ALMA Spots a Nascent Stellar Monster

ALMA/Spitzer image of a monster star in the process of forming

Even though it comprises over 99% of the mass of the Solar System (with Jupiter taking up most of the rest) our Sun is, in terms of the entire Milky Way, a fairly average star. There are lots of less massive stars than the Sun out there in the galaxy, as well as some real stellar monsters… and based on new observations from the Atacama Large Millimeter/submillimeter Array, there’s about to be one more.

Early science observations with ALMA have provided astronomers with the best view yet of a monster star in the process of forming within a dark cloud of dust and gas. Located 11,000 light-years away, Spitzer Dark Cloud 335.579-0.292 is a stellar womb containing over 500 times the mass of the Sun — and it’s still growing. Inside this cloud is an embryonic star hungrily feeding on inwardly-flowing material, and when it’s born it’s expected to be at least 100 times the mass of our Sun… a true stellar monster.

The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)
The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)

The star-forming region is the largest ever found in our galaxy.

“The remarkable observations from ALMA allowed us to get the first really in-depth look at what was going on within this cloud,” said Nicolas Peretto of CEA/AIM Paris-Saclay, France, and Cardiff University, UK. “We wanted to see how monster stars form and grow, and we certainly achieved our aim! One of the sources we have found is an absolute giant — the largest protostellar core ever spotted in the Milky Way.”

Watch: What’s the Biggest Star in the Universe?

SDC 335.579-0.292 had already been identified with NASA’s Spitzer and ESA’s Herschel space telescopes, but it took the unique sensitivity of ALMA to observe in detail both the amount of dust present and the motion of the gas within the dark cloud, revealing the massive embryonic star inside.

“Not only are these stars rare, but their birth is extremely rapid and their childhood is short, so finding such a massive object so early in its evolution is a spectacular result.”

– Team member Gary Fuller, University of Manchester, UK

The image above, a combination of data acquired by both Spitzer and ALMA (see below for separate images) shows tendrils of infalling material flowing toward a bright center where the huge protostar is located. These observations show how such massive stars form — through a steady collapse of the entire cloud, rather than through fragmented clustering.

SDC 335.579-0.292 seen in different wavelengths of light.
SDC 335.579-0.292 seen in different wavelengths of light.

“Even though we already believed that the region was a good candidate for being a massive star-forming cloud, we were not expecting to find such a massive embryonic star at its center,” said Peretto. “This object is expected to form a star that is up to 100 times more massive than the Sun. Only about one in ten thousand of all the stars in the Milky Way reach that kind of mass!”

(Although, with at least 200 billion stars in the galaxy, that means there are still 20 million such giants roaming around out there!)

Read more on the ESO news release here.

Image credits: ALMA (ESO/NAOJ/NRAO)/NASA/JPL-Caltech/GLIMPSE

Clouds of Sand and Iron Swirl in a Failed Star’s Extreme Atmosphere

This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026. NASA's Hubble and Spitzer space telescopes observed the object to learn more about its turbulent atmosphere. Brown dwarfs are more massive and hotter than planets but lack the mass required to become sizzling stars. Their atmospheres can be similar to the giant planet Jupiter's. Spitzer and Hubble simultaneously observed the object as it rotated every 1.4 hours. The results suggest wind-driven, planet-size clouds. Image credit:
This artist's conception illustrates what a "hot jupiter" might look like.

Artist’s concept of brown dwarf  2MASSJ22282889-431026 (NASA/JPL-Caltech)

The complex weather patterns within the atmosphere of a rapidly-rotating brown dwarf have been mapped in the highest detail ever by researchers using the infrared abilities of NASA’s Spitzer and Hubble space telescopes… talk about solar wind!

Sometimes referred to as failed stars, brown dwarfs form from condensing gas and dust like regular stars but never manage to gather enough mass to ignite full-on hydrogen fusion in their cores. As a result they more resemble enormous Jupiter-like planets, radiating low levels of heat while possessing bands of wind-driven eddies in their upper atmospheric layers.

Although brown dwarfs are by their nature very dim, and thus difficult to observe in visible wavelengths of light, their heat can be detected by Hubble and the Spitzer Space Telescope — both of which can “see” just fine in near- and far-infrared, respectively.

Led by researchers from the University of Arizona, a team of astronomers used these orbiting observatories on July 7, 2011 to measure the light curves from a brown dwarf named 2MASSJ22282889-431026 (2M2228 for short.) What they found was that while 2M2228 exhibited periodic brightening in both near- and far-infrared over the course of its speedy 1.43-hour rotation, the amount and rate of brightening varied between the different wavelengths detected by the two telescopes.

ssc2013-01a_Inline

“With Hubble and Spitzer, we were able to look at different atmospheric layers of a brown dwarf, similar to the way doctors use medical imaging techniques to study the different tissues in your body.”

– Daniel Apai, principal investigator, University of Arizona

This unexpected variance — or phase shift — most likely indicates different layers of cloud material and wind velocities surrounding 2M2228, swirling around the dwarf star in very much the same way as the stormy cloud bands seen on Jupiter or Saturn.

But while the clouds on Jupiter are made of gases like ammonia and methane, the clouds of 2M2228 are made of much more unusual stuff.

ssc2013-01b_Inline“Unlike the water clouds of Earth or the ammonia clouds of Jupiter, clouds on brown dwarfs are composed of hot grains of sand, liquid drops of iron, and other exotic compounds,” said Mark Marley, a research scientist at NASA’s Ames Research Center and co-author of the paper. “So this large atmospheric disturbance found by Spitzer and Hubble gives a new meaning to the concept of extreme weather.”

While it might seem strange to think about weather on a star, remember that brown dwarfs are much more gas planet-like than “real” stars. Although the temperatures of 1,100–1,600 ºF (600–700 ºC) found on 2M2228 might sound searingly hot, it’s downright chilly compared to even regular stars like our Sun, which has an average temperature of nearly 10,000 ºF (5,600 ºC). Different materials gather at varying layers of its atmosphere, depending on temperature and pressure, and can be penetrated by different wavelengths of infrared light — just like gas giant planets.

“What we see here is evidence for massive, organized cloud systems, perhaps akin to giant versions of the Great Red Spot on Jupiter,” said Adam Showman, a theorist at the University of Arizona involved in the research. “These out-of-sync light variations provide a fingerprint of how the brown dwarf’s weather systems stack up vertically. The data suggest regions on the brown dwarf where the weather is cloudy and rich in silicate vapor deep in the atmosphere coincide with balmier, drier conditions at higher altitudes — and vice versa.”

The team’s results were presented today, January 8, during the 221st meeting of the American Astronomical Society in Long Beach, CA.

Read more on the Spitzer site, and find the team’s paper in PDF form here.

Inset image: the anatomy of a brown dwarf’s atmosphere (NASA/JPL).

Life of a Star

Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Credit: ESO

Stars are kind of like people. They’re born, they live their lives, and then they die. Let’s take a look at the life of a star.

All stars start out a giant clouds of neutral hydrogen, which has been left over since the Big Bang. Some event, such as a nearby supernova explosion causes the cloud to collapse inward, and then gravity takes over. As the cloud collapses, it breaks up into different knots of material, each of which will go on to form a star.

As the cloud continues to collapse inward, the conservation of angular momentum from all the particles sets the cloud spinning. As gravity pulls it further inward, it begins spinning faster and faster and flattens out into a disk. The star forms from the concentration of material in the center of the protostellar disk, and the planets form out in the disk.

In the beginning, a star shines because of the heat of compression through gravity. But eventually the core of the star heats up to the point that nuclear fusion reactions can occur. At this point, the star blasts away the remaining dust and gas with its solar winds and enters the main sequence phase of life.

A star like our Sun will continue as a main sequence star for billions of years; slowly converting hydrogen into helium in its core. But it will eventually run out of easily usable hydrogen in its core. When this happens, the star collapses down a little and then starts to convert a shell of hydrogen into helium around the core. This additional heat puffs out the star into a red giant, causing it to become much larger.

A typical star will go through several phases of expansion and contraction as it burns through shells of hydrogen around its core. Larger stars will also switch to helium fusion in the core, and even go up the periodic table of elements, fusing heavier and heavier elements. Eventually they’ll reach the limits of gravity, running out of fuel to burn. The star will then slough off its outer layers, creating the beautiful planetary nebulae we see from Earth.

And then the star will collapse inward, becoming a white dwarf star. This is a highly compressed object that can have the mass of the Sun, but only be as small as the Moon. It’s still hot because of the residual energy it had when it was a true star, but it slowly cools down, eventually becoming a black dwarf; the same temperature as the background of the Universe.

Stars much larger than our own Sun can have a more dramatic finish. The largest stars will detonate as supernovae when they reach the end of their lives. Some will then collapse down to become neutron stars or black holes, while others explode with such energy that the entire star just blows itself apart.

We’ve written many articles about stars for Universe Today. Here’s an article about the death of stars, and here’s an article about the life cycle of stars.

If you’d like more information on stars, check out Hubblesite’s News Releases about Stars, and here’s the stars and galaxies homepage.

We’ve also recorded several episodes of Astronomy Cast about stars. Here’s a good one, Episode 12: Where Do Baby Stars Come From?

Source: NASA