Active regions 2108 and 2109 are now passing around the limb of the Sun, but not before solar photography specialist Alan Friedman grabbed a few pictures of them on Friday! The image above, captured by Alan from his location in Buffalo, NY, shows the two large sunspots nestled in a forest of solar spicules while a large detached prominence hovers several Earth-diameters inside the corona. A beautiful snapshot of our home star!
Captured in hydrogen-alpha wavelengths, the image above has been colored by Alan, rotated 90 degrees counterclockwise, and inverted from the original. The sunspots and standing prominence are cooler in Ha than the surrounding chromosphere and corona, and so actually photograph darker.
A view of sunspot 2109 in visible light can be seen below:
Sunspots are the result of magnetic fields rising up from deep within the Sun, preventing convection from occurring in large areas on the Sun’s surface and thereby creating relatively cooler regions we see as dark spots. They can often be many times the size of Earth and can be sources of powerful solar flares.
See these and more images by Alan on his blog here.
The Sun has a Swiss army knife of ways it can do you in, from radiation to solar flares. And when it dies, it’s taking you with it. What are the various ways the Sun can do you in?
There’s a terrifying ball of fire a short 150 million km away. Which, in galactic terms, is right on our doorstep. This super-heated ball of plasma-y death, has temperatures and pressures so high that atoms of hydrogen are crushed into helium.
We’ve told ourselves we’re a safe distance away, and generally understate the dangers of being gravitationally bound to a massive ongoing nuclear explosion which is catastrophically larger than anything we’ve ever managed to create here on Earth. We take its warmth and life-giving light for granted, and barely give it a second thought as we sunbathe, or laugh gregariously while frying eggs on sidewalks on days when it’s scorchingly hot out.
Have we been lulled into a false sense of security by an ancient and secret society of bananas crazy sun cultists? Instead of worshiping the giant BBQ death ball, should we be cowering in fear, waiting for the next great solar flare? So, how dangerous is that thing? What are all the ways the Sun could do us in? And how many of them does my insurance cover?
First, in 4.5 billion years nothing has managed to destroy our planet. In fact, life itself has existed for almost Earth’s entire history, and nothing has scoured the planet clear of all forms of life. So, don’t worry the most reasonable risk we face from the Sun in our lifetimes is from a solar flare – a sudden blast of brightness on the surface of the Sun.
These occur when the Sun’s magnetic field lines snap and reconfigure, releasing an enormous amount of energy. It’s the equivalent of hundreds of billions of tonnes of TNT and if we’re staring down the barrel of this blast, it’ll fire a stream of high energy particles right up our nose.
Fortunately, the Earth has evolved in a highly radioactive environment. We’re blasted by radiation from the Sun all the time. The Earth’s magnetic field lines channel the particles towards the poles, which is why we get to see the beautiful auroral displays.
We’re at little risk from flares from the Sun, but our technology isn’t so lucky. The increase of geomagnetic activity in our vicinity can overload electrical grids and take satellites offline. The most powerful geomagnetic storm in history, known as the Carrington Event in 1859, generated auroras as far south as Cuba. It didn’t cause any damage then, but it would cause a lot of damage to our fragile technology today.
For those of you now resting comfortably I say… Not so fast. This episode isn’t over yet. Our Sun is heating up, and its energy output is increasing.
As it uses up the hydrogen in its core, this region of the Sun contracts a little, and the Sun increases in temperature to balance things out. Over the next few hundred million years, temperatures on Earth will rise and rise. Within a billion years, the surface of the planet will be an inhospitable oven.
Eventually the oceans will boil and the hydrogen will be blown out of the atmosphere by the Sun’s solar wind. Even though the Sun will remain in its main sequence phase for another 4 billion years after that, any life will need to be living underground.
Of course, as we’ve discussed in previous episodes, the Sun’s final act of destruction will happen when it runs out of hydrogen fuel in its core. The core will contract and the Sun will puff up into a red giant, consuming the orbits of Mercury, Venus and possibly the Earth. And even if it doesn’t consume the Earth, it’ll hit our planet with so much heat and radiation that it’ll finally get around to scouring any life off the surface.
So, like your fanatical sun cultist friends. Don’t worry about the Sun. It might make sense to keep some spare batteries around for the times when solar flares knock out the lights for a few days, but the Sun is remarkably safe and stable. We’ve got billions of years of warm light and heat from our star. But after that, it might make sense to shop for a new home.
So what do you think? Where do you think we should move when the temperature of the Sun heats up?
Sooner or later we’re going to want to move the Earth further away from the Sun. It turns out, there are a few techniques that might actually make this possible. Not easy, but possible.
You live here. I live here. Everybody lives here. For now.
In 500 million years the gradual heating of the Sun will burn away all life on Earth. Then we might have to move. Even if we get past the 500 million year deadline, the Sun will die as a red giant in about 5 billion years.
Let’s review our options? We could die… orrrr we could move the Earth. Just like any other mad science scheme, there’s a hundred ways to skin this cat. We could launch powerful rockets off the Earth, which would push the Earth a little bit in the opposite direction.
We could build a giant teleporter and disassemble the Earth atom by atom into a new location. We could repeatedly smash things into the Earth. Eventually knocking it off orbit, possibly also changing its axis and or rotation.
We could paint half the Earth silver, stop it rotating and let the Sun push it away. We could dig a giant hole down to the core and repeatedly detonate warheads inside the Earth forcing molten material to fly off into space, propelling us forwards like a deflating balloon.
Sure, maybe that does all sound a little crazy. We could build a gravity tug, and slowly pull the Earth away from the Sun. What’s a gravity tug? I’m so glad you asked.
You could build a solar sail with a huge mass connected to it. This gigantic weight would want to fall towards the Earth, and the Earth slowly drifts towards the weight. The solar sail is being pushed away by the Sun dragging both the weight and as a result the Earth along with it. This would take a very, very, very long time.
Here’s the best idea scientists have come up with so far. Gravity assists: Attach rockets to an asteroid, comet or Kuiper belt object and have it fall on a trajectory that takes it close to the Earth. Earth and this space rock would exchange a little momentum.
The rock slows down a bit and goes into a new orbit, and the Earth speeds up a little. That additional momentum pushes our orbit up a tiny little bit, and now we’re further away from the Sun. You’d need to do this tens of thousands or even a million times.
You might think, “Hey, that’s crazy. Where would you get all this stuff to hurl past the Earth?”. Don’t worry, the Oort cloud alone has billions of objects with a total of 30 times the mass of the Earth.
To prepare for Roastpocalypse, If we started now, we should cause a close pass with a large object every few thousand years. We bring them within 10,000 km of the surface of the Earth, which would have the likely side effect of causing severe tides and storms.
Oh, and get the math wrong and you’ll smash an asteroid into the Earth. Just so you know, these would be way bigger than the object that killed the dinosaurs. One hit from a 100km diameter object would sterilize the biosphere.
If we pushed the Earth out to about 1.5 times its current orbit, which might get a little too cozy with Mars for comfort, we’d give the Earth another 5 billion years of habitability,
Then the Sun turns into a red giant, and then dies as a white dwarf. And nothing can help us then… except perhaps some kind of planet sized star gate.
What do you think? What’s the best suggestion you’ve got to move the Earth out to a safe distance? Tell us in the comments below.
Have you ever noticed that everything in space is a sphere? The Sun, the Earth, the Moon and the other planets and their moons… all spheres. Except for the stuff which isn’t spheres. What’s going on?
Have you noticed that a good portion of things in space are shaped like a sphere? Stars, planets, and moons are all spherical.
Why? It all comes down to gravity. All the atoms in an object pull towards a common center of gravity, and they’re resisted outwards by whatever force is holding them apart. The final result could be a sphere… but not always, as we’re about to learn.
Consider a glass of water. If you could see the individual molecules jostling around, you’d see them trying to fit in as snugly as they can, tension making the top of the water smooth and even.
Imagine a planet made entirely of water. If there were no winds, it would be perfectly smooth. The water molecules on the north pole are pulling towards the molecules on the south pole. The ones on the left are pulling towards the right. With all points pulling towards the center of the mass you would get a perfect sphere.
Gravity and surface tension pull it in, and molecular forces are pushing it outward. If you could hold this massive water droplet in an environment where it would remain undisturbed, eventually the water would reach a perfect balance. This is known as “hydrostatic equilibrium”.
Stars, planets and moons can be made of gas, ice or rock. Get enough mass in one area, and it’s going to pull all that stuff into a roughly spherical shape. Less massive objects, such as asteroids, comets, and smaller moons have less gravity, so they may not pull into perfect spheres.
As you know, most of the celestial bodies we’ve mentioned rotate on an axis, and guess what, those ones aren’t actually spheres either. The rapid rotation flattens out the middle, and makes them wider across the equator than from pole to pole. Earth is perfect example of this, and we call its shape an oblate spheroid.
Jupiter is even more flattened because it spins more rapidly. A day on Jupiter is a short 9.9 hours long. Which leaves it a distorted imperfect sphere at 71,500 km across the equator and just 66,900 from pole to pole.
Stars are similar. Our Sun rotates slowly, so it’s almost a perfect sphere, but there are stars out there that spin very, very quickly. VFTS 102, a giant star in the Tarantula nebula is spinning 100 times faster than the Sun. Any faster and it would tear itself apart from centripetal forces.
This oblate spheroid shape helps indicate why there are lots of flattened disks out there. This rapid spinning, where centripetal forces overcome gravitational attraction that creates this shape. You can see it in black hole accretion disks, solar systems, and galaxies.
Objects tend to form into spheres. If they’re massive enough, they’ll overcome the forces preventing it. But… if they’re spinning rapidly enough, they’ll flatten out all the way into disks.
Caught on camera by NASA’s Solar Dynamics Observatory, a prominence blazes hundreds of thousands of miles out from the Sun’s surface (i.e., photosphere) on May 27, 2014. The image above, seen in extreme ultraviolet wavelengths, shows a brief snapshot of the event with the column of solar plasma stretching nearly as far as the distance between Earth and the Moon.
Watch a video of the event below:
The video covers a span of about two hours.
Although it might look fiery in these images, a prominence isn’t flame — it’s powered by rising magnetic fields trapping and carrying the Sun’s superheated material up into the corona. And while this may not have been a unique or unusual event — or even particularly long-lived — it’s still an impressive reminder of the immense scale and energy of our home star!
Remember yesterday when we mentioned two X-class flares erupting from the Sun within the space of about an hour? We probably should have waited a bit and gone for the trifecta: this morning the same active region flared yet again, making it three high-powered flares within a single 24-hour period.
(And to think this active region has only just come around the corner!)
On June 10, 2014, AR2087 announced its arrival around the southwestern limb of the Sun with an X2.2 flare at 11:41 UT (7:41 a.m. EDT). Then, just over an hour later, another eruption: an X1.5 flare at 12:55 UT. This got pretty much everyone’s attention… here comes 2087!
Perhaps figuring third time’s a charm, the active region blazed with a third flare this morning at 9:05 UT (5:05 a.m. EDT). “Only” an X1-class, it was the weakest of the three but AR2087 still has plenty of time for more as it makes its way around the Sun’s face — all the while aiming more and more our way, too.
Here’s a video of SDO observations showing the two June 10 flares:
X-class flares are the strongest in the letter-classification of solar flares, which send blasts of electromagnetic energy out into the Solar System. While these most recent three are low on the X-scale, they may result in increased auroral activity — especially since it appears that the first two were followed by a pair of CMEs that “cannibalized” each other on their way out. The resulting merged cloud of charged particles is expected to nick Earth’s magnetic field on Friday, June 13. (Source: Spaceweather.com)
No CME has been observed from the June 11 flare, but again: AR2087 hasn’t left the stage yet. Stay tuned!
Source: NASA. Learn more about how solar flares impact us on Earth here.
NASA’s Curiosity rover may be busy exploring the rugged and rocky interior of Gale Crater, but it does get a chance to skygaze on occasion. And while looking at the Sun on June 3, 2014 (mission Sol 649) the rover’s Mastcam spotted another member of our Solar System: tiny Mercury, flitting across the Sun’s face.
Silhouetted against the bright disk of the Sun, Mercury barely appears as a hazy blur in the filtered Mastcam images. But it was moving relatively quickly during the transit, passing the darker smudges of two Earth-sized sunspots over the course of several hours.
It’s the first time Mercury has ever been imaged from Mars, and also the first time we’ve observed a planet transiting our Sun from another world besides our own.
Watch an animation of the transit below:
Because the sunspots move along with the rotation of the Sun (and the Sun rotates once avery 25 days around its equator) Mercury makes a fast pass as it travels along on one of its 88-day-long years.
In reality this was no chance spotting, but rather a carefully calculated observation using the Mastcam’s right 100mm telephoto lens and neutral density filter, which is used to routinely image the Sun in order to measure the dustiness of the Martian atmosphere.
“This is a nod to the relevance of planetary transits to the history of astronomy on Earth. Observations of Venus transits were used to measure the size of the solar system, and Mercury transits were used to measure the size of the sun.”
– Mark Lemmon, Texas A&M University, member of the Mastcan science team
The next chance for Curiosity to spot Mercury will come in April 2015 and, if the rover is still operating by then — perhaps with some upgrades by future human visitors? — it may capture Earth similarly passing across the Sun in November of 2084.
In only a little over an hour, the Sun released two X-class solar flares today. The first occurred at 11:42 UTC (7:42 a.m. EDT) and the second blasted out at 12:52 UTC (8:52 a.m. EDT) on June 10, 2014. According to SpaceWeather.com, forecasters were expecting an X-class flare today, but not two…and certainly not from region of the Sun where the flares originated. Solar scientists have been keeping an eye on sunspot regions AR2080 and AR2085, especially since they are now directly facing Earth, and those two sunspots have ‘delta-class’ magnetic fields that harbor energy for X-flares.
But the active region on the Sun that actually produced the flares was AR2087, which just appeared “around the corner” on the southeastern limb of the Sun. The first flare was a X2.2-flare and the second was an X1.5-flare.
See the image of #2 below from the Solar Dynamics Observatory:
Solar flares are explosions on the Sun that release energy, light and high speed particles into space, and the biggest flares are known as X-class.
Solar flares are classified on a system that divides solar flares according to their strength. The smallest ones are A-class (near background levels), followed by B, C, M and X. Similar to the Richter scale for earthquakes, each letter represents a 10-fold increase in energy output. So an X is ten times an M and 100 times a C. Within each letter class there is a finer scale from 1 to 9.
Here’s NASA’s video guide to X-Class flares:
NASA says these flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). The number of solar flares increases approximately every 11 years. Watch this video below about why solar scientists think the solar maximum is happening now:
This is not your basic sunset timelapse! It combines a close-up view of the Sun with a solar telescope along with the landscape in the foreground. Astrophotographer Göran Strand from Sweden has been planning this photoshoot for a year, and it turned out spectacularly.
“Yesterday I went out to shoot a sunset I’ve planed since last summer,” Göran said via email. “This time of the year, the Sun passes right behind a big radar tower if you stand at the Swedish National Biathlon Arena in Östersund. The radar tower is located about 8 km away from the arena in a small village called Ås. I shoot the movie using my solar telescope to capture the structures on the Sun. The timing was perfect and the Sun looked really nice since it was full of sunspots and big filaments.”
Note the size of the Earth inserted for reference.
Below is a beautiful image taken a few days earlier by Göran of the setting Sun:
It’s like a total solar eclipse — without the Moon! Using a special hydrogen-alpha filter that completely blocks the Sun’s photosphere (visible surface) these images show just the Sun’s corona and the dancing solar prominences. The filter blocks all light from the Sun except for the red light emitted by excited hydrogen atoms, which are responsible for the distinctive color of prominences and the chromosphere, the wispy, hot layer of gas that overlies the photosphere.
Of course, never look directly at the Sun with the naked eye or through a telescope without a special solar filter.
The image above by Mary Spicer was taken with a Coronado PST, 2 x Barlow plus Canon 1100D. ISO-3200 1/400 second exposure, processed in Lightroom and Focus Magic.
See more below:
These images by Roger Hutchinson were taken with a Lunt LS60 Ha, Skyris 618C, and 2.5x Powermate.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.