Could We Terraform the Sun?

Could We Terraform the Sun?

In the list of crazy hypothetical ideas, terraforming the Sun has to be one of the top 10. So just how would someone go about doing terraforming our sun, a star, if they wanted to try?

In our series on terraforming other worlds, we’ve covered Mars, Venus, the Moon and Jupiter. Even though I solved the problem of how to terraform Jupiter (you’re welcome, science), you wanted to take things to the next level and you demanded I sort out how to terraform the Sun. Seriously? The Sun. Fine… here we go.

Let’s see what we’ve got to work with here. It’s a massive ball of plasma, containing 333,000 times more mass than the Earth. It’s about 74% hydrogen and 25% helium with a few other trace elements. There’s no solid surface to stand on it, so we need to fix that.

The average temperature on the surface of the Sun is about 5,500 Celsius, while the average temperature on Earth is about 15 C. Iron boils at only 2,800 degrees, so… that’s probably too hot. We’ll need to cool it down.

The gravity on the surface of the Sun is 28 times the gravity of Earth. If you could stand on the surface of the Sun, which you can’t, you’d be crushed flat. Okay, so we’ll add reduce the gravity… check.

There’s no breathable atmosphere, there’s no solid ground, the Sun generates deadly X-rays. Oh, and don’t forget about the terrible sunburns from the ultraviolet radiation.

So, what’s the list? Hot fire unbreathable pressure cooker goo surface gravity crushing machine. Sounds impossible, or does it?

First, the gas. As we covered in a previous episode, scientists have actually considered ways that you might extract the hydrogen and helium off of a star like the Sun, known as “stellar lifting”. There are a few ways you could work this. You could zap the surface of the Sun with a powerful laser, increasing the speed of solar wind in that area, forcing the Sun to throw its mass off into space.

Another method is to set up powerful magnetic fields around the Sun’s poles, and channel its hydrogen into jets that blast out into space. I’m not sure how you actually set up those magnetic fields, but that’s not my problem.

Once you’re done with the Sun, you’ve stripped away all its hydrogen and helium gas. What are you left with? About 5,600 times the mass of the Earth in heavier elements, like oxygen, silicon, gold, etc. Great!

Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd
Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd

Except 5,600 sounds like a lot. Jupiter is only 316 times the mass of the Earth. We’re looking to reform a “planet” with more than 10 times the mass of Jupiter. And not only that, but we had to kill the Sun to make this work. You monsters.

This is a terrible idea. What else could we do? If you’re a science fiction fan, you’ve heard of a Dyson Sphere. If not, you’ve got some TNG to catch up on.

First proposed by Freeman Dyson, you cover an entire Sun in a metal ball. Instead of the measly amount of energy that falls on Earth, this would allow you to capture 100% of the energy released by the Sun: 384 yottawatts.

According to Dyson and a variety of matheletes, you could dismantle all planets in the Solar System and build a sphere at a distance of 1 Earth radii at 8 to 20 centimeters thick. That would give you a surface area 550 million times more than the Earth.

Although, building an actual rigid sphere is probably unfeasible because it would be pretty unstable and eventually collapse. It probably makes more sense to build a swarm of satellites surrounding the Sun, capturing its energy.

We did a whole video on Dyson Spheres. Check it out here.

So there you go. I just terraformed the Sun. I’m terrified about your next suggestion: how could you terraform a black hole? I guess that’ll be the next video.

Would you like to live on my imagined terraformed Sun? If not, what about a Dyson Sphere or swarm?

Thierry Legault Meets His Own Challenge: Image an ISS Transit of a Solar Prominence

A montage of 31 images taken in less than a second as the International Space Station transits the Sun and a solar prominence. Credit and copyright: Thierry Legault.

When you’re Thierry Legault and you want to challenge yourself, the bar is set pretty high.

“This is a challenge I imagined some time ago,” Legault told Universe Today via email, “but I needed all the right conditions.”

The challenge? Capture a transit of the International Space Station of not just the Sun — which he’s done dozens of times — but in front of a solar prominence.

Legault said the transit of the prominence, which he captured on August 21, 2015, lasted 0.8 seconds. His camera was running at 40 frames per second, and he got about 32 shots in that time.

See a video of the transit in real time, and more, below:

We’ve described in our previous articles how Legault determines the exact location where he needs to be to capture the images he wants by considering the width of the visibility path, and trying to be as close to the center of the path as possible. But this challenge was a bit different.

“I took the last transit data from Calsky, the real position of the prominences, and made angles and distances calculations to place my telescope this time not on the central line of the transit but 1 mile north from it,” Legault said, “to have the ISS passing in front of the largest prominence.”

You can see some of Legault’s stunning and sometimes ground-breaking astrophotography here on Universe Today, such as images of the space shuttle or International Space Station crossing the Sun or Moon, or views of spy satellites in orbit.

If you want to try and master the art of astrophotography, you can learn from Legault by reading his book, “Astrophotography,” which is available on Amazon in a large format book or as a Kindle edition for those who might like to have a lit version while out in the field. It is also available at book retailers like Barnes and Noble and Shop Indie bookstores, or from the publisher, Rocky Nook, here.

For additional imagery and information, visit Legualt’s website.

Could We Terraform Jupiter?

Could We Terraform Jupiter?

So just what would it take to terraform Jupiter, the largest planet in our solar system?

Just a few videos ago, I blew minds with a “How to” on terraforming the Moon. Once we’ve developed a Solar System spanning civilization and have claimed mastery over the laws of physics, and have common-place technology which staggers and dwarf our current comprehension of what’s possible it should be easy enough.

In fact, it might even be easier than terraforming Mars or Venus, as long as you keep a steady flow of gas to the Moon replenishing the constantly escaping atmosphere.

And in the comments on that video, ABitOfTheUniverse threw down, he wants to know what it would take to terraform Jupiter. All right “ABitOfTheUniverse”, if that is your real name… I’m up for it.

On the surface, this is madness. We already explained how Jupiter is completely and totally inhospitable to life. An alien started a “Build a star kit” and stopped a ? of the way through, because he got bored and wandered away. Just like his Mom said he would.

Jupiter is a ball of hydrogen and helium, which compresses these gasses to almost starlike temperatures and pressures. Fine, Jupiter is the absolute worst. It makes traveling to Venus look like a spa visit.

Jupiter does have something we can work with. Astronomers think below the septillions tons of hydrogen and gas, there’s actually a rocky core. The mass of the core is still a mystery, but recent computer simulations put it at somewhere between 7 and 45 times the mass of the Earth, complete with plenty of water ices and other chemicals you might require on an Earthlike planet.

Furthermore, this core may contain similar constituents as the internal structure of Earth. This means a central core of iron and nickel, surrounded by liquid metal, surrounded by rock.

The problem is you need to strip away 95% of the planet’s mass. It’s all that hydrogen and helium, and that’s pretty much impossible. And almost completely impossible, is still very slightly completely possible.

Cutaway of Jupiter. Credit: Kevinsong
Cutaway of Jupiter. Credit: Kevinsong

Jupiter is made of fuel. It’s like looking at a pool of gasoline and wondering if there was some way to get rid of it all. What good Solar System-spanning civilization hasn’t worked out hydrogen fusion? It’s a technology that’s probably only 30 years away from us now.

You could fly a spacecraft down into Jupiter’s gravity well and scoop up hydrogen fuel from the clouds. Or you could create fusion-powered dirigibles filled with hot hydrogen, which float around the cloud tops of Jupiter, using their fusion reactors to spew hydrogen off into space.

Over untold lengths of time, you could get at that rocky juicy center, once you stripped it of its hydrogen. Then you’ll need to do all that other stuff I mentioned in previous videos, to turn it into a habitable world.

Sure, it’s a world with much higher gravity than Earth, but that’s not my problem. You said “Earthlike”. That’ll teach you to make wishes with a monkey’s paw!

What if you need to move Jupiter first, perhaps a little closer to the Sun. There’s an awesome idea cooked up by Larry Niven in his book, “A World Out of Time”. It’s a fusion candle, and it lets you shift gas giants around.

A Star Trek-inspired space station.
A Star Trek-inspired space station.

You take a long space station, and light up fusion thrusters on both ends. You dip one end down into the upper clouds, where it siphons hydrogen fuel. Both ends of the space station start blasting. One end keeps it from dropping down into the planet, and the other end pushes on the entire planet, pushing it around the Solar System.

Instead of trying to terraform Jupiter, we could just push the planet closer to the Sun, where its icy moons warm up and become habitable themselves.

Well, ABitOfTheUniverse, that sounds a little easier. What do you think? I’ll admit, trying to figure out how to terraform Jupiter was a good exercise in tomfoolery. Fortunately, my imagination is a limitless and renewable source of energy. We’ve done Mars, Venus, the Moon and now Jupiter. What should we terraform next? Tell us in the comments below.

How Fast is Gravity?

How Fast is Gravity?

How long would it take for the gravitational well created by the Sun to disappear, and the Earth and the rest of the planets fly off into space?

In the very first episode of the Guide to Space, a clean shaven version of me, hunched over in my basement explained how long it takes for light to get from the Sun to the Earth. To answer that question, it takes light about 8 minutes and 20 seconds to make the trip.

In other words, if the Sun suddenly disappeared from space itself, we’d still see it shining in the sky for over 8 minutes before the everything went dark. Martians would take about 12 minutes to notice the Sun was gone, and New Horizons which is nearly at Pluto wouldn’t see a change for over 4 hours.

Although this idea is a little mind-bending, I’m sure you’ve got your head wrapped around it. We’ve sure gone on about it here on this show. The further you look into space, the further you’re looking back in time because of the speed of light, but have you ever considered the speed of gravity?

Let’s go back to that original example and remove the Sun again. How long would it take for the gravitational well created by the Sun to disappear.

When would the Earth and the rest of the planets fly off into space without the Sun holding the whole Solar System together with its gravity? Would it happen instantly, or would it take time for the information to reach Earth?

It sounds like a simple question, but it’s actually really tough to tell. The force of gravity, compared to other forces in the Universe, is actually pretty weak. It’s practically impossible to test in the laboratory.

According to Einstein’s Theory of Relativity, distortions in spacetime caused by mass – also known as gravity – will propagate out at the speed of light. In other words, the light from the Sun and the gravity of the Sun should disappear at exactly the same time from the Earth’s perspective.

But that’s just a theory and a bunch of fancy math. Is there any way to test this out in reality? Astronomers have figured a way to deduce this indirectly by watching the interactions with massive objects in space.

Twin pulsars.  Credit: Michael Kramer, University of Manchester

In the binary system PSR 1913+16, there’s a pair of pulsars orbiting each other within just a few times bigger than the width of the Sun. As they spin around each other, the pulsars warp the spacetime themselves by releasing gravitational waves. And this release of gravitational waves causes the pulsars to slow down.

It’s amazing that astronomers can even measure this orbital decay, but the even more amazing part is that they use this process to measure the speed of gravity. When they did the calculations, astronomers determined the speed of gravity to be within 1% of the speed of light – that’s close enough.

Scientists have also used careful observations of Jupiter to get at this number. By watching how Jupiter’s gravity warps the light from a background quasar as it passes in front, they were able to determine that the speed of gravity is between 80% and 120% of the speed of light. Again, that’s close enough.

So there you go. The speed of gravity equals the speed of light. And should the Sun suddenly disappear, we’ll be glad to get all the bad news at the same time.

Gravity is a harsh mistress. Tell us a story about a time gravity was too fast for you. Put it in the comments below.

River of Fire Smoke Darkens Sun and Moon

The waning gibbous moon was still the color of fire even at midnight last night due to heavy smoke from Canadian forest fires. Credit: Bob King

My eyes are burning. The morning Sun, already 40° high, glares a lemony-orange. It’s meteorologically clear, but the sky looks like paste. What’s going on here?

Forest fires! Many in the Midwest, northern mountain states and Canadian provinces have been living under a dome of high altitude smoke the past few days reflected in the ruddy midday Sun and bloody midnight Moon.

On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC
On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC

Fires raging in the forests of northern Alberta and Saskatchewan have poured tremendous amounts of smoke into the atmosphere. Favorable winds have channeled the fumes into a brownish river of haze flowing south and east across Canada and into the northern third of the U.S. If an orange Sun glares overheard at midday, you’ve got smoke. Sometimes you can smell it, but often you can’t because it’s at an altitude of 1.2 – 3 miles (2-5 km).

The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King
The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King

But the visual effects are dramatic. Last night, the nearly full Moon looked so red and subdued, it could easily have been mistaken for a total lunar eclipse. I’ve never seen a darker, more remote-looking Moon. Yes, remote. Without its customary glare, our satellite looked shrunken as if untethered from Earth and drifting away into the deep.

And nevermind about the stars. Try as I might, I could only make out zero magnitude Vega last night. The camera and a time exposure did a little better but not much.

This image taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra satellite on June 30, 2015.  Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air.  The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner
This image was taken by the Terra satellite on June 30, 2015. Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air. The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner

These days of deep red suns in the middle of the day fiery moons at night are an occasional occurrence across Canada and the northern half of the U.S. during the summer. Our previous bout with fire haze happened in early June as a result of massive wildfires in the Northwest Territories and northern Alberta. A change in wind direction and thorough atmospheric-cleaning by thunderstorms returned our blue skies days later.

Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA
Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA

While the downsides of fire haze range from poor air quality to starless nights, the upside is a more colorful Sun and Moon.

Back in grade school we all learned that white light is made up of every color of the rainbow. On a sunny day, air molecules, which are exceedingly tiny, scatter away the blue light coming from the Sun and color the sky blue. Around sunset and sunrise, when the Sun’s light passes through the lowest, thickest, haziest part of the atmosphere, greens and yellows are also scattered away, leaving an orange or red Sun.

Fire smoke adds billions of smoke particles to the atmosphere which scatter away purples, blues, greens and yellows to turn an otherwise white Sun into a blood red version smack in the middle of the day.

A ring-billed gull is silhouetted against a yellow sky and orange sun early Monday afternoon. Smoke from forest fires across Canada’s Northwest Territories and northern Alberta drifted over the region and colored the the sun orange long before sunset. Credit: Bob King
A ring-billed gull is silhouetted against a yellow sky and orange Sun  in Duluth, Minn. a few weeks back during the previous series of smoky days.This photo was taken around 3 p.m. local time. Credit: Bob King

Keep an eye on the color of the blue sky and watch for red suns at midday. Forest fires are becoming more common and widespread due to climate change. If you’ve never seen this eerie phenomenon, you may soon. For more satellite images of forest fires, check out NASA’s Fires and Smoke site.

I’ve often wondered what it would look like if Earth orbited a red dwarf star instead of the Sun. These smoky days give us a taste.

Weekly Space Hangout – June 12, 2015: Astronomy in Chile Educator Ambassadors Program

Host: Fraser Cain (@fcain)

Special Guest: This week we welcome Astronomy in Chile Educator Ambassadors Program Participants:
Michael Prokosch (Seeing Stars Blog, MikeProkosch@shsuobservatory)
Tim Spuck ([email protected])
Brian Koberlein (@briankoberlein / briankoberlein.com)
Vivian White ([email protected]).

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Brian Koberlein (@briankoberlein / briankoberlein.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – June 12, 2015: Astronomy in Chile Educator Ambassadors Program”

This Video About Solar Superstorms is Narrated by Benedict Cumberbatch and It Looks Awesome.

What’s better than a full 180-degree digital theater experience that takes you into the heart of our Sun to see how solar storms form? Why, all of that accompanied by a rumbling narration by Benedict Cumberbatch, of course.

The video above is a trailer for “Solar Superstorms,” a digital planetarium presentation distributed by Fulldome Film Society and co-produced by Spitz Creative Media, NCSA’s Advanced Visualization Lab, and Thomas Lucas Productions. It uses the monster Blue Waters supercomputers at the National Center for Supercomputing Applications at the University of Illinois to visualize the complex processes occurring in, on, and around the Sun. It might look a little weird in the flat 2D format above, but I can only imagine what it will be like to see it from inside a digital dome (and have the disembodied voice of Smaug/Sherlock/Khan thundering through the room!)

The film itself is still in production so I couldn’t find an official release date. But keep an eye out for it at your nearest planetarium and visit the FulldomeFilm.org catalog page for other films from the same distributor.

You can find a database of fulldome theaters and digital planetariums around the world here.

Video credit: Spitz Creative Media

Would We See the Aliens Coming?

Would We See the Aliens Coming?

If aliens were heading towards the Earth, would we see them coming?

Classic sci fi trope time. The air force detects a fleet of alien spacecraft out past Jupiter, leaving enough time to panic and demonstrate what awful monsters we truly are before they come ring our bell.
Is that how this would work?

Imagine a pivotal scene in your favorite alien mega disaster movie. Like the one where the gigantic alien ships appear over London, Washington, Tokyo, and Paris and shoots its light-explody ray, obliterating a montage of iconic buildings. Demonstrating how our landmark construction technology is nothing against their superior firepower.

What could we do? We’re merely meat muppets with pitiful silicon based technology. How could we ever hope to detect these aliens with their stealth spacecraft and 3rd stage guild navigators? If we’re going to do this, I’m going to make up some rules. If you don’t like my rules, go get your own show and then you can have your own rules.

Alternately, as some of you are clearly aware, you can rail against the Guide To Space in the comments below. Dune reference notwithstanding, I’m going to assume that aliens live in our Universe and obey the laws of physics as we understand them. And I know you’re going to say, what if they use physics we haven’t discovered yet?

Then just pause this video and get that out of your system. You can make that your first decree against the state right in the comments below. As I was saying, physical aliens, physical universe. We’ll discuss the metaphysical aliens in a magic universe in a future video. The ones that have crystals and can heal your liver through the power of song.

A basic rule of the Universe is that you can’t go faster than the speed of light. So I’m going to have any aliens trying to attack us traveling at sublight speeds.

So, we’ll say they’ve got access to a giant mountain of power. They can afford to travel at 10% the speed of light, which means before they get to us, they have to slow down. At this speed, deceleration is expensive. We’d see the energy signature from their brakes long before they even reached Earth.

Let’s say they’re passing the orbit of the dwarf planet Pluto, which is 4 light-hours away. Since they’re travelling at 10% the speed of light, we’d have about 40 hours to scramble jet fighters, get those tanks out onto the streets and round up Will Smith, Jeff Goldblum and Bruce Willis to hide behind.

A composite image with Chandra data (purple) showing a "point-like source" beside the remains of a supernova, suggesting a companion star may have survived the explosion. Credit: X-ray: NASA/CXC/SAO/F.Seward et al; Optical: NOAO/CTIO/MCELS, DSS
A composite image with Chandra data (purple) showing a “point-like source” beside the remains of a supernova, suggesting a companion star may have survived the explosion. Credit: X-ray: NASA/CXC/SAO/F.Seward et al; Optical: NOAO/CTIO/MCELS, DSS

Would we even notice? Maybe, or maybe not. A growing trend in astronomy is scanning the sky on a regular basis, looking for changes. Changes like supernova explosions, asteroids and comets zipping past, and pulsating variable stars.

One of the most exciting new observatories under construction is the Large Synoptic Survey Telescope in Chile. Once it begins regular operations in 2022, this array of telescopes will photograph the entire sky in fairly high resolution every few nights.

Computers will process the torrent of data coming from the observatory and search for anything that changes. What if they engage their cloak?

Actually (push glasses up your nose) the laws of physics say that the aliens can’t hide the waste heat from whatever space drive they’re using. We’re actually pretty good at detecting heat with our infrared telescopes.

A space drive decelerating a city-sized alien spacecraft from a significant portion of the speed of light would shed a mountain of heat, and that’s all heat we might detect.

Astronomers have been searching for alien civilizations by looking for waste heat generated by Dyson spheres encapsulating entire stars or even all the stars in a galaxy. Nothing’s turned up yet. Which I for one, find a little suspicious.

Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com

If you’re from an alien race who’s planning to invade. Cover your ears. If aliens wanted to catch us off guard, they can use one of the oldest tricks in the aerial combat book, known as the Dicta Boelcke. They can fly at us using the Sun as camouflage. A rather large portion of the sky is completely obscured by that glowing ball of fiery plasma. It worked in WW1, and it’ll still work now.

Okay, aliens you can listen in again. Everyone else might want to mute the next part, as it’s not terribly reassuring. Astronomers often discover asteroids skimming by the Earth just after they’ve just gone past. That’s because they hurl at us from the Sun, just like clever aliens.

To spot those asteroids, we’ll need to deploy a space-based sky survey that can watch the heavens from a different perspective than Earth. Plans for this kind of mission are actually in the works.

Even with our rudimentary technology, we’d actually stand a pretty good chance of noticing the alien attack vessels before they actually arrived at centre of Sector 001. It’ll get better with automated observatories and space-based sky surveys.

Of course, there’s little we can do if we did know the aliens were coming. We’d be best to start with some kind of deterrent, contaminate all our fresh water, load our livestock up on antibiotics and cover our cities in toxic smog to deter the harvesting of our citizens.

Do you think we’d stand a chance against an alien invasion? Tell us how we’d do in the comments below.

What Was Here Before the Solar System?

What Was Here Before the Solar System?

The Solar System is 4.5 billion years old, but the Universe is much older. What was here before our Solar System formed?

The Solar System is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The Solar System has nothing on the Universe. It’s been around for 13.8 billion years, give or take a few hundred million. That means the Universe is three times older than the Solar System.

Astronomers think the Milky Way, is about 13.2 billion years old; almost as old as the Universe itself. It formed when smaller dwarf galaxies merged together to create the grand spiral we know today. It turns out the Milky Way has about 8.6 billion years of unaccounted time. Billions and billions of years to get up to all kinds of mischief before the Solar System showed up to keep an eye on things.

Our Galaxy takes 220 million years to rotate, so it’s done this about 60 times in total. As it turns, it swirls and mixes material together like a giant space blender. Clouds of gas and dust come together into vast star forming regions, massive stars have gone supernova, and then the clusters themselves have been torn up again, churning the stars into the Milky Way. This happens in the galaxy’s spiral arms, where the areas of higher density lead to regions of star formation.

So let’s go back, more than 4.6 billion years, before there was an Earth, a Sun, or even a Solar System. Our entire region was gas and dust, probably within one of the spiral arms. Want to know what it looked like? Some of your favorite pictures from the Hubble Space Telescope should help.

Here’s the Orion, Eagle, and the Tarantula Nebulae. These are star forming regions. They’re clouds of hydrogen left over from Big Bang, with dust expended by aging stars, and seeded with heavier elements formed by supernovae.

Astrophoto: The Orion Nebula by Vasco Soeiro
The Orion Nebula. Image Credit: Vasco Soeiro

After a few million years, regions of higher density began forming into stars, both large and small. Let’s take a look at a star-forming nebula again. See the dark knots? Those are newly forming stars surrounded by gas and dust in the stellar nursery.

You’re seeing many many stars, some are enormous monsters, others are more like our Sun, and some smaller red dwarfs. Most will eventually have planets surrounding them – and maybe, eventually life? If this was the environment, where are all those other stars?

Why do I feel so alone? Where are all our brothers and sisters? Where’s all the other stuff that’s in that picture? Where’s all my stuff?

TRAPPIST First Light Image of the Tarantula Nebula.  Credit:  ESO
TRAPPIST First Light Image of the Tarantula Nebula. Credit: ESO

Apparently nature hates a messy room and a cozy stellar nest. The nebula that made the Sun was either absorbed into the stars, or blown away by the powerful stellar winds from the largest stars. Eventually they cleared out the nebula, like a fans blowing out a smoky room.

At the earliest point, our solar nebula looked like the Eagle Nebula, after millions of years, it was more like the Pleiades Star Cluster, with bright stars surrounded by hazy nebulosity. It was the gravitational forces of the Milky Way which tore the members of our solar nursery into a structure like the Hyades Cluster. Finally, gravitational interactions tore our cluster apart, so our sibling stars were lost forever in the churning arms of the Milky Way.

We’ll never know exactly what was here before the Solar System; that evidence has long been blown away into space. But we can see other places in the Milky Way that give us a rough idea of what it might have looked like at various stages in its evolution.

What should we call our original star forming nebula? Give our own nebula a name in the comments below.

How Bad Can Solar Storms Get?

How Bad Can Solar Storms Get?

Our Sun regularly pelts the Earth with all kinds of radiation and charged particles. Just how bad can these solar storms get?

In today’s episode, we’re going to remind you how looking outside of the snow globe can inspire your next existential crisis.

You guys remember the Sun right? Look how happy that little fella is. The Sun is our friend! Life started because of the Sun! Oooh, look, the Sun has a baby face! It’s a beautiful, ball of warmth and goodness, lighting up our skies and bringing happiness into our hearts.

It’s a round yellow circle in crayon. Very stable and firmly edged. Occasionally drawn with a orange lion’s mane for coronal effects. Nothing to be afraid, right?

Wake up sheeple. It’s time to pull back the curtain of the marketing world, big crayon fridge art and the children’s television conspiracy of our brightly glowing neighborhood monstrosity. That thing is more dangerous than you can ever imagine.

You know the Sun is a nuclear reaction right next door. Like it’s right there. RIGHT THERE! It’s a mass of incandescent gas, with a boiling bubbling surface of super-heated hydrogen. It’s filled with a deep yellow rage, expressed every few days by lashing out millions of kilometers into space with fiery death tendrils and blasts of super radiation.

The magnetic field lines on the Sun snap and reconnect, releasing a massive amount of radiation and creating solar flares. Solar plasma constrained in the magnetic loop is instantly released, smashed together and potentially generating x-ray radiation.

“Big deal. I get x-rayed all the time.” you might think. We the mighty humans have mastered the X-ray spectrum! Not so fast puny mortal. Just a single x-ray class flare can blast out more juice than 100 billion nuclear explosions.

 In this image, the Solar Dynamics Observatory (SDO) captured an X1.2 class solar flare, peaking on May 15, 2013. Credit: NASA/SDO
In this image, the Solar Dynamics Observatory (SDO) captured an X1.2 class solar flare, peaking on May 15, 2013. Credit: NASA/SDO

Then it’s just a quick 8 minute trip to your house, where the radiation hits us with no warning. Solar flares can lead to coronal mass ejections, and they can happen other times too, where huge bubbles of gas are ejected from the Sun and blasted into space. This cosmic goo can take a few hours to get to us, and are also excellent set-ups for nocturnal emission and dutch oven jokes.

Astronomers measure the impact of a solar storm on the Earth using a parameter called DST, or “disturbance storm time”. We measure the amount that the Earth’s protective magnetosphere flexes during a solar storm event. The bigger the negative number, the worse it is.

If we can see an aurora, a geomagnetic storms in the high altitudes, it measures about -50 nanoteslas. The worst storm in the modern era, the one that overloaded our power grid in 1989, measured about -600 nanoteslas.

The most potent solar storm we have on record was so powerful that people saw the Northern Lights as far south as Cuba. Telegraph lines sparked with electricity and telegraph towers caught on fire. This was in 1859 and was clearly named by Syfy’s steampunk division. This was known as the Carrington Event, and estimated in the -800 to -1750 nanotesla range.

Just in time for St. Patrick's Day - a
A spectacular green and red aurora photographed early this morning March 17, 2015, from Donnelly Creek, Alaska. Credit: Sebastian Saarloos

So, how powerful do these things need to be to cook out our meat parts? The good news is contrary to my earlier fear mongering, the most powerful flare our Sun can generate is harmless to life on Earth.

Don’t let your guard down, the Sun is still horribly dangerous. It’ll bake us alive faster than you can say “Hansel und Gretel”. Assuming you can drag that phrase out over a billion years. As far as flares go, and so long as we stay right here, we’ll be fine. We might even see a nice aurora in the sky.

For those of you who use technology on a regular basis, you might not be so lucky. Powerful solar storms can overload power grids and fry satellites. If the Carrington Event happened now, we’d have a lot of power go out, and a small orbital scrapyard of dead satellites.

Astronauts outside the Earth, perhaps bouncing around on the Moon, or traveling to Mars would be in a universe of trouble without a good method of shielding.

The solar flares that the Sun can produce is minuscule compared to other stars out there. In 2014, NASA’s Swift satellite witnessed a flare that generated more than 10,000 times more energy than the most powerful solar flare ever seen.

Solar flare on the surface of the Sun. Image credit: NASA
Solar flare on the surface of the Sun. Image credit: NASA

For a brief moment, the surface of the red dwarf star DG Canum Venaticorum lit up hotter than 200 million degrees Celsius. That’s 12 times hotter than the center of the Sun. A blast that powerful would have scoured all life from the face of the Earth. Except the future colony of tardigrade descendants. Remember, the water bears are always watching.

Young red dwarf stars are renowned for these powerful flares, and this is one of the reasons astronomers think they’re not great candidates for life. It would be hard to survive blast after blast of radiation from these unruly stars. Alternately, planets around these stars are could be living terrariums inspired by the Gamma World RPG.

Breathe easy and don’t worry. Perhaps the Sun is our friend, and it truly does have our best interests at heart.

It’s not a big fan of our technology, though, and it’s ready to battle alongside us when the robot revolution begins. Oh, also, wear sunscreen, as the Sun’s brand of love isn’t all that different from Doctor Manhattan.

Have you ever seen an aurora display? Tell us a cool story in the comments below.