Will The Sun Explode?

Will The Sun Explode?

All stars die, some more violently than others.

Once our own Sun has consumed all the hydrogen fuel in its core, it too will reach the end of its life. Astronomers estimate this to be a short 7 billion years from now. For a few million years, it will expand into a red giant, puffing away its outer layers. Then it’ll collapse down into a white dwarf and slowly cool down to the background temperature of the Universe.

I’m sure you know that some other stars explode when they die. They also run out of fuel in their core, but instead of becoming a red giant, they detonate in a fraction of a second as a supernova.

So, what’s the big difference between stars like our Sun and the stars that can explode as supernovae?

Mass. That’s it.

Supernova progenitors – these stars capable of becoming supernovae – are extremely massive, at least 8 to 12 times the mass of our Sun. When a star this big runs out of fuel, its core collapses. In a fraction of a second, material falls inward to creating an extremely dense neutron star or even a black hole. This process releases an enormous amount of energy, which we see as a supernova.

If a star has even more mass, beyond 140 times the mass of the Sun, it explodes completely and nothing remains at all. If these other stars can detonate like this, is it possible for our Sun to explode?

Could there be some chain reaction we could set off, some exotic element a rare comet could introduce on impact, or a science fiction doomsday ray we could fire up to make the Sun explode?

Nope, quite simply, it just doesn’t have enough mass. The only way this could ever happen is if it was much, much more massive, bringing it to that lower supernovae limit.

In other words, you would need to crash an equally massive star into our Sun. And then do it again, and again.. and again… another half dozen more times. Then, and only then would you have an object massive enough to detonate as a supernova.

We don't have to worry about our sun exploding into a supernova.
We don’t have to worry about our sun exploding into a supernova.

Now, I’m sure you’re all resting easy knowing that solar detonation is near the bottom of the planetary annihilation list. I’ve got even better news. Not only will this never happen to the Sun, but there are no large stars close enough to cause us any damage if they did explode.
A supernova would need to go off within a distance of 100 light-years to irradiate our planet.

According to Dr. Phil Plait from Bad Astronomy, the closest star that could detonate as a supernova is the 10 solar mass Spica, at a distance of 260 light-years. No where near close enough to cause us any danger.

So don’t worry about our Sun exploding or another nearby star going supernova and wiping us out. You can put your feet up and relax, as it’s just not going to happen.

Astronomy Cast Ep. 325: Cold Fusion

The Universe is filled with hot fusion, in the cores of stars. And scientists have even been able to replicate this stellar process in expensive experiments. But wouldn’t it be amazing if you could produce energy from fusion without all that equipment, and high temperatures and pressures? Pons and Fleischmann announced exactly that back in 1989, but things didn’t quite turn out as planned…

Continue reading “Astronomy Cast Ep. 325: Cold Fusion”

Why Does the Moon Shine?

Why Does the Moon Shine?

We enjoy the light from the Sun during the day, and then the comforting glow of the Moon at night. But the light coming from the Moon is an illusion. As you know, you’re actually seeing the reflected light from the Sun, bouncing off the Moon which acts like a mirror. A really terrible mirror.

When astronauts walked on the surface, they reported that it was dark grey, the color of pavement. Because of its dark color and bumpy surface, it only reflects about 12% of the light that hits it. Additionally, the amount of light we get from the Moon depends on the point of its orbit.

During its first and last quarters, the Moon is half illuminated, but it’s only 8% as bright when it’s full. Just imagine the surface when its only partly illuminated. With the Sun at a steep angle, the mountains cast long shadows. This makes the lunar surface much darker than when it’s directly illuminated.

During the full Moon, it’s so bright that it obscures fainter objects in the night sky. Many astronomers put their telescopes away during this phase, and wait for it to go away. When the Moon is highly illuminated, it reflects so much light we can even see it during the day.

[/caption]

The brightness of the daytime sky completely washes out the light from the stars, but the Moon is even brighter, and so we can can see it in the sky during the day. The Moon follows an elliptical orbit around the Earth, changing its distance and brightness quite a bit. When it is at its closest point, and it’s full, this is known as a supermoon. This Moon can be 20% brighter than normal.

You’ve probably experienced how the Moon can cast shadows. In fact, there are three objects in the sky that can cast shadows. The Sun, of course, the Moon… and Venus.

Venus is the next brightest object in the sky, after the Moon. It reflects 65% of the sunlight that hits it. Every few months, Venus reaches its brightest time – that’s when you can see your shadow. On a night with no Moon, head far away from city lights. Let your eyes adjust and watch as your hand casts a shadow on a white piece of paper, illuminated only by Venus.

One last thought on reflected light.We talked about how bad a mirror the Moon is, reflecting only 12% of the light that hits it. That’s nothing. Saturn’s moon Enceladus, on the other hand, reflects about 99% of the light that falls on it. If astronauts ever get the chance to walk on the surface of Enceladus, it’ll feel like freshly fallen snow.

We have written many articles about the Moon for Universe Today. Here are some interesting facts about the Moon, and here are some Earth and Moon photos.

If you’d like more info on the Moon, check out NASA’s Solar System Exploration Guide on the Moon, and here’s a link to NASA’s Lunar and Planetary Science page.

We’ve also recorded an entire episode of Astronomy Cast all about the Moon. Listen here, Episode 113: The Moon, Part 1.

References:
http://lunarscience.nasa.gov/kids/moonshine
http://www-istp.gsfc.nasa.gov/stargaze/Smoon.htm

How Far is Mars from Earth?

How Far is Mars from Earth?

This article was originally published on Aug 10, 2012. We’ve updated it and added this cool new video!

Sending spacecraft to Mars is all about precision. It’s about blasting off from Earth with a controlled explosion, launching a robot into space in the direction of the Red Planet, navigating the intervening distance between our two planets, and landing with incredible precision.

This intricate and complicated maneuver means knowing the exact distance from Earth to Mars. Since Mars and Earth both orbit the Sun – but at different distance, with different eccentricities, and with different orbital velocities – the distance between then is constantly changing

The first person to ever calculate the distance to Mars was the astronomer Giovanni Cassini, famous for his observations of Saturn. Giovanni made observations of Mars in 1672 from Paris, while his colleague, Jean Richer made the same observation from Cayenne, French Guiana. They used the parallax method to calculate the distance to Mars with surprising accuracy.

About every two years, however, the Earth passes Mars as they orbit around the Sun. Credit: NASA
Every two years, the Earth passes Mars as they orbit around the Sun, which causes it to appear like it is slowing down and moving in reverse in the sky (aka. “retrograde motion”). Credit: Tunç Tezel

However, astronomers now calculate the distance to objects in the Solar System using the speed of light. They measure the time it takes for signals to reach spacecraft orbiting other planets. They can bounce powerful radar off planets and measure the time it takes for signals to return. This allows them to measure the distance to planets, like Mars, with incredible accuracy.

Distance Between Earth and Mars:

So, how far away is Mars? The answer to that question changes from moment to moment because Earth and Mars are orbiting the Sun. It also requires a little explanation about the orbital mechanics of each. Both Earth and Mars are following elliptical orbits around the Sun, like two cars travelling at different speeds on two different racetracks.

Sometimes the planets are close together, and other times they’re on opposite sides of the Sun. And although they get close and far apart, those points depend on where the planets are on their particular orbits. So, the Earth Mars distance is changing from minute to minute.

The planets don’t follow circular orbits around the Sun, they’re actually traveling in ellipses. Sometimes they’re at the closest point to the Sun (called perihelion), and other times they’re at the furthest point from the Sun (known as aphelion).

. Credit and copyright: Encyclopedia Britannica
Mars axial tilt and eccentricity as it orbits around the Sun. Credit and copyright: Encyclopedia Britannica

To get the closest point between Earth and Mars, you need to imagine a situation where Earth and Mars are located on the same side of the Sun. Furthermore, you want a situation where Earth is at aphelion, at its most distant point from the Sun, and Mars is at perihelion, the closest point to the Sun.

Earth and Mars Opposition:

When Earth and Mars reach their closest point, this is known as opposition. It’s the time that Mars appears as a bright red star of the sky; one of the brightest objects, rivaling the brightness of Venus or Jupiter. There’s no question Mars is bright and close, you can see it with your own eyes. And theoretically at this point, Mars and Earth will be only 54.6 million kilometers from each other.

But here’s the thing, this is just theoretical, since the two planets haven’t been this close to one another in recorded history. The last known closest approach was back in 2003, when Earth and Mars were only 56 million km (or 33.9 million miles) apart. And this was the closest they’d been in 50,000 years.

Opposition occurs when Mars and Earth line up on the same side of the Sun. The two planets are closest together at that time. Mars opposition occurs on May 22, when the planet will shine at magnitude -2.0 and with an apparent diameter of 18.6 arc seconds, its largest in years. Credit: Bob King
Opposition occurs when Mars and Earth line up on the same side of the Sun. The two planets are closest together at that time. Credit: Bob King

Here’s a list of Mars Oppositions from 2007-2020 (source)

  • Dec. 24, 2007 – 88.2 million km (54.8 million miles)
  • Jan. 29, 2010 – 99.3 million km (61.7 million miles)
  • Mar. 03, 2012 – 100.7 million km (62.6 million miles)
  • Apr. 08, 2014 – 92.4 million km (57.4 million miles)
  • May. 22, 2016 – 75.3 million km (46.8 million miles)
  • Jul. 27. 2018 – 57.6 million km (35.8 million miles)
  • Oct. 13, 2020 – 62.1 million km (38.6 million miles)

2018 should be a very good year, with a Mars looking particularly bright and red in the sky.

Earth and Mars Conjunction:

On the opposite end of the scale, Mars and Earth can be 401 million km apart (249 million miles) when they are in opposition and both are at aphelion. The average distance between the two is 225 million km. When Mars and Earth are at their closest, you have your launch window.

Every 26 months Mars is opposite the Sun in our nighttime sky. Since 1995, Mars has been at such an "opposition" with the Sun seven times. A color composite from each of the seven Hubble opposition observations has been assembled in this mosaic to showcase the beauty and splendor that is The Red Planet. This mosaic of all seven globes of Mars shows relative variations in the apparent angular size of Mars over the years. Mars was the closest in 2003 when it came within 56 million kilometres of Earth. The part of Mars that is tilted towards the Earth also shifts over time, resulting in the changing visibility of the polar caps. Clouds and dust storms, as well as the size of the ice caps, can change the appearance of Mars on time scales of days, weeks, and months. Other features of Mars, such as some of the large dark markings, have remained unchanged for centuries. Credit: NASA/ESA
Since 1995, Mars has been at such an “opposition” with the Sun seven times. A color composite from each of the seven Hubble opposition observations has been assembled in this mosaic to showcase the beauty and splendor that is The Red Planet. Credit: NASA/ESA

Mars and Earth reach this closest point to one another approximately every two years. And this is the perfect time to launch a mission to the Red Planet. If you look back at the history of launches to Mars, you’ll notice they tend to launch about every two years.

Here’s an example of recent Missions to Mars, and the years they launched:

  • MER-A Spirit – 2003
  • MER-B Opportunity – 2003
  • Mars Reconnaissance Orbiter – 2005
  • Phoenix – 2007
  • Fobos-Grunt – 2011
  • MSL Curiosity – 2011

See the trend? Every two years. They’re launching spacecraft when Earth and Mars reach their closest point.

Spacecraft don’t launch directly at Mars; that would use up too much fuel. Instead, spacecraft launch towards the point that Mars is going to be in the future. They start at Earth’s orbit, and then raise their orbit until they intersect the orbit of Mars; right when Mars is at that point. The spacecraft can then land on Mars or go into orbit around it. This journey takes about 250 days.

Communicating with Mars:

With these incredible distances between Earth and Mars, scientists can’t communicate with their spacecraft in real time. Instead, they need to wait for the amount of time it takes for transmissions to travel from Earth to Mars and back again.

Greetings from Mars!   I’m Spirit and I was the first of two twin robots to land on Mars. Unlike my twin, Opportunity, I’m known as the hill-climbing robot.     Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech
Artist’s impression of the Spirit Rover. One of two rovers that were part of MER program, the other was Opportunity, that began communicating back information that have helped NASA scientists characterize the Martian environment and geological history. NASA/JPL-Caltech

When Earth and Mars are at their theoretically closest point of 54.6 million km, it would take a signal from Earth about 3 minutes to make the journey, and then another 3 minutes for the signals to get back to Earth. But when they’re at their most distant point, it takes more like 21 minutes to send a signal to Mars, and then another 21 minutes to receive a return message.

This is why the spacecraft sent to Mars are highly autonomous. They have computer systems on board that allow them to study their environment and avoid dangerous obstacles completely automatically, without human intervention.

The distance from Earth to Mars is the main reason that there has never been a manned flight to the Red Planet. Scientists around the world are working on ways to shorten the trip with the goal of sending a human into Martian orbit within the next decade.

We have written many articles about the distance between planets here at Universe Today. Here are the distances between Earth and the Sun, Mercury, Venus, the Moon, Jupiter, Saturn, Uranus, Neptune, and Pluto. And here are Ten Interesting Facts about Planet Mars and How Long Does it Take to Get to Mars?

For more information, this website lists every Mars opposition time, from recent past all the way in the far future. You can also use NASA’s Solar System Simulator to see the current position of any object in the Solar System.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about Mars at Astronomy Cast. Episode 52: Mars. We have also done an episode explaining distances, Episode 10: Measuring Distance in the Universe.

Sources:

How Does a Star Form?

How Does a Star Form?

We owe our entire existence to the Sun. Well, it and the other stars that came before. As they died, they donated the heavier elements we need for life. But how did they form?

Stars begin as vast clouds of cold molecular hydrogen and helium left over from the Big Bang. These vast clouds can be hundreds of light years across and contain the raw material for thousands or even millions of times the mass of our Sun. In addition to the hydrogen, these clouds are seeded with heavier elements from the stars that lived and died long ago. They’re held in balance between their inward force of gravity and the outward pressure of the molecules. Eventually some kick overcomes this balance and causes the cloud to begin collapsing.

That kick could come from a nearby supernova explosion, collision with another gas cloud, or the pressure wave of a galaxy’s spiral arms passing through the region. As this cloud collapses, it breaks into smaller and smaller clumps, until there are knots with roughly the mass of a star. As these regions heat up, they prevent further material from falling inward.

At the center of these clumps, the material begins to increase in heat and density. When the outward pressure balances against the force of gravity pulling it in, a protostar is formed. What happens next depends on the amount of material.

Some objects don’t accumulate enough mass for stellar ignition and become brown dwarfs – substellar objects not unlike a really big Jupiter, which slowly cool down over billions of years.

If a star has enough material, it can generate enough pressure and temperature at its core to begin deuterium fusion – a heavier isotope of hydrogen. This slows the collapse and prepares the star to enter the true main sequence phase. This is the stage that our own Sun is in, and begins when hydrogen fusion begins.

If a protostar contains the mass of our Sun, or less, it undergoes a proton-proton chain reaction to convert hydrogen to helium. But if the star has about 1.3 times the mass of the Sun, it undergoes a carbon-nitrogen-oxygen cycle to convert hydrogen to helium. How long this newly formed star will last depends on its mass and how quickly it consumes hydrogen. Small red dwarf stars can last hundreds of billions of years, while large supergiants can consume their hydrogen within a few million years and detonate as supernovae. But how do stars explode and seed their elements around the Universe? That’s another episode.

We have written many articles about star formation on Universe Today. Here’s an article about star formation in the Large Magellanic Cloud, and here’s another about star formation in NGC 3576.

Want more information on stars? Here’s Hubblesite’s News Releases about Stars, and more information from NASA’s imagine the Universe.

We have recorded several episodes of Astronomy Cast about stars. Here are two that you might find helpful: Episode 12: Where Do Baby Stars Come From, and Episode 13: Where Do Stars Go When they Die?

Source: NASA

NASA’s STEREO Spacecraft Spots Comets ISON and Encke

Comet ISON entered the STEREO scene with Encke on Nov. 21 (Credit: Karl Battams/NASA/STEREO/CIOC)

As comets ISON and Encke continue toward their respective rendezvous with the Sun, they have now both been captured on camera by NASA’s solar-observing STEREO spacecraft. The image above, taken on Nov. 21 (UT) with STEREO-A’s high-resolution HI-1 camera, shows ISON as it enters the field of view from the left. Encke is at center, while the planets Mercury and Earth (labeled) are bright enough to cause vertical disruptions in the imaging sensors. (The Sun is off frame to the right.)

As cool as this image is, it gets even better: there’s a video version. Check it out below:

Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)
Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)

The dark “clouds” coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke’s tail. (Source)

The position of NASA's STEREO spacecraft relative to Earth and the Sun on Nov. 22
The position of NASA’s STEREO spacecraft relative to Earth and the Sun on Nov. 22

It’s fascinating to watch how the solar wind shapes and affects the tail of comet Encke… as ISON moves further into view, I’m sure we’ll see similar disruptions in its tail as well. (And look what STEREO-A saw happen to Encke’s tail back in 2007!)

Encke reached the perihelion of its 3.3-year-long orbit on Nov. 21; newcomer ISON will arrive at its on Nov. 28. While it seems to be holding together quite well in these STEREO images, what happens when it comes within 730,000 miles of the Sun next week is still anybody’s guess.

Read more: Whoa, Take a Look at Comet ISON Now!

Astronomy Cast 322: SOHO

As we’ve mentioned before, the Sun is a terrifying ball of plasma. It’s a good thing we’re keeping an eye on it. And that eye is the Solar and Heliospheric Observatory, or SOHO. Operating for more than 18 years now, SOHO has been making detailed observations of the Sun’s activity though an almost entire solar cycle. With so many years of operation, SOHO has some amazing stories to tell.

Continue reading “Astronomy Cast 322: SOHO”

Astronomy Cast 321: Solar Flares

Sometimes the Sun is quiet, and other times the Sun gets downright unruly. During the peak of its 11-year cycle, the surface of the Sun is littered with darker sunspots. And its from these sunspots that the Sun generates massive solar flares, which can spew radiation and material in our direction. What causes these flares, and how worried should we be about them in our modern age of fragile technology?
Continue reading “Astronomy Cast 321: Solar Flares”