Four years ago today, the Solar Dynamics Observatory embarked on a five-year mission to boldly go where no Sun-observing satellite has gone before. SDO uses its three instruments to look constantly at the Sun in ten different wavelengths. Called the “Crown Jewel” of NASA’s fleet of solar observatories, SDO is a technologically advanced spacecraft that takes images of the sun every 0.75 seconds. Each day it sends back about 1.5 terabytes of data to Earth — the equivalent of about 380 full-length movies.
SDO launched on Feb. 11, 2010, and it has since captured the amazing views of the ever-changing face of the Sun — the graceful dance of solar material coursing through the Sun’s the corona, massive solar explosions and giant sunspot shows. Enjoy this latest highlight video from year 4 from SDO!
I was priveldged to be able to attend the launch of SDO, and you can read our article about the launch here.
The launch included a little “special effects” that wowed the crowd. The Atlas rocket soared close to a sundog just as the spacecraft reached Max-Q, and a ripple effect was created around the spacecraft. You can watch the launch below to see what happened:
What a crazy sunspot cycle. Weeks go by with only a few tiny spots freckling the sun, then all at once a monster group big enough to swallow 10 Earths rounds the eastern limb and we’re back in business. I’m happy to report we’ve got another behemoth snapping and crackling with M-class (moderately strong) flares – Active Region 1967, a hunk-a-hunk of burnin’ funk that rounded the solar limb a week ago.
NOAA weather forecasters predict an 80% chance of continued M-flares and a 50% chance over the next 3 days for considerably more powerful X-class flares. This sunspot group has a delta classification magnetic field, the Facebook equivalent of “It’s complicated”.
Sunspots have two parts: a dark core (or cores) called an umbra surrounded by a paler skirt of magnetic energy, the penumbra. They can look impressive like this one, but it’s hard to call a sunspot a “thing”. It’s really more of a locale on the sun’s bright white photosphere where bundles of powerful magnetic energy bob up from below the surface and insulate a region of the sun’s fiery hydrogen gas from the rest of the flaming globe.
We’re talking insulate as in staying cool. While the photosphere cooks at around 11,000 degrees Fahrenheit, sunspots are some 3,000 degrees cooler. That’s why they appear dark to the eye. If you could rip them away from the sun and see them alone against the sky, they’d be too bright to look at safely.
A delta-class spot group has umbrae of both polarities, north and south, corralled within the penumbra. Like bringing opposite poles of a two magnets so close they snap together, something similar can happen inside delta-class groups. Only instead of a snap, a titanic thermonuclear explosion called a flare goes kaboom.The biggest flares release the equivalent of a billion hydrogen bombs.
We thank our lucky stars for Earth’s iron heart, which generates our protective magnetic shield, and the 93 million miles that separate us from the sun. AR 1967 has paraded right in front of our noses as it rotated with the sun. Yesterday it squarely faced the Earth – a good thing when it comes to the particle blasts that fire up the northern lights. Let’s hope it showers us with a magnetic goodness in the coming days. I really miss seeing the aurora. You too? NOAA space weather forecasters are calling for a 25% chance of auroras in Arctic latitudes overnight Feb. 4-5. We at mid-latitudes will try to be patient.
Our civilization will need more power in the future. Count on it. The ways we use power today: for lighting, transportation, food distribution and even entertainment would have sounded hilarious and far fetched to our ancestors.
As our technology improves, our demand for power will increase. I have no idea what we’ll use it for, but I guarantee we’ll want it. Perhaps we’ll clean up the oceans, reverse global warming, turn iron into gold, or any number of activities that take massive amounts of energy. Fossil fuels won’t deliver, and they come with some undesirable side effects. Nuclear fuels will only provide so much power until they run out.
We need the ultimate in energy resources. We’ll want to harness the entire power of our star. The Soviet astronomer Nikolai Kardashev predicted that a future civilization might eventually harness the power of an entire planet. He called this a Type I civilization. A Type II would harness the entire energy output of a star. And a Type III civilization would utilize the power of their entire galaxy. So let’s consider a Type II civilization.
What would it actually take to harness 100% of the energy from a star? We’d need to construct a Dyson Sphere or Cloud and collect all the solar energy that emanates from it. But could we do better? Could we extract material directly from a star?
You bet, it’s the future!
This is an idea known as “stellar lifting”. Stealing hydrogen fuel from the Sun and using it for our futuristic energy needs. In fact, the Sun’s already doing it… poorly. Stars generate powerful magnetic fields. They twist and turn across the surface of the star, and eject hydrogen into space. But it’s just a trickle of material. To truly harness the power of the Sun, we need to get at that store of hydrogen, and speed up the extraction process.
There are a few techniques that might work. You can use lasers to heat up portions of the surface, and increase the volume of the solar wind. You could use powerful magnetic fields to carry plasma away from the Sun’s poles into space.Which ever way it happens, once we’ve got all that hydrogen. How do we use it to get energy? We could combine it with oxygen and release energy via combustion, or we could use it in our space reactors and generate power from fusion.
But the most efficient way is to feed it to a black hole and extract its angular momentum. A highly advanced civilization could siphon material directly from a star and send it onto the ergosphere of a rapidly spinning pet black hole.
Here’s Dr. Mark Morris, a Professor of Astronomy at UCLA. He’ll explain:
“There is this region, called the ergosphere between the event horizon and another boundary, outside. The ergosphere is a very interesting region outside the event horizon in which a variety of interesting effects can occur. For example, if we had a black hole at our disposal, we could extract energy from spinning black holes by throwing things into the ergosphere and grabbing whatever comes out at even higher speeds.”
This is known as the Penrose process, first identified by Roger Penrose in 1969. It’s theoretically possible to retrieve 29% of the energy in a rotating black hole. Unfortunately, you also slow it down. Eventually the black hole stops spinning, and you can’t get any more energy out of it. But then it might also be possible to extract energy from Hawking radiation; the slow evaporation of black holes over eons. Of course, it’s tricky business.
Dr. Morris continues, “There’s no inherent limitation except for the various problems working in the vicinity of a massive black hole. One can’t be anywhere near a black hole that’s actively accreting matter because the high flux of energetic particles and gamma rays. So it’s a hostile environment near most realistic black holes, so let me just say that it won’t be any time soon as far as our civilization is concerned. But maybe Type III civilizations so far beyond us that it exceeds our imagination won’t have any problem.”
A Type 3 civilization would be so advanced, with such a demand for energy, they could be extracting the material from all the stars in the galaxy and feeding it directly to black holes to harvest energy. Feeding black holes to other black holes to spin them back up again.
It’s an incomprehensible feat of galactic engineering. And yet, it’s one potential outcome of our voracious demand for energy.
Call it the eclipse nobody saw. NASA’s Solar Dynamics Observatory (SDO) got its own private solar eclipse showing from its geosynchronous orbital perch today. Twice a year during new phase, the moon glides in front of the sun from the observatory’s perspective. Although we can’t be there in person to see it, the remote view isn’t too shabby. The events are called lunar transits rather than eclipses since they’re seen from outer space. Transits typically last about a half hour, but at 2.5 hours, today’s was one of the longest ever recorded. The next one occurs on July 26, 2014.
Today’s lunar transit of the sun followed by a strong solar flare
When an eclipse ends, the fun is usually over, but not this time. Just as the moon slid off the sun’s fiery disk, a strong M6.6 solar flare exploded from within a new, very active sunspot group rounding the eastern limb and blasted a CME (coronal mass ejection) into space. What a show!
SDO circles Earth in a geosynchronous orbit about 22,000 miles high and photographs the sun continuously day and night from a vantage point high above Mexico and the Pacific Ocean. About 1.5 terabytes of solar data or the equivalent of half a million songs from iTunes are downloaded to antennas in White Sands, New Mexico every day.
For comparison, the space station, which orbits much closer to Earth, would make a poor solar observatory, since Earth blocks the sun for half of every 90 minute orbit.
When you look at the still pictures and video, notice how distinct the edge of the moon appears. With virtually no atmosphere, the moon takes a “sharp” bite out of the sun.
SDO amazes with its spectacular pictures of the sun taken in 10 different wavelengths of light every 10 seconds; additional instruments study vibrations on the sun’s surface, magnetic fields and how much UV radiation the sun pours into space.
Compared to all the hard science, the twice a year transits are a sweet side benefit much like the cherries topping a sundae.
You can make your own movie of today’s partial eclipse by visiting the SDO websiteand following these easy steps:
* Click on the Data tab and select AIA/HMI Browse Data
* Click on the Enter Start Date window, select a start date and time and click Done
* Click on Enter End Date and click Done
* Under Telescopes, pick the color (wavelength) sun you want
* Select View in the display box
* Click Submit at the bottom and watch a video of your selected pictures
Who knows what the future holds for our Sun? Dr. Mark Morris, a professor of astronomy at UCLA sure knows. Professor Morris sat down with us to let us know what we’re in for over the next few billions years.
“Hi, I’m Professor Mark Morris. I’m teaching at UCLA where I also carry out my research. I work on the center of the galaxy and what’s going on there – in this fabulous arena there, and on dying stars – stars that have reached the end of their lifetime and are putting on a display for us as they do so.”
What is the future of our sun?
“Well, there’s every expectation that in about 5 billion more years, that our sun will swell up to become a red giant. And then, as it gets larger and larger, it will eventually become what’s called an asymptotic giant branch star – a star whose radius is just under the distance between the sun and the Earth – one astronomical unit in size. So the Earth will be literally skimming the surface of the red giant sun when it’s an asymptotic giant branch star.”
“A star that big is also cool because they’re cold – red hot versus blue hot or yellow hot like our sun. Because it’s cold, a red giant star at its surface layers can keep all of its elements in the gas phase. So some of the heavier elements – the metals and the silicates – condense out as small dust grains, and when these elements condense out as solids, then radiation pressure from this very luminous giant star pushes the dust grains out. That may seem like a minor issue, but in fact these dust grains carry the gas with them. And so the star literally expels its atmosphere, and goes from a red giant star to a white dwarf, when finally the core of the star is exposed. Now, as it’s doing this, that hot core of the star is still very luminous and lights up through a fluorescent process, this out-flowing envelope, this atmosphere that was once a star, and that’s what produces these beautiful displays that are called planetary nebulae.”
“Now, planetary nebulae can be these beautiful round, spherical objects, or they can be bipolar, which is one of the mysteries that we’re working here is trying to understand why, at some stage, a star suddenly becomes axisymmetric – in other words, is sending out is’s atmosphere in two diametrically opposed directions predominantly, rather than continuing to lose mass spherically.”
“We can’t invoke rotation of the star – that would be one way to get a preferred axis, but stars don’t rotate fast enough. If you take the sun and let it expand to become a red giant, then by the conservation of angular momentum, it literally won’t be spinning at all. It’ll be spinning so slowly that it’ll literally have no effect. So we can’t invoke spin, so there must be something going on deep down inside the star, that when you finally expose some rapidly spinning core, it can have an effect.”
“Or, all of the stars that we see as planetary nebula can have binary companions, that could be massive planets or relatively low mass stars that themselves can impose an angular momentum orientation on the system. This is in fact an idea that I’ve been championing for decades now, and it has some traction. There’s a lot of planetary nebula nuclei, the white dwarves, that seem to have companions near them that are suspect for having been responsible for helping strip the atmosphere of the mass-losing red giant star but also providing a preferred axis along which the ejected matter can flow.”
It’s no mystery that the planets, moons, asteroids, etc. in the Solar System are arranged in a more-or-less flat, plate-like alignment in their orbits around the Sun.* But why is that? In a three-dimensional Universe, why should anything have a particular alignment at all? In yet another entertaining video from the folks at MinutePhysics, we see the reason behind this seemingly coincidental feature of our Solar System — and, for that matter, pretty much all planetary systems that have so far been discovered (not to mention planetary ring systems, accretion disks, many galaxies… well, you get the idea.) Check it out above.
The team from Slooh will broadcast a live Solar special focusing on the sudden emergence of hyperactivity on the Sun — lately attributed sunspot AR 1944. Right now, the Sun is in what is supposed to be the active phase of its 11-year solar cycle, Solar Cycle 24. While this has been an unusually quiet solar maximum, lately the Sun has been more active.
The broadcast will feature live feeds of the Sun from the Prescott Observatory run by Matt Francis and Slooh astronomer Bob Berman. They will provide live expert commentary during the 30 minute broadcast. The Solar Special will start at 10:00 AM PST/ 1:00 PM EST/ 18:00 UTC on Wednesday, January 15th.
You can watch live, below, or the replay if you missed it live:
Once our own Sun has consumed all the hydrogen fuel in its core, it too will reach the end of its life. Astronomers estimate this to be a short 7 billion years from now. For a few million years, it will expand into a red giant, puffing away its outer layers. Then it’ll collapse down into a white dwarf and slowly cool down to the background temperature of the Universe.
I’m sure you know that some other stars explode when they die. They also run out of fuel in their core, but instead of becoming a red giant, they detonate in a fraction of a second as a supernova.
So, what’s the big difference between stars like our Sun and the stars that can explode as supernovae?
Mass. That’s it.
Supernova progenitors – these stars capable of becoming supernovae – are extremely massive, at least 8 to 12 times the mass of our Sun. When a star this big runs out of fuel, its core collapses. In a fraction of a second, material falls inward to creating an extremely dense neutron star or even a black hole. This process releases an enormous amount of energy, which we see as a supernova.
If a star has even more mass, beyond 140 times the mass of the Sun, it explodes completely and nothing remains at all. If these other stars can detonate like this, is it possible for our Sun to explode?
Could there be some chain reaction we could set off, some exotic element a rare comet could introduce on impact, or a science fiction doomsday ray we could fire up to make the Sun explode?
Nope, quite simply, it just doesn’t have enough mass. The only way this could ever happen is if it was much, much more massive, bringing it to that lower supernovae limit.
In other words, you would need to crash an equally massive star into our Sun. And then do it again, and again.. and again… another half dozen more times. Then, and only then would you have an object massive enough to detonate as a supernova.
Now, I’m sure you’re all resting easy knowing that solar detonation is near the bottom of the planetary annihilation list. I’ve got even better news. Not only will this never happen to the Sun, but there are no large stars close enough to cause us any damage if they did explode.
A supernova would need to go off within a distance of 100 light-years to irradiate our planet.
According to Dr. Phil Plait from Bad Astronomy, the closest star that could detonate as a supernova is the 10 solar mass Spica, at a distance of 260 light-years. No where near close enough to cause us any danger.
So don’t worry about our Sun exploding or another nearby star going supernova and wiping us out. You can put your feet up and relax, as it’s just not going to happen.