Nucleosynthesis

‘Nucleo-‘ means ‘to do with nuclei’; ‘synthesis’ means ‘to make’, so nucleosynthesis is the creation of (new) atomic nuclei.

In astronomy – and astrophysics and cosmology – there are two main kinds of nucleosynthesis, Big Bang nucleosynthesis (BBN), and stellar nucleosynthesis.

In the amazingly successful set of theories which are popularly called the Big Bang theory, the early universe was very dense, and very hot. As it expanded, it cooled, and the quark-gluon plasma ‘froze’ into neutrons and protons (and other hadrons, but their role in BBN was marginal), which interacted furiously … lots and lots of nuclear reactions. The universe continued to cool, and soon became too cold for any further nuclear reactions … the unstable isotopes left then decayed, as did the neutrons not already in some nucleus or other. Most matter was then hydrogen (actually just protons; the electrons were not captured to form atoms until much later), and helium-4 (alpha particles) … with a sprinkling of deuterium, a dash of helium-3, and a trace of lithium-7.

That’s BBN.

The atoms in your body – apart from the hydrogen – were all made in stars … by stellar nucleosynthesis.

Stars on the main sequence get the energy they shine by from nuclear reactions in their cores; off the main sequence, the energy comes from nuclear reactions in a shell (or more than one shell) around the core. There are several different nuclear reaction cycles, or processes (e.g. triple alpha, s process, proton-proton chain, CNO cycle), but the end result is the fusion of hydrogen (and helium) to produce carbon, nitrogen, oxygen, … and the iron group (iron, cobalt, nickel). In the red giant phase of a star’s life, much of this matter ends up in the interstellar medium … and one day in your body.

There are other ways new nuclei can be created, in the universe (other than BBN and stellar nucleosynthesis); for example, when a high energy particle (a cosmic ray) collides with a nucleus in the interstellar medium (or the Earth’s atmosphere), it breaks it into two or more pieces (this process is called cosmic ray spallation). This produces most of the lithium (apart from the BBN 7Li), beryllium, and boron.

And one more: in a supernova, especially a core collapse supernova, huge quantities of new nuclei are synthesized, very quickly, in the nuclear reactions triggered by the flood of neutrons. This ‘r process’, as it is called (actually there’s more than one) produces most of the elements heavier than the iron group (copper to uranium), directly or by radioactive decay of unstable isotopes produced directly.

Like to learn more? Here are a few links that might interest you: Nucleosynthesis (NASA’s Cosmicopia), Big Bang Nucleosynthesis (Martin White, University of California, Berkeley), and Stellar Nucleosynthesis (Ohio University).

Plenty of Universe Today stories on this topic too; for example Stars at Milky Way Core ‘Exhale’ Carbon, Oxygen, Astronomers Simulate the First Stars Formed After the Big Bang, and Neutron Stars Have Crusts of Super-Steel.

Check out this Astronomy Cast episode, tailor-made for this Guide to Space article: Nucleosynthesis: Elements from Stars.

Sources:
NASA
Wikipedia
UC-Berkeley

Spitzer Peers Into the Small Magellanic Cloud

Spitzer Image of the Small Magellanic Cloud

This week at the AAC Conference, astronomers released a new image of the Small Magellanic Cloud (SMC, a dwarf galaxy just outside our Milky Way) from Spitzer. The purpose of the image was to study “the life cycle of dust in this galaxy.” In this life cycle, clouds of gas and dust collapse to form new stars. As those stars die, they create new dust in their atmosphere which will enrich the galaxy and, when the stars give off that dust, will be made available future generations of stars. The rate at which this process occurs determines how fast the galaxy will evolve. This research has shown that the SMC is far less evolved than our on galaxy and only has 20% of the heavy elements that our own galaxy has. Such unevolved galaxies are reminiscent of the building blocks of larger galaxies.

As with most astronomical images, this new image is taken in different filters which correspond to different wavelengths of light. The red is 24 microns and traces mainly cool dust which is part of the reservoir from which new star formation can occur. Green represents the 8 micron wavelength and traces warmer dust in which new stars are forming. The blue is even warmer at 3.6 microns and shows older stars which have already cleared out their local region of gas and dust. By combining the amount of each of these, astronomers are able to determine the current rate at which evolution is taking place in order to understand how the evolution of the SMC is progressing.

The new research shows that the tail (lower right in this image) is tidal in nature as it’s being tugged on by gravitational interactions with the Milky Way. This tidal interaction has caused new star formation in the galaxy. Surprisingly, the team of researchers also indicated that their work may indicate that the Magellanic Clouds are not gravitational bound to the Milky Way and may just be passing.

More images can be found at the JPL website.

Eta Carinae- A Naked Eye Enigma

Credit: X-ray: NASA/CXC/GSFC/M.Corcoran et al.; Optical: NASA/STScI

[/caption]

Eta Carinae is a beast of a star. At more than 100 solar masses and 4 million times the luminosity of our Sun, eta Car balances dangerously on the edge of stellar stability and it’s ultimate fate: complete self-destruction as a supernova. Recently, Hubble Space Telescope observations of the central star in the eta Carinae Nebula have raised an alert on eta Car among the professional community. What they discovered was totally unexpected.

“It used to be, that if you looked at eta Car you saw a nebula and then a faint little core in the middle” said Dr. Kris Davidson, from the University of Minnesota. “Now when you look at it, it’s basically the star with a nebula. The appearance is completely different. The light from the star now accounts for more than half the total output of eta Car. I didn’t expect that to happen until the middle of this century. It’s decades ahead of schedule. We know so little about these very massive objects, that if eta Car becomes a supernova next Thursday we should not be very surprised.”

In 1843, eta Carinae underwent a spectacular eruption, making it the second brightest star in the sky behind Sirius. During this violent episode, eta Car ejected 2 to 3 solar masses of material from the star’s polar regions. This material, traveling at speeds close to 700 km/s, formed two large, bipolar lobes, now known as the Homunculus Nebula. After the great eruption, Eta Car faded, erupted again briefly fifty years later, then settled down, around 8th magnitude. Davidson picks up the story from there.

This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.
This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.

“Around 1940, Eta suddenly changed its state. The spectrum changed and the brightness started to increase. Unfortunately, all this happened at a time when almost no one was looking at it. So we don’t know exactly what happened. All we know is that by the 1950’s, the spectrum had high excitation Helium lines in it that it didn’t have before, and the whole object, the star plus the Homunculus, was gradually increasing in brightness. In the past we’ve seen three changes of state. I suspect we are seeing another one happening now.”

During this whole time eta Car has been shedding material via its ferocious stellar winds. This has resulted in an opaque cloud of dust in the immediate vicinity of the star. Normally, this much dust would block our view to the star. So how does Davidson explain this recent, sudden increase in the luminosity of eta Carinae?

“The direct brightening we see is probably the dust being cleared away, but it can’t be merely the expansion of the dust. If it’s clearing away that fast, either something is destroying the dust, or the stellar wind is not producing as much dust as it did before. Personally, I think the stellar wind is decreasing, and the star is returning to the state it was in more than three hundred years ago. In the 1670’s, it was a fourth magnitude, blue, hot star. I think it is returning to that state. Eta Carinae has just taken this long to readjust from its explosion in the 1840’s.”

After 150 years what do we really know about one of the great mysteries of stellar physics? “We don’t understand it, and don’t believe anyone who says they do,” said Davidson.  “The problem is we don’t have a real honest-to-God model, and one of the reasons for that is we don’t have a real honest-to-God explanation of what happened in 1843.”

Can amateur astronomers with modest equipment help untangle the mysteries of eta Carinae? Davidson think so, “The main thing is to make sure everyone in the southern hemisphere knows about it, and anyone with a telescope, CCD or spectrograph should have it pointed at eta Carinae every clear night.”

Black Dwarf

Not a black dwarf ... yet (white dwarf Sirius B)

[/caption]
A black dwarf is a white dwarf that has cooled down to the temperature of the cosmic microwave background, and so is invisible. Unlike red dwarfs, brown dwarfs, and white dwarfs, black dwarfs are entirely hypothetical.

Once a star has evolved to become a white dwarf, it no longer has an internal source of heat, and is shining only because it is still hot. Like something taken from the oven, left alone a white dwarf will cool down until it is the same temperature as its surroundings. Unlike tonight’s dinner, which cools by convection, conduction, and radiation, a white dwarf cools only by radiation.

Because it’s electron degeneracy pressure that stops it from collapsing to become a black hole, a white dwarf is a fantastic conductor of heat (in fact, the physics of Fermi gasses explains the conductivity of both white dwarfs and metals!). How fast a white dwarf cools is thus easy to work out … it depends on only its initial temperature, mass, and composition (most are carbon plus oxygen; some maybe predominantly oxygen, neon and magnesium; others helium). Oh, and as at least part of the core of a white dwarf may crystallize, the cooling curve will have a bit of a bump around then.

The universe is only 13.7 billion years old, so even a white dwarf formed 13 billion years ago (unlikely; the stars which become white dwarfs take a billion years, or so, to do so) it would still have a temperature of a few thousand degrees. The coolest white dwarf observed to date has a temperature of a little less than 3,000 K. A long way to go before it becomes a black dwarf.

Working out how long it would take for a white dwarf to cool to the temperature of the CMB is actually quite tricky. Why? Because there are lots of interesting effects that may be important, effects we cannot model yet. For example, a white dwarf will contain some dark matter, and at least some of that may decay, over timespans of quadrillions of years, generating heat. Perhaps diamonds are not forever (protons too may decay); more heat. And the CMB is getting cooler all the time too, as the universe continues to expand.

Anyway, if we say, arbitrarily, that at 5 K a white dwarf becomes a black dwarf, then it’ll take at least 10^15 years for one to form.

One more thing: no white dwarf is totally alone; some have binary companions, others may wander through a dust cloud … the infalling mass generates heat too, and if enough hydrogen builds up on the surface, it may go off like a hydrogen bomb (that’s what novae are!), warming the white dwarf quite a bit.

More from Universe Today: How Does a Star Die?, Why Do Stars Die?, and Hubble Discovers a Strange Collection of White Dwarf… Dwarfs.

The End of the Universe Part 1 and Part 2 are Astronomy Cast episodes worth listening to, as are The Life of the Sun and The Life of Other Stars.

References:
NASA
NASA: Age of the Universe
Wikipedia

Hertzsprung-Russell diagram

The Hertzsprung-Russell Diagram.

[/caption]
Stars can be big or small, hot or cool, young or old. In order to properly organize all of the stars out there, astronomers have developed an organizational system called the Hertzsprung-Russell Diagram. This diagram is a scatter chart of stars that shows their absolute magnitude (or luminosity) versus their various spectral types and temperatures. The Hertzsprung-Russell diagram was developed by astronomers Ejnar Hertzsprung and Henry Norris Russell back in 1910.

The first Hertzsprung-Russell diagram showed the spectral type of stars on the horizontal axis and then the absolute magnitude on the vertical axis. Another version of the diagram plots the effective surface temperature of the star on one axis and the luminosity of the star on the other.

By using this diagram, astronomers are able to trace out the life cycle of stars, from young hot protostars, through the main sequence phase and into the dying red giant phases. It also shows how temperature and color relate to the stars at various stages in their lives.

If you look at an image of a Hertzsprung-Russell diagram, you can see there’s a diagonal line from the upper left to the lower right. Almost all stars fall along this line, and it’s known as the main sequence. In general, as luminosity goes down, temperature goes down as well. But there’s a branch that goes off horizontally at the 100 solar luminosity mark. These are the red giant stars nearing the end of their lives. They can be bright and cool, because they’re so large. But this stage usually only lasts a few million years.

Astronomers can also use the Hertzsprung-Russell diagram to estimate how far away stellar clusters are from Earth. By mapping out all the stars in the cluster and grouping them together and comparing them to groups of stars with known distances.

We have written many articles for Universe Today about the star life cycle. Here’s an article about the cluster M13, and how astronomers use the Hertzsprung-Russell diagram to study it.

Here are some good resources on the Internet for Hertzsprung-Russell diagram. Here’s a very simple version of the diagram from the University of Oregon, and here’s more information.

We have recorded an episode of Astronomy Cast about kinds of stars. Listen to it here, Episode 75 – Stellar Populations.

References:
http://cse.ssl.berkeley.edu/segwayed/lessons/startemp/l6.htm
http://cas.sdss.org/dr6/en/proj/advanced/hr/

What is the Life Cycle of Stars?

Stellar Evolution. Image credit: Chandra

Much like any living being, stars go through a natural cycle. This begins with birth, extends through a lifespan characterized by change and growth, and ends in death. Of course, we’re talking about stars here, and the way they’re born, live and die is completely different from any life form we are familiar with.

For one, the timescales are entirely different, lasting on the order of billions of years. Also, the changes they go through during their lifespan are entirely different too. And when they die, the consequences are, shall we say, much more visible? Let’s take a look at the life cycle of stars.

Molecular Clouds:

Stars start out as vast clouds of cold molecular gas. The gas cloud could be floating in a galaxy for millions of years, but then some event causes it to begin collapsing down under its own gravity. For example when galaxies collide, regions of cold gas are given the kick they need to start collapsing. It can also happen when the shockwave of a nearby supernova passes through a region.

As it collapses, the interstellar cloud breaks up into smaller and smaller pieces, and each one of these collapses inward on itself. Each of these pieces will become a star. As the cloud collapses, the gravitational energy causes it to heat up, and the conservation of momentum from all the individual particles causes it to spin.

Protostar:

As the stellar material pulls tighter and tighter together, it heats up pushing against further gravitational collapse. At this point, the object is known as a protostar. Surrounding the protostar is a circumstellar disk of additional material. Some of this continues to spiral inward, layering additional mass onto the star. The rest will remain in place and eventually form a planetary system.

Depending on the stars mass, the protostar phase of stellar evolution will be short compared to its overall life span. For those that have one Solar Mass (i.e the same mass as our Sun), it lasts about 1000,000 years.

T Tauri Star:

A T Tauri star begins when material stops falling onto the protostar, and it’s releasing a tremendous amount of energy. They are so-named because of the prototype star used to research this phase of solar evolution – T Tauri, a variable star located in the direction of the Hyades cluster, about 600 light years from Earth.

A T Tauri star may be bright, but this all comes its gravitational energy from the collapsing material. The central temperature of a T Tauri star isn’t enough to support fusion at its core. Even so, T Tauri stars can appear as bright as main sequence stars. The T Tauri phase lasts for about 100 million years, after which the star will enter the longest phase of its development – the Main Sequence phase.

Main Sequence:

Eventually, the core temperature of a star will reach the point that fusion its core can begin. This is the process that all stars go through as they convert protons of hydrogen, through several stages, into atoms of helium. This reaction is exothermic; it gives off more heat than it requires, and so the core of a main sequence star releases a tremendous amount of energy.

This energy starts out as gamma rays in the core of the star, but as it takes a long slow journey out of the star, it drops down in wavelength. All of this light pushes outward on the star, and counteracts the gravitational force pulling it inward. A star at this stage of life is held in balance – as long as its supplies of hydrogen fuel lasts.

The life cycle of a Sun-like star, from its birth on the left side of the frame to its evolution into a red giant on the right after billions of years. Credit: ESO/M. Kornmesser
The life cycle of a Sun-like star, from its birth on the left side of the frame to its evolution into a red giant on the right after billions of years. Credit: ESO/M. Kornmesser

And how long does it last? It depends on the mass of the star. The least massive stars, like red dwarfs with half the mass of the Sun, can sip away at their fuel for hundreds of billions and even trillions of years. Larger stars, like our Sun will typically sit in the main sequence phase for 10-15 billion years. The largest stars have the shortest lives, and can last a few billion, and even just a few million years.

Red Giant:

Over the course of its life, a star is converting hydrogen into helium at its core. This helium builds up and the hydrogen fuel runs out. When a star exhausts its fuel of hydrogen at its core, its internal nuclear reactions stop. Without this light pressure, the star begins to contract inward through gravity.

This process heats up a shell of hydrogen around the core which then ignites in fusion and causes the star to brighten up again, by a factor of 1,000-10,000. This causes the outer layers of the star to expand outward, increasing the size of the star many times. Our own Sun is expected to bloat out to a sphere that reaches all the way out to the orbit of the Earth.

The temperature and pressure at the core of the star will eventually reach the point that helium can be fused into carbon. Once a star reaches this point, it contracts down and is no longer a red giant. Stars much more massive than our Sun can continue on in this process, moving up the table of elements creating heavier and heavier atoms.

White Dwarf:

A star with the mass of our Sun doesn’t have the gravitational pressure to fuse carbon, so once it runs out of helium at its core, it’s effectively dead. The star will eject its outer layers into space, and then contract down, eventually becoming a white dwarf. This stellar remnant might start out hot, but it has no fusion reactions taking place inside it any more. It will cool down over hundreds of billions of years, eventually becoming the background temperature of the Universe.

We have written many articles about the live cycle of stars on Universe Today. Here’s What is the Life Cycle Of The Sun?, What is a Red Giant?, Will Earth Survive When the Sun Becomes a Red Giant?, What Is The Future Of Our Sun?

Want more information on stars? Here’s Hubblesite’s News Releases about Stars, and more information from NASA’s imagine the Universe.

We have recorded several episodes of Astronomy Cast about stars. Here are two that you might find helpful: Episode 12: Where Do Baby Stars Come From?, Episode 13: Where Do Stars Go When they Die?, and Episode 108: The Life of the Sun.

Sources: