centripetal forces overcome gravitational attraction that creates this shape. You can see it in black hole accretion disks, solar systems, and galaxies.

Objects tend to form into spheres. If they’re massive enough, they’ll overcome the forces preventing it. But… if they’re spinning rapidly enough, they’ll flatten out all the way into disks.

How to Find Your Way Around the Milky Way This Summer

The band of the Milky Way stretches from Cygnus (left) to the Sagittarius in this wide-angle, guided photo. Credit: Bob King

Look east on a dark June night and you’ll get a face full of stars. Billions of them. With the moon now out of the sky for a couple weeks, the summer Milky Way is putting on a grand show. Some of its members are brilliant like Vega, Deneb and Altair in the Summer Triangle, but most are so far away their weak light blends into a hazy, luminous band that stretches the sky from northeast to southwest. Ever wonder just where in the galaxy you’re looking on a summer night? Down which spiral arm your gaze takes you? 

Artist's conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Artist’s conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Two different perspectives on our galaxy to help us better understand its shape. A face-on artist's view at left reveals the core and arms. At right, we see a  photo of the Milky Way in infrared light by the Cosmic Background Explorer probe showing us an edge-on perspective, the view we're 'stuck with' but dint of orbiting inside the galaxy's flat plane. Credit: NASA/JPL et. all (left) and NASA
Two different perspectives on our galaxy help us better understand its shape. A face-on artist’s view at left reveals the core, spiral arms and the sun’s position. At right, we see an edge-on perspective photographed by the Cosmic Background Explorer probe. Because the sun and planets orbit in the galaxy’s plane, we’re ‘stuck’ with an edge-on view until we build a fast-enough rocket to take us above our galactic home. Credit: NASA/JPL et. all (left) and NASA

Because all stars are too far away for us to perceive depth, they appear pasted on the sky in two dimensions. We know this is only an illusion. Stars shine from every corner of the galaxy,  congregating in its bar-shaped core, outer halo and along its shapely spiral arms. The trick is using your mind’s eye to see them that way.

Employing optical, infrared and radio telescopes, astronomers have mapped the broad outlines of the home galaxy, placing the sun in a minor spiral arm called the Orion or Local Arm some 26,000 light years from the galactic center. Spiral arms are named for the constellation(s) in which they appear. The grand Perseus Arm unfurls beyond our local whorl and beyond it, the Outer Arm. Peering in the direction of the galaxy’s core we first encounter the Sagittarius Arm, home to sumptuous star clusters and nebulae that make Sagittarius a favorite hunting ground for amateur astronomers.

Further in lies the massive Scutum-Centaurus Arm and finally the inner Norma Arm. Astronomers still disagree on the number of major arms and even their names, but the basic outline of the galaxy will serve as our foundation. With it, we can look out on a dark summer night at the Milky Way band and get a sense where we are in this magnificent celestial pinwheel.

The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is located in the direction of the constellation Sagittarius.  Stellarium
The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is in the direction of the constellation Sagittarius. The dark ‘rift’  that appears to cleave the Milky Way in two is formed of clouds of interstellar dust that blocks the light of stars beyond it. Stellarium

We’ll start with the band of the Milky Way  itself. Its ribbon-like form reflects the galaxy’s flattened, lens-like profile shown in the edge-on illustration above. The sun and planets are located within the galaxy’s plane (near the equator) where the stars are concentrated in a flattened disk some 100,000 light years across. When we look into the galaxy’s plane, billions of stars pile up across thousands of light years to create a narrow band of light we call the Milky Way. The same term is applied to the galaxy as a whole.

Since the average thickness of the galaxy is only about 1,000 light years, if you look above or below the band, your gaze penetrates a relatively short distance – and fewer stars – until entering intergalactic (starless) space. That why the rest of the sky outside of the Milky Way band has so few stars compared to the hordes we see within the band.

Here’s the galactic big picture showing the outline of the galaxy with constellations added. In this edge-on view, we see that the summertime Milky Way from Cassiopeia to Sagittarius includes the central bulge (in the direction of Sagittarius) and a hefty portion of  one side of the flattened disk:

The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy's center. This is the section we see crossing the eastern sky in June and includes the galactic center. Click to enlarge. Credit: Richard Powell with additions by the author
The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy’s center. This is the section we see crossing the eastern sky in June. Click to enlarge. Credit: Richard Powell with additions by the author

If you enlarge the map, you’ll see lines of galactic latitude and longitude much like those used on Earth but applied to the entire galaxy.  Latitude ranges from +90 degrees at the North Galactic Pole to -90 at the South Galactic Pole. Likewise for longitude. 0 degrees latitude, o degrees longitude marks the galactic center. The summer Milky Way band extends from about longitude 340 degrees in Scorpius to 110 in Cassiopeia.

Now that we know what section of the Milky Way we peer into this time of year, let’s take an imaginary rocket journey and see it all from above:

Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations  Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.
Viewed from above, we can now see that our gaze (red arrows) reaches down the Perseus Arm (toward the constellation Cygnus) and across the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and directly into the central bar. Interstellar dust obscures much of the center of the galaxy. Blue arrows show the direction we face during the winter months. Credit: NASA et. all with additions by the author.

Wow! The hazy arch of June’s Milky Way takes in a lot of galactic real estate. A casual look on a dark night takes us from Cassiopeia in the outer Perseus Arm across Cygnus in our Local Arm clear over to Sagittarius, the next arm in. Interstellar dust deposited by supernovae and other evolved stars obscures much of the center of the galaxy. If we could vacuum it all up, the galaxy’s center  – where so many stars are concentrated – would be bright enough to cast shadows.

A view showing the summer Milky Way from mid-northern latitudes with three constellations and the spiral arms to which they belong. Stellarium
A view showing the summer Milky Way from mid-northern latitudes with three prominent constellations and the spiral arms we peer into when we face them.  Stellarium

Here and there, there are windows or clearings in the dust cover that allow us to see star clouds in the Scutum-Centaurus and Norma Arms. In the map, I’ve also shown the section of Milky Way we face in winter. If you’ve ever compared the winter Milky Way band to the summer’s you’ve noticed it’s much fainter. I think you can see the reason why. In winter, we face away from the galaxy’s core and out into the fringes where the stars are sparser.

Look up the next dark night and contemplate the grand architecture of our home galaxy. If you close your eyes,  you might almost feel it spinning.

How Far Can You See in the Universe?

How Far Can You See in the Universe?

When you look into the night sky, you’re seeing tremendous distances away, even with your bare eyeball. But what’s the most distant object you can see with the unaided eye? And what if you get help with a pair of binoculars, a telescope, or even with the Hubble Space Telescope.

Standing at sea level, your head is at an altitude of 2 meters, and the horizon appears to be about 3 miles, or 5 km away. We’re able to see more distant objects if they’re taller, like buildings or mountains, or when we’re higher up in the air. If you get to an altitude of 20 meters, the horizon stretches out to about 11 km. But we can see objects in space which are even more distant with the naked eye. The Moon is 385,000 km away and the Sun is a whopping 150 million km. Visible all the way down here on Earth, the most distant object in the solar system we can see, without a telescope, is Saturn at 1.5 billion km away.

In the very darkest conditions, the human eye can see stars at magnitude 6.5 or greater. Which works about to about 9,000 individual stars. Sirius, the brightest star in the sky, is 8.6 light years. The most distant bright star, Deneb, is about 1500 light years away from Earth. If someone was looking back at us, right now, they could be seeing the election of the 52nd pope, St. Hormidas, in the 6th Century.
There are even a couple of really bright stars in the 8000 light year range, that we might just barely be able to see without a telescope. If a star detonates, we can see it much further away. The famous 1006 supernova was the brightest in history, recorded in China, Japan and the Middle East.

It was a total of 7,200 light years away and was visible in the daytime. There’s even large structures we can see. Outside the galaxy, the Large Magellanic Cloud is 160,000 light years and the Small Magellanic Cloud is almost 200,000 light years away. Unfortunately for us up North, these are only visible from Southern Hemisphere.The most distant thing we can see with our bare eyeballs is Andromeda at 2.6 million light years, which in dark skies looks like a fuzzy blob.

If we cheat and get a little help, say with binoculars – you can see magnitude 10 – fainter stars and galaxies at more than 10 million light-years away. With a telescope you can see much, much further. A regular 8-inch telescope would let you see the brightest quasars, more than 2 billion light years away. Using gravitational lensing the amazing Hubble space telescope can see galaxies, incredibly far out, where the light had left them just hundreds of millions of years after the Big Bang.

If you could see in other wavelengths, you could see different distances. Fortunately for our precious radiation sensitive organs, Gamma and X rays are blocked by our atmosphere. But if you could see in that spectrum, you could see objects exploding billions of light years away. And if you could see in the radio spectrum, you’d be able to see the cosmic microwave background radiation, surrounding us in all directions and marking the edge of the observable universe.

Wouldn’t that be cool? Well, maybe we can… just a little. Turn on your television, some of the static on the screen is this very background radiation, the afterglow of the Big Bang.

What do you think? If you could see far out in the Universe what would you like a close up view of? Tell us in the comments below.

Stunning 3D Tours of Two Well-Known Nebulae

Two videos recently released by the Hubble team take us on a tour of two famous and intriguing cosmic objects: the stellar wind-blown “celestial snow angel” Sharpless 2-106 and the uncannily equine Horsehead Nebula, imaged in infrared wavelengths by the HST.

Using Hubble imagery complemented with data from the Subaru Infrared Telescope and ESO’s Visible and Infrared Survey Telescope for Astronomy — VISTA, for short — the videos show us an approximation of the three-dimensional structures of these objects relative to the stars surrounding them, providing a perspective otherwise impossible from our viewpoint on Earth.

The stellar nursery Sharpless 2-106 is above; hop on the Horsehead Nebula tour below:
Continue reading “Stunning 3D Tours of Two Well-Known Nebulae”