Has it been three years already? The last mission of the space shuttle program launched on this day in 2011. We’ve included some of the most beautiful NASA images from the final flight of Atlantis.
But we’re also interested in publishing photos from Universe Today readers! If you attended STS-135 or any other launch of the space shuttle program, we’d like to hear from you. More details below the jump.
The mission’s major goal was to heft a multipurpose logistics module into space, as well as a bunch of spare parts that would be difficult to ship after the space shuttle retired. But it also served as a point of remembrance for the thousands of workers who constructed and maintained the shuttle, and the millions of people who watched its flights.
Where were you during that flight? What pictures did you take? Let us know in the comments and if you’d like to see your images published in a future Universe Today story, share your photos in our Flickr group. The photos must belong to you and be free to share. While this story focuses on STS-135, pictures from any shuttle launch or event are welcome. Let us know which one it was!
To kick off the memories, I’ll talk about where I was during the launch: I was on my way to a wedding in Toronto, Canada — five hours away from my hometown of Ottawa. I managed to pull into a parking lot just a few minutes before the launch sequence started.
I tried and tried to get a steady signal for video, but my phone was having none of it, so I instead “watched” the launch on Twitter. Luckily for me, friends were tweeting and sending text updates from watching television or in person, so I didn’t miss a thing. Then a couple of days later, my best friend and I both watched the NASA launch video together for the first time.
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Story updated[/caption]
KENNEDY SPACE CENTER, FL – Boeing expects to begin “assembly operations of our commercial CST-100 manned capsule soon at the Kennedy Space Center,” Chris Ferguson, commander of NASA’s final shuttle flight and now director of Boeing’s Crew and Mission Operations told Universe Today in an exclusive one-on-one interview about Boeing’s space efforts. In part 1, Ferguson described the maiden orbital test flights to the ISS set for 2017 – here.
In part 2, we focus our discussion on Boeings’ strategy for building and launching the CST-100 ‘space taxi’ as a truly commercial space endeavor.
To begin I asked; Where will Boeing build the CST-100?
“The CST-100 will be manufactured at the Kennedy Space Center (KSC) in Florida inside a former shuttle hanger known as Orbiter Processing Facility 3, or OPF-3, which is now [transformed into] a Boeing processing facility,” Ferguson told me. “Over 300 people will be employed.”
During the shuttle era, all three of NASA’s Orbiter Processing Facilities (OPFs) were a constant beehive of activity for thousands of shuttle workers busily refurbishing the majestic orbiters for their next missions to space. But following Ferguson’s final flight on the STS-135 mission to the ISS in 2011, NASA sought new uses for the now dormant facilities.
So Boeing signed a lease for OPF-3 with Space Florida, a state agency that spent some $20 million modernizing the approximately 64,000 square foot hanger for manufacturing by ripping out all the no longer needed shuttle era scaffolding, hardware and equipment previously used to process the orbiters between orbital missions.
Boeing takes over the OPF-3 lease in late June 2014 following an official handover ceremony from Space Florida. Assembly begins soon thereafter.
“The pieces are coming one by one from all over the country,” Ferguson explained. “Parts from our vendors are already starting to show up for our test article.
“Assembly of the test article in Florida starts soon.”
The CST-100 is being designed at Boeing’s Houston Product Support Center in Texas.
It is a reusable capsule comprised of a crew and service module that can carry a mix of cargo and up to seven crew members to the International Space Station (ISS) and must meet stringent safety and reliability standards.
How will the pressure vessel be manufactured? Will it involve friction stir welding as is the case for NASA’s Orion deep space manned capsule?
“There are no welds,” he informed.
“The pressure vessel is coming from Spincraft, an aerospace manufacturing company in Massachusetts.”
Spincraft has extensive space vehicle experience building tanks and assorted critical components for the shuttle and other rockets.
“The capsule is produced by Spincraft using a weld-free process. It’s made as a single piece by a proprietary spun form process and machined out from a big piece of metal.”
The capsule measures approximately 4.56 meters (175 inches) in diameter.
“The service module will be fabricated in Florida.”
The combined crew and service modules are about 5.03 meters (16.5 feet) in length.
“In two years in 2016, our CST-100 will look like the Orion EFT-1 capsule does now at KSC, nearly complete [and ready for the maiden test flight]. Orion is really coming along,” Ferguson beamed while contemplating a bright future for US manned spaceflight.
He is saddened that it’s been over 1000 days since his crew’s landing inside shuttle Atlantis in July 2011.
With Boeing’s long history in aircraft and aerospace manufacturing, the CST-100 is being designed and built as a truly commercial endeavor.
Therefore the spacecraft team is able to reach across Boeing’s different divisions and diverse engineering spectrum and draw on a vast wealth of in-house expertise, potentially giving them a leg up on commercial crew competitors like SpaceX and Sierra Nevada Corp.
Nevertheless, designing and building a completely new manned spaceship is a daunting task for anyone. And no country or company has done it in decades.
How hard has this effort been to create the CST-100? – And do it with very slim funding from NASA and Boeing.
“Well any preconceived notion I had on building a human rated spacecraft has been completely erased. This is really hard work to build a human rated spacecraft!” Ferguson emphasized.
“And the budget is very small – without a lucrative government contract as used in the past to build these kind of spacecraft.”
“Our budget now is an order of magnitude less than to build the shuttle – which was about $35 to $42 Billion in 2011 dollars. The budget is a lot less now.”
Read more about the travails of NASA’s commercial crew funding situation in Part 1.
The team size now is just a fraction of what it was for past US crewed spaceships.
“So to support this we have a pretty small team.”
“The CST-100 team of a couple hundred folks works very hard!”
“For comparison, the space shuttle had 30,000 people working on it at the peak. By early 2011 there were 11,000. We flew on STS-135 with only 4,000 people in July 2011.”
Boeing’s design philosophy is straightforward; “It’s a simple ride up to and back from space,” Ferguson emphasized to me.
Next we turned to the venerable Atlas V rocket that will launch Boeing’s proposed space taxi. But before it can launch people it must first be human rated, certified as safe and outfitted with an Emergency Detection System (EDS) to save astronauts lives in a split second in case of a sudden and catastrophic in-flight anomaly.
United Launch Alliance (ULA) builds the two stage Atlas V and is responsible for human rating the vehicle which has a virtually unblemished launch record of boosting a wide array of advanced US military satellites and NASA’s precious one-of-a-kind robotic science explorers like Curiosity, JUNO, MAVEN and MMS on far flung interplanetary voyages of discovery.
What modifications are required to man rate the Atlas V to launch humans on Boeing’s CST-100?
“We will launch on an Atlas V that’s being retrofitted to meet NASA’s NPR human rating standards for redundancy and the required levels of fault tolerance,” Ferguson explained.
“So the rocket will have all the safety NASA wants when it flies humans.”
“Now with the CST-100 you can do all that in a smaller package [compared to shuttle].”
“The Atlas V will also be modified by ULA to include an Emergency Detection System (EDS). It’s a system not unlike what Apollo and Gemini had, which was much more rudimentary but quite evolved for its day.”
“Their EDS would monitor critical parameters like pitch, roll, yaw rates, critical engine parameters. It measures the time to criticality. You know the time to criticality for certain failures is so short that they didn’t think humans could react to it in time. So it was essentially automated.”
“So if it [EDS] sensed large pitch or yaw excursions, it would self jettison. And the escape system would kick in automatically.”
The Atlas V is already highly reliable. The EDS is one of the few systems that had to be added for human flights?
“Yes.”
“We also wanted a better abort system performance to go with the two engine Centaur upper stage we elected to use instead of the single engine Centaur.”
The purpose is to shut down the Centaur engine firing [in an emergency].”
“The two engine Centaur has flown many times. But it has never flown on an Atlas V. So there is a little bit of recertification and qualification to be done by ULA to go along with that also.”
Does that require a lot of work?
“ULA doesn’t seem to think the work to be done is all that significant. There is some work to be done.”
So it’s not a showstopper. Can ULA meet your 2017 launch schedule?
“Yes.”
“Before an engine fails it vibrates. So when you talk about automated ‘Red Lines’ you have to be careful that first you “Do No Harm” – and not make the situation even worse.”
“So we’ll see how ULA does building this,” Ferguson stated.
The future of the CST-100 project hinges on whether NASA awards Boeing a contract to continue development and assembly work in the next round of funding (dubbed CCtCAP) from the agency’s Commercial Crew Program (CCP). The CCP seed money fosters development of a safe, reliable and new US commercial human spaceship to low Earth orbit as a public/private partnership.
NASA’s announcement of the CCP contract winners is expected around late summer 2014.
Based on my discussions with NASA officials, it seems likely that the agency could select at least two winners to move on – to spur competition and thereby innovation – from among the trio of American aerospace firms competing.
Besides Boeing’s CST-100, the SpaceXDragon and Sierra Nevada Dream Chaser vehicles are also in the running for the contract to restore America’s capability to fly humans to Earth orbit and the International Space Station (ISS) by 2017.
In Part 3 we’ll discuss with Chris Ferguson the requirements for how many and who will fly aboard the CST-100 and much more. Be sure to read Part 1 here.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
KENNEDY SPACE CENTER, FL – Boeing expects to launch the first unmanned test flight of their commercial CST-100 manned ‘space taxi’ in “early 2017,” said Chris Ferguson, commander of NASA’s final shuttle flight in an exclusive one-on-one interview with Universe Today for an inside look at Boeing’s space efforts. Ferguson is now spearheading Boeing’s human spaceflight capsule project as director of Crew and Mission Operations.
“The first unmanned orbital test flight is planned in January 2017 … and may go to the station,” Ferguson told me during a wide ranging, in depth discussion about a variety of human spaceflight topics and Boeing’s ambitious plans for their privately developed CST-100 human rated spaceship – with a little help from NASA.
Boeing has reserved a launch slot at Cape Canaveral with United Launch Alliance (ULA), but the details are not yet public.
If all goes well, the maiden CST-100 orbital test flight with humans would follow around mid-2017.
“The first manned test could happen by the end of summer 2017 with a two person crew,” he said.
Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, vying to restore America’s capability to fly humans to Earth orbit and the space station by late 2017, using seed money from NASA’s Commercial Crew Program (CCP) in a public/private partnership. The next round of contracts will be awarded by NASA about late summer 2014.
That’s a feat that America hasn’t accomplished in nearly three years.
“It’s been over 1000 days and counting since we landed [on STS-135],” Ferguson noted with some sadness as he checked the daily counter on his watch. He is a veteran of three space flights.
Since the shuttles retirement in July 2011 following touchdown of Space Shuttle Atlantis on the last shuttle flight (STS-135) with Ferguson in command, no American astronauts have launched to space from American soil on American rockets and spaceships.
The only ticket to the ISS and back has been aboard the Russian Soyuz capsule.
Chris and the Boeing team hope to change the situation soon. They are chomping at the bits to get Americas back into space from US soil and provide reliable and cost-effective US access to destinations in low Earth orbit like the ISS and the proposed private Bigelow space station.
Boeing wants to send its new private spaceship all the way to the space station starting on the very first unmanned and manned test flights currently slated for 2017, according to Ferguson.
“NASA wants us to provide [crew flight] services by November 2017,” said Ferguson, according to the terms of the CCP contact award.”
The CST-100 will launch atop a man rated Atlas V rocket and carry a mix of cargo and up to seven crew members to the ISS.
“So both the first unmanned and manned test flight will be in 2017. The first unmanned orbital flight test is currently set for January 2017. The first manned test could be end of summer 2017,” he stated.
I asked Chris to outline the mission plans for both flights.
“Our first flight, the CST-100 Orbital Flight Test – is scheduled to be unmanned.”
“Originally it was just going to be an on orbital test of the systems, with perhaps a close approach to the space station. But we haven’t precluded our ability to dock.
“So if our systems mature as we anticipate then we may go all the way and actually dock at station. We’re not sure yet,” he said.
So I asked whether he thinks the CST-100 will also go dock at the ISS on the first manned test flight?
“Yes. Absolutely. We want go to all the way to the space station,” Ferguson emphatically told me.
“For the 1st manned test flight, we want to dock at the space station and maybe spend a couple weeks there.”
“SpaceX did it [docking]. So we think we can too.”
“The question is can we make the owners of the space station comfortable with what we are doing. That’s what it really comes down to.”
“As the next year progresses and the design matures and it becomes more refined and we understand our own capability, and NASA understands our capabilities as the space station program gets more involved – then I’m sure they will put the same rigor into our plan as they did into the SpaceX and Orbital Sciences plans.”
“When SpaceX and Orbital [wanted to] come up for the grapple [rather than just rendezvous], NASA asked ‘Are these guys ready?’ That’s what NASA will ask us.”
“And if we [Boeing] are ready, then we’ll go dock at the station with our CST-100.”
“And if we’re not ready, then we’ll wait another flight and go to the station the next time. It’s just that simple.”
“We looked at it and this is something we can do.”
“There are a lot of ways we have to make NASA and ourselves happy. But as a company we feel we can go do it,” Ferguson stated.
So the future looks promising.
But the schedule depends entirely on NASA funding levels approved by Congress. And that vital funding has been rather short on supply. It has already caused significant delays to the start of the space taxi missions for all three companies contending for NASA’s commercial crew contracts because of the significant slashes to the agency’s CCP budget request, year after year.
In fact the schedule has slipped already 18 months to the right compared to barely a few years ago.
So I asked Chris to discuss the CCP funding cuts and resulting postponements – which significantly affected schedules for Boeing, SpaceX and Sierra Nevada.
Here it is in a nutshell.
“No Bucks, No Buck Rogers,” explained Ferguson.
“The original plan was to conduct both the unmanned and manned CST-100 test flights in 2015.”
“Originally, we would have flown the unmanned orbital test in the summer of 2015. The crewed test would have been at the end of 2015.”
“So both flights are now a full year and a half later.” Ferguson confirmed.
“For the presidents [CCP] funding requests for the past few years of roughly about $800 million, they [Congress] only approved about half. It was significantly less than the request.”
Now at this very moment Congress is deliberating NASA’s Fiscal 2015 budget.
NASA Administrator Charles Bolden has said he will beg Congress to approve full funding for the commercial crew program this year – on his hands and knees if necessary.
Otherwise there will be further delays to the start of the space taxi missions. And the direct consequence is NASA would be forced to continue buying US astronaut rides from the Russians at $70 Million per seat. All against the backdrop of Russian actions in the Ukraine where deadly clashes potentially threaten US access to the ISS in a worst case scenario if the ongoing events spin even further out of control and the West ratchets up economic sanctions against Russia.
The CST-100 is designed to be a “simple ride up to and back from space,” Ferguson emphasized to me.
It is being designed at Boeing’s Houston Product Support Center in Texas.
In Part 2 of my interview, Chris Ferguson will discuss the details about the design, how and where the CST-100 capsule will be manufactured at a newly renovated, former space shuttle facility at NASA’s Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Two years after space shuttle Atlantis launched into space, it’s still looking like it returned from a long journey. It “bears the scars, scorch marks and space dust of its last mission,” writes the Kennedy Space Center Visitors’ Center.
That’s deliberate, though. In late June, visitors to the Orlando-area attraction got the chance to get nose-to-nose with this orbiter in a new exhibit. Atlantis, unlike similar exhibits of other shuttles so far, is perched on a precise 43.21-degree angle to give a view previously afforded only to astronauts.
The $100 million, 90,000-square-foot exhibit also has an International Space Station gallery, a simulated shuttle launch ride, and training simulators for landing, space station docking and moving the robotic Canadarm.
Today (July 8) marked the two-year launch anniversary of STS-135, the last journey of both Atlantis and the shuttle program. Its main goal was to haul a huge load of supplies and spare parts to the space station. The event also generated a NASA Social, which many of the participants (including Universe Today‘s Jason Major) recalled today:
The next time that American astronauts launch to space from American soil it will surely be aboard one of the new commercially built “space taxis” currently under development by a trio of American aerospace firms – Boeing, SpaceX and Sierra Nevada Corp – enabled by seed money from NASA’s Commercial Crew Program (CCP).
Boeing has moved considerably closer towards regaining America’s lost capability to launch humans to space when the firm’s privately built CST-100 crew capsule achieved two key new milestones on the path to blastoff from Florida’s Space Coast.
The CST-100 capsule is designed to carry a crew of up to 7 astronauts on missions to low-Earth orbit (LEO) and the International Space Station (ISS) around the middle of this decade.
Boeing’s crew transporter will fly to space atop the venerable Atlas V rocket built by United Launch Alliance (ULA) from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.
The Boeing and ULA teams recently completed the first wind tunnel tests of a 7 percent scale model of the integrated capsule and Atlas V rocket (photo above) as well as thrust tests of the modified Centaur upper stage.
The work is being done under the auspices of NASA’s Commercial Crew Integrated Capability (CCiCap) initiative, intended to make commercial human spaceflight services available for both US government and commercial customers, such as the proposed Bigelow Aerospace mini space station.
Since its maiden liftoff in 2002, the ULA Atlas V rocket has flawlessly launched numerous multi-billion dollar NASA planetary science missions like the CuriosityMars rover, Juno Jupiter orbiter and New Horizons mission to Pluto as well as a plethora of top secret Air Force spy satellites.
But the two stage Atlas V has never before been used to launch humans to space – therefore necessitating rigorous testing and upgrades to qualify the entire vehicle and both stages to meet stringent human rating requirements.
“The Centaur has a long and storied past of launching the agency’s most successful spacecraft to other worlds,” said Ed Mango, NASA’s CCP manager at the agency’s Kennedy Space Center in Florida. “Because it has never been used for human spaceflight before, these tests are critical to ensuring a smooth and safe performance for the crew members who will be riding atop the human-rated Atlas V.”
The combined scale model CST-100 capsule and complete Atlas V rocket were evaluated for two months of testing this spring inside an 11- foot diameter transonic wind tunnel at NASA’s Ames Research Center in Moffett Field, Calif.
“The CST-100 and Atlas V, connected with the launch vehicle adaptor, performed exactly as expected and confirmed our expectations of how they will perform together in flight,” said John Mulholland, Boeing vice president and program manager for Commercial Programs.
Testing of the Centaur stage centered on characterizing the flow of liquid oxygen from the oxygen tank through the liquid oxygen-feed duct line into the pair of RL-10 engines where the propellant is mixed with liquid hydrogen and burned to create thrust to propel the CST-100 into orbit.
Boeing is aiming for an initial three day manned orbital test flight of the CST-100 during 2016, says Mulholland.
But that date is dependent on funding from NASA and could easily be delayed by the ongoing sequester which has slashed NASA’s and all Federal budgets.
Chris Ferguson, the commander of the final shuttle flight (STS-135) by Atlantis, is leading Boeing’s flight test effort.
Boeing has leased one of NASA’s Orbiter Processing Facility hangers (OPF-3) at the Kennedy Space Center (KSC) for the manufacturing and assembly of its CST-100 spacecraft.
Mulholland told me previously that Boeing will ‘cut metal’ soon. “Our first piece of flight design hardware will be delivered to KSC and OPF-3 around mid 2013.”
NASA’s CCP program is fostering the development of the CST-100 as well as the SpaceX Dragon and Sierra Nevada Dream Chaser to replace the crew capability of NASA’s space shuttle orbiters.
The Atlas V will also serve as the launcher for the Sierra Nevada Dream Chaser space taxi.
Since the forced retirement of NASA’s shuttle fleet in 2011, US and partner astronauts have been 100% reliant on the Russians to hitch a ride to the ISS aboard the Soyuz capsules – at a price tag exceeding $60 Million per seat.
Simultaneously on a parallel track NASA is developing the Orion crew capsule and SLS heavy lift booster to send humans to the Moon and deep space destinations including Asteroids and Mars.
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:
June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM
A combined team of American and Canadian engineers has taken a major first step forward by successfully applying new, first-of-its-kind robotics research conducted aboard the International Space Station (ISS) to the eventual repair and refueling of high value orbiting space satellites, and which has the potential to one day bring about billions of dollars in cost savings for the government and commercial space sectors.
Gleeful researchers from both nations shouted “Yeah !!!” – after successfully using the Robotic Refueling Mission (RRM) experiment – bolted outside the ISS- as a technology test bed to demonstrate that a remotely controlled robot in the vacuum of space could accomplish delicate work tasks requiring extremely precise motion control. The revolutionary robotics experiment could extend the usable operating life of satellites already in Earth orbit that were never even intended to be worked upon.
“After dedicating many months of professional and personal time to RRM, it was a great emotional rush and a reassurance for me to see the first video stream from an RRM tool,” said Justin Cassidy in an exclusive in-depth interview with Universe Today. Cassidy is RRM Hardware Manager at the NASA Goddard Spaceflight Center in Greenbelt, Maryland.
And the RRM team already has plans to carry out even more ambitious follow on experiments starting as soon as this summer, including the highly anticipated transfer of fluids to simulate an actual satellite refueling that could transfigure robotics applications in space – see details below !
All of the robotic operations at the station were remotely controlled by flight controllers from the ground. The purpose of remote control and robotics is to free up the ISS human crew so they can work on other important activities and conduct science experiments requiring on-site human thought and intervention.
Over a three day period from March 7 to 9, engineers performed joint operations between NASA’s Robotic Refueling Mission (RRM) experiment and the Canadian Space Agency’s (CSA) robotic “handyman” – the Dextre robot. Dextre is officially dubbed the SPDM or Special Purpose Dexterous Manipulator.
On the first day, robotic operators on Earth remotely maneuvered the 12-foot (3.7 meter) long Dextre “handyman” to the RRM experiment using the space station’s Canadian built robotic arm (SSRMS).
Dextre’s “hand” – technically known as the “OTCM” – then grasped and inspected three different specialized satellite work tools housed inside the RRM unit . Comprehensive mechanical and electrical evaluations of the Safety Cap Tool, the Wire Cutter and Blanket Manipulation Tool, and the Multifunction Tool found that all three tools were functioning perfectly.
“Our teams mechanically latched the Canadian “Dextre” robot’s “hand” onto the RRM Safety Cap Tool (SCT). The RRM SCT is the first on orbit unit to use the video capability of the Dextre OTCM hand,” Cassidy explained.
“At the beginning of tool operations, mission controllers mechanically drove the OTCM’s electrical umbilical forward to mate it with the SCT’s integral electronics box. When the power was applied to that interface, our team was able to see that on Goddard’s large screen TVs – the SCT’s “first light” video showed a shot of the tool within the RRM stowage bay (see photo).
“Our team burst into a shout out of “Yeah!” to commend this successful electrical functional system checkout.”
Dextre then carried out assorted tasks aimed at testing how well a variety of representative gas fittings, valves, wires and seals located on the outside of the RRM module could be manipulated. It released safety launch locks and meticulously cut two extremely thin satellite lock wires – made of steel – and measuring just 20 thousandths of an inch (0.5 millimeter) in diameter.
“The wire cutting event was just minutes in duration. But both wire cutting tasks took approximately 6 hours of coordinated, safe robotic operations. The lock wire had been routed, twisted and tied on the ground at the interface of the Ambient Cap and T-Valve before flight,” said Cassidy.
This RRM exercise represents the first time that the Dextre robot was utilized for a technology research and development project on the ISS, a major expansion of its capabilities beyond those of robotic maintenance of the massive orbiting outpost.
Video Caption: Dextre’s Robotic Refueling Mission: Day 2. The second day of Dextre’s most demanding mission wrapped up successfully on March 8, 2012 as the robotic handyman completed his three assigned tasks. Credit: NASA/CSA
Altogether the three days of operations took about 43 hours, and proceeded somewhat faster than expected because they were as close to nominal as could be expected.
“Days 1 and 2 ran about 18 hours,” said Charles Bacon, the RRM Operations Lead/Systems Engineer at NASA Goddard, to Universe Today. “Day 3 ran approximately 7 hours since we finished all tasks early. All three days baselined 18 hours, with the team working in two shifts. So the time was as expected, and actually a little better since we finished early on the last day.”
“For the last several months, our team has been setting the stage for RRM on-orbit demonstrations,” Cassidy told me. “Just like a theater production, we have many engineers behind the scenes who have provided development support and continue to be a part of the on-orbit RRM operations.”
“At each stage of RRM—from preparation, delivery, installation and now the operations—I am taken aback by the immense efforts that many diverse teams have contributed to make RRM happen. The Satellite Servicing Capabilities Office at NASA’s Goddard Space Flight Center teamed with Johnson Space Center, Kennedy Space Center (KSC), Marshall Space Flight Center and the Canadian Space Agency control center in St. Hubert, Quebec to make RRM a reality.”
“The success of RRM operations to date on the International Space Station (ISS) using Dextre is a testament to the excellence of NASA’s many organizations and partners,” Cassidy explained.
The three day “Gas Fittings Removal task” was an initial simulation to practice techniques essential for robotically fixing malfunctioning satellites and refueling otherwise nominally operating satellites to extend to hopefully extend their performance lifetimes for several years.
Ground-based technicians use the fittings and valves to load all the essential fluids, gases and fuels into a satellites storage tanks prior to launch and which are then sealed, covered and normally never accessed again.
“The impact of the space station as a useful technology test bed cannot be overstated,” says Frank Cepollina, associate director of the Satellite Servicing Capabilities Office (SSCO) at NASA’s Goddard Space Flight Center in Greenbelt, Md.
“Fresh satellite-servicing technologies will be demonstrated in a real space environment within months instead of years. This is huge. It represents real progress in space technology advancement.”
Four more upcoming RRM experiments tentatively set for this year will demonstrate the ability of a remote-controlled robot to remove barriers and refuel empty satellite gas tanks in space thereby saving expensive hardware from prematurely joining the orbital junkyard.
The timing of future RRM operations can be challenging and depends on the availability of Dextre and the SSRMS arm which are also heavily booked for many other ongoing ISS operations such as spacewalks, maintenance activities and science experiments as well as berthing and/or unloading a steady stream of critical cargo resupply ships such as the Progress, ATV, HTV, Dragon and Cygnus.
Flexibility is key to all ISS operations. And although the station crew is not involved with RRM, their activities might be.
“While the crew itself does not rely on Dextre for their operations, Dextre ops can indirectly affect what the crew can or can’t do,” Bacon told me. “For example, during our RRM operations the crew cannot perform certain physical exercise activities because of how that motion could affect Dextre’s movement.”
Here is a list of forthcoming RRM operations – pending ISS schedule constraints:
Refueling (summer 2012) – After Dextre opens up a fuel valve that is similar to those commonly used on satellites today, it will transfer liquid ethanol into it through a sophisticated robotic fueling hose.
Thermal Blanket Manipulation (TBD 2012)- Dextre will practice slicing off thermal blanket tape and folding back a thermal blanket to reveal the contents underneath.
Electrical Cap Removal (TBD 2012)- Dextre will remove the caps that would typically cover a satellite’s electrical receptacle.
http://youtu.be/LboVN38ZdgU
RRM was carried to orbit inside the cargo bay of Space Shuttle Atlantis during July 2011 on the final shuttle mission (STS-135) of NASA’s three decade long shuttle program and then mounted on an external work platform on the ISS backbone truss by spacewalking astronauts. The project is a joint effort between NASA and CSA.
“This is what success is all about. With RRM, we are truly paving the way for future robotic exploration and satellite servicing,” Cassidy concluded.
…….
March 24 (Sat): Free Lecture by Ken Kremer at the New Jersey Astronomical Association, Voorhees State Park, NJ at 830 PM. Topic: Atlantis, the End of Americas Shuttle Program, RRM, Orion, SpaceX, CST-100 and the Future of NASA Human & Robotic Spaceflight
Make or break time for NASA’s big bet on commercial space transportation is at last in view. NASA has announced Feb. 7, 2012 as the launch target date for the first attempt by SpaceX to dock the firms Dragon cargo resupply spacecraft to the International Space Station (ISS), pending final safety reviews.
The Feb. 7 flight will be the second of the so-called Commercial Orbital Transportation Services (COTS) demonstration flights to be conducted by Space Exploration Technologies, or SpaceX, under a contact with NASA.
Several months ago SpaceX had requested that the objectives of the next two COTS flights, known as COTS 2 and COTS 3, be merged into one very ambitious flight and allow the Dragon vehicle to actually dock at the ISS instead of only accomplishing a rendezvous test on the next flight and waiting until the third COTS flight to carry out the final docking attempt.
The Dragon will remain attached to the ISS for about one week and astronauts will unload the cargo. Then the spacecraft will depart, re-enter the Earth atmosphere splashdown in the Pacific Ocean off the coast of California.
“The cargo is hundreds of pounds of astronaut provisions,” SpaceX spokeswoman Kirstin Grantham told Universe Today.
“SpaceX has made incredible progress over the last several months preparing Dragon for its mission to the space station,” said William Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Mission Directorate. “We look forward to a successful mission, which will open up a new era in commercial cargo delivery for this international orbiting laboratory.”
Since the forced retirement of NASA’s Space Shuttle following the final fight with orbiter Atlantis in July 2011 on the STS-135 mission, the US has had absolutely zero capability to launch either supplies or human crews to the massive orbiting complex, which is composed primarily of US components.
In a NASA statement, Gerstenmaier added, “There is still a significant amount of critical work to be completed before launch, but the teams have a sound plan to complete it and are prepared for unexpected challenges. As with all launches, we will adjust the launch date as needed to gain sufficient understanding of test and analysis results to ensure safety and mission success.”
SpaceX lofted the COTS 1 flight a year ago on Dec. 8, 2010 and became the first private company to successfully launch and return a spacecraft from Earth orbit. SpaceX assembled both the Falcon 9 booster rocket and the Dragon cargo vessel from US built components.
The new demonstration flight is now dubbed COTS 2/3. The objectives include Dragon safely demonstrating all COTS 2 operations in the vicinity of the ISS by conducting check out procedures and a series of rendezvous operations at a distance of approximately two miles and the ability to abort if necessary.
The European ATV and Japanese HTV cargo vessels carried out a similar series of tests during their respective first flights.
After accomplishing all the rendezvous tasks, Dragon will then receive approval to begin the COTS 3 activities, gradually approaching the ISS from below to within a few meters.
Specially trained astronauts working in the Cupola will then reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into place onto the Earth-facing side of the Harmony node. The operations are expected to take several hours.
If successful, the Feb. 7 SpaceX demonstration flight will become the first commercial mission to visit the ISS and vindicate the advocates of commercial space transportation who contend that allowing private companies to compete for contracts to provide cargo delivery services to the ISS will result in dramatically reduced costs and risks and increased efficiencies.
The new commercial paradigm would also thereby allow NASA to focus more of its scarce funds on research activities to come up with the next breakthroughs enabling bolder missions to deep space.
If the flight fails, then the future of the ISS could be in serious jeopardy in the medium to long term because there would not be sufficient alternative launch cargo capacity to maintain the research and living requirements for a full crew complement of six residents aboard the orbiting laboratory.
Feb. 7 represents nothing less than ‘High Stakes on the High Frontier’.
NASA is all about bold objectives in space exploration in both the manned and robotic arenas – and that’s perfectly represented by the agencies huge gamble with the commercial cargo and commercial crew initiatives.
A great look back at the final launch of the space shuttle program. Includes some footage I hadn’t seen before, such as views of the crowds gathered to watch the launch, and features all the great quotes from Mike Leinbach, Chris Ferguson, George Diller and Rob Navias.
Following the majestic predawn touchdown of Space Shuttle Atlantis at the Kennedy Space Center (KSC) to close out the Space Shuttle Era, the final crew of Atlantis, NASA Administrator Charles Bolden and KSC Director Bob Cabana thanked the Space Shuttle workforce for their dedication and hard work at an employee appreciation event held outside the processing hangers where the orbiters were prepared for the 135 shuttle missions flown by NASA over more than thirty years.
The four person crew of Atlantis on the STS-135 mission flew a special commemorative banner millions of miles to the International Space Station and back in honor of the thousands of workers who processed, launched and landed America’s five space shuttles. They unfurled the banner at the employee event at KSC in tribute to the shuttle workers.
“It’s great to be here in sunny Florida,” said STS 135 Commander Chris Ferguson. “Mike Leinbach [ the Space Shuttle Launch Director] said there was no way he’d let us land in California.”
“We want to express our gratitude on behalf of the astronaut office for everything you have done here at KSC, the safety you have built into the vehicles, the meticulous care that you take of the orbiter. As soon as we got on orbit, I was absolutely amazed that everything in Atlantis works so well. Everything looks beautiful on the inside.”
“I hope you all believe that every time we go, we take a little bit of every one of you with us,” Ferguson emphasized.
Atlantis was parked at the event as a backdrop for photo opportunities with the thousands of shuttle workers in attendance – along with over a hundred journalists including the Universe Today team of Alan Walters and Ken Kremer.
“Like Chris said, our one landing option was getting back to Florida and you all rather than anywhere else. It felt like being home again. Thank you for everything you have all done over the last 30+ years,” said Doug Hurley.
“We treated Atlantis with the utmost respect because we see firsthand how you process this vehicle and it is your baby,” said Rex Waldheim. “It is clean and well cared for. We did that for you because you all did such a great job preparing it for us.”
“You are such a special work force,” added Sandy Magnus. “There is no workforce like the space program workforce anywhere in the world. The pride, care, dedication and passion you take in your work is what makes it possible to have these very challenging missions and to succeed. You have to do everything right all of the time. And you DO. And you make it look easy!! Congratulations!”
The STS-135 crew then unfurled the colorful banner taken to the ISS aboard Atlantis to commemorate NASA’s Space Shuttle Era.
“We took this banner with us to space and this is our way of telling you that you guys rock ! We will present this to Mike Leinbach and Bob Cabana as just a small token of our appreciation for all the work you’ve done for us. Thank you for such a wonderful vehicle,” Ferguson summed up.
The crew then waved good bye to the thousands of shuttle workers, posed with Atlantis one last time and departed with their families for a homecoming celebration at their training base at the Johnson Space Center in Houston, Texas.
Atlantis was then towed a few hundred yards (meters) and came to rest inside the Orbiter Processing Facility to conclude her final spaceflight journey as the last of NASA’s flight worthy Space Shuttle Orbiters. She has began decommissioning activities due to last several months to prepare for her future retirement home at the Kennedy Space Center Visitor Complex (KSCVC) just a few miles (km) away.
Atlantis permanent new abode at KSCVC is set to open in 2013 where she will be genuinely displayed bearing scorch marks from reentry and as though “In Flight” with payload bays doors wide open for the general public to experience reality up close.
For some 1500 shuttle workers, the day’s proceedings were both joyous and bittersweet – as their last full day of employment and last chance to bask in the glow of the triumphant conclusion of the Shuttle Era.
Space Shuttle Atlantis closed out NASA’s Space Shuttle Era with a safe touchdown on July 21, 2011 at the Kennedy Space Center in Florida at the conclusion of the STS-135 mission, the 135th and final shuttle mission.
I was extremely fortunate to be an eyewitness to history and one of the lucky few journalists permitted by NASA to follow along as Atlantis took her historic final journey back from wheels stop at Runway 15 at the Shuttle Landing Facility as a flight worthy orbiter.
A convoy of 25 specialized vehicles safe each orbiter after landing. Some four hours later, Atlantis was towed off the runway with a diesel powered tractor for about 2 miles along the tow way leading to the Orbiter Processing Facility which lies adjacent to the Vehicle Assembly Building (VAB) at KSC.
The STS-135 crew consisted of Shuttle Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim.
Check out my Towback Photo Album below, and prior album from wheels stop at the shuttle runway earlier in the day, here: