Hubble’s most remarkable feature might be its longevity. The Hubble has been operating for almost 32 years and has fed us a consistent diet of science—and eye candy—during that time. For 13 of its 32 years, it’s been checking in on a protoplanet forming in a young solar system about 530 light-years away.
Planet formation is always a messy process. But in this case, the planet’s formation is an “intense and violent process,” according to the authors of a new study.
As the planets of our Solar System demonstrate, understanding the solar dynamics of a system is a crucial aspect of determining habitability. Because of its protective magnetic field, Earth has maintained a fluffy atmosphere for billions of years, ensuring a stable climate for life to evolve. In contrast, other rocky planets that orbit our Sun are either airless, have super-dense (Venus), or have very thin atmospheres (Mars) due to their interactions with the Sun.
In recent years, astronomers have been on the lookout for this same process when studying extrasolar planets. For instance, an international team of astronomers led by the National Astronomical Observatory of Japan (NAOJ) recently conducted follow-up observations of two Super-Earths that orbit very closely to their respective stars. These planets, which have no thick primordial atmospheres, represent a chance to investigate the evolution of atmospheres on hot rocky planets.
Since time immemorial, philosophers and scholars have contemplated the beginning of time and even tried to determine when all things began. It’s only been in the age of modern astronomy that we’ve come close to answering that question with a fair degree of certainty. According to the most widely-accepted cosmological models, the Universe began with the Bang Bang roughly 13.8 billion years ago.
Even so, astronomers are still uncertain about what the early Universe looked like since this period coincided with the cosmic “Dark Ages.” Therefore, astronomers keep pushing the limits of their instruments to see when the earliest galaxies formed. Thanks to new research by an international team of astronomers, the oldest and most distant galaxy observed in our Universe to date (GN-z11) has been identified!
The field of exoplanet photography is just getting underway, with astronomers around the world striving to capture clear images of the more than 4000 exoplanets discovered to date. Some of these exoplanets are more interesting to image and research than others. That is certainly the case for a type of exoplanet called a brown dwarf. And now scientists have captured the first ever image of exactly that type of exoplanet.
Japanese astronomers have captured images of an astonishing 1800 supernovae. 58 of these supernovae are the scientifically-important Type 1a supernovae located 8 billion light years away. Type 1a supernovae are known as ‘standard candles’ in astronomy.
According to the Big Bang Theory of cosmology, the Universe began roughly 13.8 billion years ago as all matter in the Universe began to expand from a single point of infinite density. Over the next few billion years, the fundamental forces of the Universe began to separate from each other and subatomic particles and atoms formed. In time, this first stars and galaxies formed, giving rise to the large-scale structure of the Universe.
However, it was only by roughly 1 billion years after the Big Bang that the Universe began to become transparent. By about 12 billion years ago, intergalactic space was filled with gas that was much less transparent than it is now, with variations from place to place. To address why this was, a team of astronomers recently used the world’s largest telescope to search for galaxies of young stars in a huge volume of space.
The study which details their findings recently appeared in The Astrophysical Journal under the title “Evidence for Large-scale Fluctuations in the Metagalactic Ionizing Background Near Redshift Six“. The study was led by George D. Becker, a professor of astrophysics at the University of California Riverside, and included members from the University of California, Los Angeles (UCLA), and the University of California, Santa Barbara (UCSB).
For the sake of their study, the team used the Subaru Telescope – the world’s largest telescope, located at the Mauna Kea Observatories in Hawaii – to examine a 500 million light-year volume of space as it existed roughly 12 billion years ago. Using this data, the team considered two possible models that could account for the variations in transparency that astronomers have been seeing during this cosmic epoch.
On the one hand, if the region contained a small number of galaxies, the team would conclude that startlight could not penetrate very far through the intergalactic gas. On the other hand, if it contained an unusually large number of galaxies, this would indicate that the region had cooled significantly over the previous several hundred million years. Prior to their observations, Beck and his team were expecting to find that it was the latter.
However, what they found was that the region contained far fewer galaxies than expected – which indicated that the opaqueness of the region was due to a lack of starlight. As Steven Furlanetto, a UCLA professor of astronomy and a co-author of the research, explained in a recent UCLA press release:
“It was a rare case in astronomy where two competing models, both of which were compelling in their own way, offered precisely opposite predictions, and we were lucky that those predictions were testable… It is not that the opacity is a cause of the lack of galaxies. Instead, it’s the other way around.”
In addition to addressing an enduring mystery in astronomy, this study also has implications for our understanding of how the Universe evolved over time. According to our current cosmological models, the period that took place roughly 380,000 t0 150 million years after the Big Bang is known as the “Dark Ages”. Most of the photons in the Universe were interacting with electrons and protons at this time, which means radiation from this period is undetectable by our current instruments.
However, by about 1 billion years after the Big Bang, the first stars and galaxies had formed. It is further believed that ultraviolet light from these first galaxies filled the Universe and is what allowed for the gas in deep space to become transparent. This would have occurred earlier in regions with more galaxies, the astronomers concluded, hence why there are variations in transparency.
In short, if more ultraviolet radiation from galaxies would lead to greater transparency in the early Universe, then the existence of fewer nearby galaxies would cause certain regions to be murkier. In the future, Becker and his team hope to further study this region of space and others like it in the hope that it will reveal clues about how the first galaxies illuminated the Universe during that early period, which remains a subject of inquiry at this point.
This research is also expected to shed more light on how the early Universe evolved, gradually giving rise to the one that are familiar with today. And as next-generation instruments are able to probe deeper into space (and hence, further back in time), we just may come to understand how existence as we know it all unfolded.
In 1926, famed astronomer Edwin Hubble developed his morphological classification scheme for galaxies. This method divided galaxies into three basic groups – Elliptical, Spiral and Lenticular – based on their shapes. Since then, astronomers have devoted considerable time and effort in an attempt to determine how galaxies have evolved over the course of billions of years to become these shapes.
One of th most widely-accepted theories is that galaxies changed by merging, where smaller clouds of stars – bound by mutual gravity – came together, altering the size and shape of a galaxy over time. However, a new study by an international team of researchers has revealed that galaxies could actually assumed their modern shapes through the formation of new stars within their centers.
This involved using ground-based telescopes to study 25 galaxies that were at a distance of about 11 billion light-years from Earth. At this distance, the team was seeing what these galaxies looked like 11 billion years ago, or roughly 3 billion years after the Big Bang. This early epoch coincides with a period of peak galaxy formation in the Universe, when the foundations of most galaxies were being formed. As Dr. Tadaki indicated in a NAOJ press release:
“Massive elliptical galaxies are believed to be formed from collisions of disk galaxies. But, it is uncertain whether all the elliptical galaxies have experienced galaxy collision. There may be an alternative path.”
Capturing the faint light of these distant galaxies was no easy task and the team needed three ground-based telescopes to resolve them properly. They began by using the NAOJ’s 8.2-m Subaru Telescope in Hawaii to pick out the 25 galaxies in this epoch. Then they targeted them for observations with the NASA/ESA Hubble Space Telescope (HST) and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.
Whereas the HST captured light from stars to discern the shape of the galaxies (as they existed 11 billion years ago), the ALMA array observed submillimeter waves emitted by the cold clouds of dust and gas – where new stars are being formed. By combining the two, they were able to complete a detailed picture of how these galaxies looked 11 billion years ago when their shapes were still evolving.
What they found was rather telling. The HST images indicated that early galaxies were dominated by a disk component, as opposed to the central bulge feature we’ve come to associate with spiral and lenticular galaxies. Meanwhile, the ALMA images showed that there were massive reservoirs of gas and dust near the centers of these galaxies, which coincided with a very high rate of star formation.
To rule out alternate possibility that this intense star formation was being caused by mergers, the team also used data from the European Southern Observatory’s Very Large Telescope (VLT) – located at the Paranal Observatory in Chile – to confirm that there were no indications of massive galaxy collisions taking place at the time. As Dr. Tadaki explained:
“Here, we obtained firm evidence that dense galactic cores can be formed without galaxy collisions. They can also be formed by intense star formation in the heart of the galaxy.”
These findings could lead astronomers to rethink their current theories about galactic evolution and howthey came to adopt features like a central bulge and spiral arms. It could also lead to a rethink of our models regarding cosmic evolution, not to mention the history of own galaxy. Who knows? It might even cause astronomers to rethink what might happen in a few billion years, when the Milky Way is set to collide with the Andromeda Galaxy.
As always, the further we probe into the Universe, the more it reveals. With every revelation that does not fit our expectations, our hypotheses are forced to undergo revision.
Thanks to the deployment of the Kepler mission, thousands of extrasolar planet candidates have been discovered. Using a variety of indirect detection methods, astronomers have detected countless gas giants, super Earths, and other assorted bodies orbiting distant stars. And one terrestrial planet (Proxima b) has even been found lurking in the closest star system to Earth – Proxima Centauri.
The next step, quite logically, is to observe these planets directly. Hence why the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument was commissioned at the National Astronomical Observatory of Japan (NAOJ) in Mauna Kea, Hawaii. Designed to allow for the direct detection of planets around other stars, this instrument will help ensure that the Subaru Telescope remains on the cutting-edge of exoplanet hunting.
As of January 22nd, 2017, some 3,565 exoplanet candidates have been detected in 2,675 planetary systems, and over 2000 of these have been confirmed. However, as already noted, the vast majority of these have been detected by indirect means – generally through the measurement of a star’s radial velocity, or by measuring dips in a star’s luminosity as an exoplanet passes in front of it (i.e. the transit method).
Adaptive Optics, meanwhile, have allowed for the detection of exoplanets directly. When used in astronomy, this technology removes the the effects of atmospheric interference so that light from distant stars or planets can be seen clearly. Relying on experimental technology, the SCExAO was specifically designed and optimized for imaging planets, and is one of several newly-commissioned extreme AO instruments.
However, as Dr. Thayne Currie – a research associate at the NOAJ – indicated, the Observatories on Mauna Kea are particularly well suited to the technology. “Mauna Kea is the best place on this planet to see planets in other stellar systems,” he said. “Now, we finally have an instrument designed to utilize this mountain’s special gifts and the results are breathtaking.”
What makes the SCExAO special is that it allows astronomers the ability to image planets with masses and orbital separations that are similar to those in our own Solar System. So far, about a dozen planets have been detected directly using AO instruments, but these planets have all been gas giants with 4 to 13 times the mass of Jupiter, and which orbit their stars at distances beyond that of Neptune from our Sun.
This improved imaging capacity is made possible by the SCExAO’s ability to compensate for atmospheric interference at a faster rate. This will enable the Subaru Telescope to be able to capture far images of distant stars that are sharper and subject to less glare. And astronomers will be able to discern the presence of fainter objects that are circling these stars – i.e. exoplanets – with greater ease.
The first discovery made with the SCExAO, took place back in October of 2016. At the time, the Subaru telescope had detected a debris disk around HD 36546 – a 2 solar-mass star in the direction of the Taurus constellation – which appeared almost edge on. Located about twice as far from HD 36546 as the Kuiper Belt is from our Sun, this disk is believed to be the youngest debris disk ever observed (3 to 10 million years old).
This test of the SCExAO not only revealed a disk that could be critical to studying the earliest stages of icy planet formation, but demonstrated the extreme sensitivity of the technology. Basically, it allowed the astronomers conducting the study to rule out the existence of any planets in the system, thus concluding that planetary dynamics played no role in sculpting the disk.
More recently, the SCExAO instrument managed to directly detect multiple planets in the system known as HR 8799, which it observed in July of 2016. Prior to this, some of the systems four planets were spotted by surveys conducted using the Keck and the Subaru telescope (before the SCExAO was incorporated). However, these surveys could not correct for all the glare coming from HR 8799, and could only image two of three of the planets as a result.
A follow-up was conducted in the Fall of 2016, combining data from the SCExAO with that obtained by the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). This resulted in even clearer detection of the system’s inner three planets, not to mention high-quality spectrographic data that could allow researchers to determine the chemical compositions of their atmospheres.
As Dr. Olivier Guyon, the head of the SCExAO project, explained, this is a major improvement over other AO surveys. It also presents some major advantages when it comes to exoplanet hunting. “With SCExAO, we know not only the presence of a planet but also its character such as whether it is cloudy and what molecules it has, even if that planet is tens of trillions of miles away.”
Looking at the year ahead, the SCExAO is scheduled to undergo improvements that will allow it to detect planets that are 10 to 10o times fainter than what it can right now. The CHARIS instrument is also scheduled for additional engineering tests to improve its capabilities. These improvements are also expected to be incorporated into next-generation telescopes like the Thirty Meter Telescope – which is currently under construction at Mauna Kea.
Other recently-commissioned extreme AO instruments include the Gemini Planet Imager (GPI) at Gemini Observatory on its telescope in Chile, the Spectro-Polarimetric High-contrast Exoplanet Research (SPHERE) on Very Large Telescope (VLT) in Chile, and the AO system on the Large Binocular Telescope (LBT) in Arizona. And these are only some of the current attempts to reduce interference and make exoplanets easier to detect.
For instance, coronagraph are another way astronomers are attempting to refine their search efforts. Consisting of tiny instruments that are fitted inside telescopes, coronagraphs block the incoming light of a star, thus enabling telescopes to spot the faint light being reflected from orbiting planets. When paired with spectrometers, scientists are able to conduct studies of these planet’s atmospheres.
And then you have more ambitious projects like Starshade, a concept currently being developed by Northrop Grumman with the support of NASA’s Jet Propulsion Laboratory. This concept calls for a giant, flower-shaped screen that would be launched with one of NASA’s next-generation space telescopes. Once deployed, it would fly around in front of the telescope in order to obscure the light coming from distant stars.
The era of exoplanet discovery loometh! In the coming decades, we are likely to see an explosion in the number of planets were are able to observe directly. And in so doing, we can expect the number of potentially habitable exoplanets to grow accordingly.
On June 30th, 1905, Albert Einstein started a revolution with the publication of theory of Special Relativity. This theory, among other things, stated that the speed of light in a vacuum is the same for all observers, regardless of the source. In 1915, he followed this up with the publication of his theory of General Relativity, which asserted that gravity has a warping effect on space-time. For over a century, these theories have been an essential tool in astrophysics, explaining the behavior of the Universe on the large scale.
However, since the 1990s, astronomers have been aware of the fact that the Universe is expanding at an accelerated rate. In an effort to explain the mechanics behind this, suggestions have ranged from the possible existence of an invisible energy (i.e. Dark Energy) to the possibility that Einstein’s field equations of General Relativity could be breaking down. But thanks to the recent work of an international research team, it is now known that Einstein had it right all along.
In 1974, astronomers detected a massive source of radio wave emissions coming from the center of our galaxy. Within a few decades time, it was concluded that the radio wave source corresponded to a particularly large, spinning black hole. Known as Sagittarius A, this particular black hole is so large that only the designation “supermassive” would do. Since its discovery, astronomers have come to conclude that supermassive black holes (SMBHs) lie at the center of almost all of the known massive galaxies.
But thanks to a recent radio imaging by a team of researchers from the University of Cape Town and University of the Western Cape, in South Africa, it has been further determined that in a region of the distant universe, the SMBHs are all spinning out radio jets in the same direction. This finding, which shows an alignment of the jets of galaxies over a large volume of space, is the first of its kind, and could tell us much about the early Universe.