This close-up movie of looping, dancing prominences on the Sun looks like something you’d see from one of the spacecraft we have studying the Sun, such as the Solar Dynamics Observatory. However, the images were taken from Earth by amateur astronomer Michel Collart from France. He was able to capture incredible detail (see his list of equipment below) of this region on the Sun’s western limb, and in a series of 120 frames, shows a lot of activity taking place on the morning of August 20, 2013.
It is easy to become mesmerized watching the matter ejected at high speed from the surface, then falling back down due to the Sun’s gravity.
“We saw beautiful loops this morning, and as a bonus, we see a beautiful ejection of matter from the left and return to its starting point — great!” Collart posted on the WebAstro Forum.
And while these loops are huge – see the image below comparing the size of the Earth and Moon to the prominences — this is just a small area of the Sun.
See the full view of the Sun taken by Michel:
And the comparison of sizes between the loops, Earth, the Moon and the distance between the Earth and Moon:
Michel told Universe Today that he’s been imaging the Sun for about 15 years and this is the first time he’s been able to take images of them. “These loops are very rare to catch,” he said.
The series of 120 frames (1 per 30 seconds, so 1 hour total) were taken by Michel on Tuesday August 20th, between 7:25 and 8:25 UTC on Tuesday, August 20, 2013, about the same time the Sun blasted a coronal mass ejection with billions of tons of solar particles toward Earth at the mind-boggling speed of 3.3 million km/h (2 million mph).
Here’s a video version of the loops, complete with music:
Michel Collart’s equipment and methods:
Takahashi Refractor TOA 130mm, Coronado Solarmax90 double stacked with Coronado PST etalon and blocking filter BF15, Televue 1.8x Barlow and Point Grey Camera Grasshopper3 ICX674 sensor.
120 videos of 10s spaced by 20s at 40 frames/s taken the 20/08/2013 between 7:25 and 8:25 GMT.
Processing: Autostakkert2 + Registax6 and export as video on Registax5, Finalizing the video in VirtualDub and export GIF
Thanks to Michel for allowing Universe Today to share his wonderful work!
Nearly 18.7 billion kilometers from Earth — about 17 light-hours away — NASA’s Voyager 1 spacecraft is just about on the verge of entering interstellar space, a wild and unexplored territory of high-energy cosmic particles into which no human-made object has ever ventured. Launched in September 1977, Voyager 1 will soon become the first spacecraft to officially leave the Solar System.
Or has it already left?
I won’t pretend I haven’t heard it before: Voyager 1 has left the Solar System! Usually followed soon after by: um, no it hasn’t. And while it might all seem like an awful lot of flip-flopping by supposedly-respectable scientists, the reality is there’s not a clear boundary that defines the outer limits of our Solar System. It’s not as simple as Voyager rolling over a certain mileage, cruising past a planetary orbit, or breaking through some kind of discernible forcefield with a satisfying “pop.” (Although that would be cool.)
Rather, scientists look at Voyager’s data for evidence of a shift in the type of particles detected. Within the transitionary zone that the spacecraft has most recently been traveling through, low-energy particles from the Sun are outnumbered by higher-energy particles zipping through interstellar space, also called the local interstellar medium (LISM). Voyager’s instruments have been detecting dramatic shifts in the concentrations of each for over a year now, unmistakably trending toward the high-energy end — or at least showing a severe drop-off in solar particles — and researchers from the University of Maryland are claiming that this, along with their model of a porous solar magnetic field, indicates Voyager has broken on through to the other side.
“It’s a somewhat controversial view, but we think Voyager has finally left the Solar System, and is truly beginning its travels through the Milky Way,” said Marc Swisdak, UMD research scientist and lead author of a new paper published this week in The Astrophysical Journal Letters.
According to Swisdak, fellow UMD plasma physicist James F. Drake, and Merav Opher of Boston University, their model of the outer edge of the Solar System fits recent Voyager 1 observations — both expected and unexpected. In fact, the UMD-led team says that Voyager passed the outer boundary of the Sun’s magnetic influence, aka the heliopause… last year.
But, like some of last year’s claims, these conclusions aren’t shared by mission scientists at NASA.
“Details of a new model have just been published that lead the scientists who created the model to argue that NASA’s Voyager 1 spacecraft data can be consistent with entering interstellar space in 2012,” said Ed Stone, Voyager project scientist at Caltech, in a press release issued today. “In describing on a fine scale how magnetic field lines from the sun and magnetic field lines from interstellar space can connect to each other, they conclude Voyager 1 has been detecting the interstellar magnetic field since July 27, 2012. Their model would mean that the interstellar magnetic field direction is the same as that which originates from our sun.
“Other models envision the interstellar magnetic field draped around our solar bubble and predict that the direction of the interstellar magnetic field is different from the solar magnetic field inside. By that interpretation, Voyager 1 would still be inside our solar bubble.”
Stone says that further discussion and investigation will be needed to “reconcile what may be happening on a fine scale with what happens on a larger scale.”
Whether still within the Solar System — however it’s defined — or outside of it, the bottom line is that the venerable Voyager spacecraft are still conducting groundbreaking research of our cosmic neighborhood, 36 years after their respective launches and long after their last views of the planets. And that’s something nobody can argue about.
“The Voyager 1 spacecraft is exploring a region no spacecraft has ever been to before. We will continue to look for any further developments over the coming months and years as Voyager explores an uncharted frontier.”
– Ed Stone, Voyager project scientist
Built by JPL and launched in 1977, both Voyagers are still capable of returning scientific data from a full range of instruments, with adequate power and propellant to remain operating until 2020.
Note: The definition of “Solar System” used in this article is in reference to the Sun’s magnetic influence, the heliosphere, and all that falls within its outermost boundary, the heliopause (wherever that is.) Objects farther out are still gravitationally held by the Sun, such as distant KBOs and Oort Cloud comets, but orbit within the interstellar medium.
Gather round the internets for another episode of the Weekly Space Hangout. Where our experienced team of journalists, astronomers and astronomer-journalists bring you up to speed on the big happenings in the universe of space and astronomy.
Our team this week:
Reporters: Casey Dreier, David Dickinson, Amy Shira Teitel, Sondy Springmann, Nicole Gugliuci
We record the Weekly Space Hangout every Friday at Noon Pacific, 3 pm Eastern. Join us live here on Universe Today, over on our YouTube account, or on Google+. Or you can watch the archive after the fact.
The Sun’s magnetic field will likely reverse sometime in the next three to four months. No, this is not the next doomsday prediction scenario. It really will happen. But there’s nothing to fear because in reality the Sun’s magnetic field changes regularly, about every 11 years.
The flip-flopping of the Sun’s magnetic field takes place at the peak of each solar activity cycle when the Sun’s internal magnetic dynamo reorients itself. When the field reversal happens, the magnetic field weakens, then dies down to zero before emerging again with a reversed polarity.
While this is not a catastrophic event, the reversal will have effects, said solar physicist Todd Hoeksema, the director of Stanford University’s Wilcox Solar Observatory, who monitors the Sun’s polar magnetic fields. “This change will have ripple effects throughout the Solar System,” he said.
When solar physicists talk about solar field reversals, their conversation often centers on the “current sheet.” The current sheet is a sprawling surface jutting outward from the sun’s equator where the Sun’s slowly-rotating magnetic field induces an electrical current. The current itself is small, only one ten-billionth of an amp per square meter (0.0000000001 amps/m2), but there’s a lot of it: the amperage flows through a region 10,000 km thick and billions of kilometers wide. Electrically speaking, the entire heliosphere is organized around this enormous sheet.
During field reversals, the current sheet becomes very wavy, and as Earth orbits the Sun, we dip in and out of the current sheet. This means we can see an uptick in space weather, with any solar storms affecting Earth more. So, there may be more auroras in our near future.
Cosmic rays are also affected. These are high-energy particles accelerated to nearly light speed by supernova explosions and other violent events in the galaxy. Cosmic rays are a danger to astronauts and space probes, and some researchers say they might affect the cloudiness and climate of Earth. The current sheet acts as a barrier to cosmic rays, deflecting them as they attempt to penetrate the inner solar system. The good news is that a wavy sheet acts as a better shield against these energetic particles from deep space.
Scientists say the Sun’s north pole is already quite far along losing its polarity, with the south pole coming along behind.
“The sun’s north pole has already changed sign, while the south pole is racing to catch up,” said Phil Scherrer, another solar physicst at Standford. “Soon, however, both poles will be reversed, and the second half of Solar Max will be underway.”
For the past two weeks puffy clumps of seeds have been riding the air in my town. You can’t avoid them. Open a door and they’ll breeze right in. Take a deep breath and you’d better be careful you don’t take a few down the windpipe.
Every June the many aspen trees that call northern Minnesota home release their booty of tiny seeds that parachute through the air on tiny clusters of hairs. And while they all have no particular place to go, their combined and unintentional effect is to create a series of beautiful colored rings about the Sun called a corona.
Reach your hand up to block the Sun and if your eyes can stand the glare of blue-white sky, you’ll see bazillions of tiny flecks a-flying. If you were to capture one and study it up close, you’d see it diffractlight in tiny glimmers of chrome green and purple.
Light is always getting messed with by tiny things. When it comes to aspen seeds, as rays of light – made of every color of the rainbow – bend around the hairy obstacles they interfere with one another like overlapping, expanding wave circles in a pond. Some of the waves reinforce each another and others cancel out. Our eyes see a series of colored fringes that flash about the tiny hairs.
The exact same thing happens when light has to step around minute water droplets, pollen grains and our hairy aspen fluffs when they’re drift through the air overhead. Overlapping wavelets of light “interfere” with one another to form a series of colorful concentric circles called a solar corona. While the same in name, this corona is an earthly one unrelated to the huge, hot coronal atmosphere that surrounds our star.
The ones created by seed hairs and pollen require clear skies and a safe way to block the Sun’s overwhelming light. My filter of choice is the power pole mostly because they’re handy. Sunglasses help to reduce the glare and eye-watering wincing.
While I can’t be 100% certain the chromatic bullseye was painted by poplar hair deflections – there’s always a chance pollen played a part – I’ve seen similar displays when the seeds have passed this way before.
Coronas created by water droplets in mid-level clouds are much more common, and the familiar “ring around the sun” or solar halo is an entirely different creature. Here, light is bent or refracted through billions of microscopic six-sided ice crystals.
I figure that if the night is cloudy, the play of light and clouds in the daytime sky often makes for an enjoyable substitute.
Last night, as Commander Hadfield and the Expedition 35 crew were returning to Earth in their Soyuz spacecraft, the Sun unleashed yet another X-class flare from active region 1748, the third and most powerful eruption yet from the sunspot region in the past 24 hours — in fact, at a level of X3.2, it was the most intense flare observed all year.
And with this dynamic sunspot region just now coming around the Sun’s limb and into view, we can likely expect much more of this sort of activity… along with a steadily increasing chance of an Earth-directed CME.
According to SpaceWeather.com AR1748 has produced “the strongest flares of the year so far, and they signal a significant increase in solar activity. NOAA forecasters estimate a 40% chance of more X-flares during the next 24 hours.”
(Find out more about the classification of solar flares here.)
The sunspot region just became fully visible to Earth during the early hours of May 13 (UT).
Sunspots are regions where the Sun’s internal magnetic fields rise up through its surface layers, preventing convection from taking place and creating cooler, optically darker areas. They often occur in pairs or clusters, with individual spots corresponding to the opposite polar ends of magnetic lines.
Sunspots may appear dark because they are relatively cooler than the surrounding area on the Sun’s photosphere, but in ultraviolet and x-ray wavelengths they are brilliantly white-hot. And although sunspots look small compared to the Sun, they are often many times larger than Earth.
According to SDO project scientists Dean Pesnell on the SDO is Go! blog, AR1748 is not only rapidly unleashing flares but also changing shape.
“The movies show that the sunspot is changing, the two small groups on the right merging and the elongated spot on the lower left expanding out to join them,” Pesnell wrote earlier today.
Of course, as a solar scientist Pesnell is likely much more excited about the chance to observe further high-intensity activity than he is concerned about any dramatically negative impacts of a solar storm here on Earth, which, although possible, are still statistically unlikely.
“Great times ahead for this active region!” he added enthusiastically.
For updated information on AR1748’s activity visit SpaceWeather.com and NASA’s SDO site, and also check out TheSunToday.org run by solar physicist C. Alex Young, Ph.D.
Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.
The Sun gets active! On May 12, 2013, the Sun emitted what NASA called a “significant” solar flare, classified as an X1.7, making it the first X-class flare of 2013. Then earlier today, May 13, 2013, the Sun let loose with an even stronger flare, an X2.8-class. Both flares took place just beyond the limb of the Sun, and were also associated with another solar phenomenon, a coronal mass ejection (CME) which sent solar material out into space.
Neither CME was Earth-directed, and according to SpaceWeather.com, no planets were in the line of fire. However, the CMEs appear to be on course to hit NASA’s Epoxi, STEREO-B and Spitzer spacecraft on May 15-16. NASA said their mission operators have been notified, and if warranted, operators can put spacecraft into safe mode to protect the instruments. Experimental NASA research models show that the CMEs were traveling at about 1,930 km/second (1,200 miles per second) when they left the Sun.
The sunspot associated with these flares is just coming into view, and the next 24 to 48 hours should reveal much about the sunspot, including its size, magnetic complexity, and potential for future flares.
See more images and video below:
Both the X1.7 and the X2.8-class solar flare, plus a prominence eruption, all in one video:
NASA’s Solar Dynamics Observatory (SDO) captured this X1 flare (largest of the year so far) in extreme UV light:
Just in time for May Day, the Sun blasted out a coronal mass ejection (CME) from just around the limb earlier today, May 1, 2013. In a gigantic rolling wave, this CME shot out about a billion tons of particles into space, traveling at over a million miles per hour. This CME is not headed toward Earth. The video, taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours of elapsed time.
Camilla, the rubber chicken mascot for the SDO, said via YouTube that getting this side view shows the power and force behind these solar flares and coronal mass ejections.
This image shows three views of the CME from three different instruments. Left is the SDO image, taken at 02:40 UT. Center is from the SOHO spacecraft, looking through their coronograph instrument. The “mushroom” cloud of plasma leaving the Sun is visible. On the right is the LASCO C2 (red) and C3 (blue) instruments on SOHO, which use a disk to block out the Sun. Visible are the solid occulter disk, used to create a false eclipse; the “pylon”, which is an arm that holds the occulter disk in place; a representation of the Sun in the form of a white disk drawn on the occulter during our image processing and then you can see background stars and the cloud of plasma leaving the Sun.
We live on a planet dominated by weather. But not just the kind that comes in the form of wind, rain, and snow — we are also under the influence of space weather, generated by the incredible power of our home star a “mere” 93 million miles away. As we orbit the Sun our planet is, in effect, inside its outer atmosphere, and as such is subject to the constantly-flowing wind of charged particles and occasional outbursts of radiation and material that it releases. Although it may sound like something from science fiction, space weather is very real… and the more we rely on sensitive electronics and satellites in orbit, the more we’ll need to have accurate weather reports.
Fortunately, the reality of space weather has not gone unnoticed by the U.S. Federal Government.
Today the White House Office of Science and Technology Policy released a new report, Space Weather Observing Systems: Current Capabilities and Requirements for the Next Decade, which is an assessment of the United States government’s capacity to monitor and forecast potentially harmful space weather and how to possibly mitigate the damage from any exceptionally powerful solar storms in the future.
The report was made by a Joint Action Group (JAG) formed by the National Space Weather Program Council (NSWPC).
The impacts of space weather can have serious economic consequences. For example, geomagnetic storms during the 1990’s knocked out several telecommunications satellites, which had to be replaced at a cost of about $200 million each. If another “once in a century” severe geomagnetic storm occurs (such as the 1859 “super storm”), the cost on the satellite industry alone could be approximately $50 – $100 billion. The potential consequences on the Nation’s power grid are even higher, with potential costs of $1 – 2 trillion that could take up to a decade to completely repair.
– Report on Space Weather Observing Systems: Current Capabilities and Requirements for the Next Decade (April 2013)
“In other words,” according to the report, “the Nation is at risk of losing critical capabilities that have significant economic and security impacts should these key space weather observing systems fail to be maintained and replaced.”
The National Space Weather Program is a Federal interagency initiative with the mission of advancing the improvement of space weather services and supporting research in order to prepare the country for the technological, economic, security, and health impacts that may arise from extreme space weather events.
Over the past 24 hours, the Sun has erupted with two coronal mass ejections (CMEs), sending billions of tons of solar particles into space. While these CMEs are not directed at Earth, they are heading towards Mercury and may affect the Messenger spacecraft, as well as the Sun-watching STEREO-A satellites. One CME may send a glancing blow of particles to Mars, possibly affecting spacecraft at the Red Planet.
This solar radiation can affect electronic systems on spacecraft, and the various missions have been put on alert. When warranted, NASA operators can put spacecraft into safe mode to protect the instruments from the solar material.
The first CME began at 01:30 UTC on April 25 (9:30 p.m. EDT on April 24), and the second erupted at 09:24 UTC (5:24 a.m. EDT) on April 25. Both left the sun traveling at about 800 kilometers (500 miles per second).