A Shimmering, Simmering Sunspot

This quick animation made by astrophotographer Alan Friedman shows a 30-minute view of sunspot 1520, a large region of magnetic activity on the Sun that’s currently aimed directly at Earth. Although 1520 has been quiet for the past couple of days, it’s loaded with a delta-class magnetic field — just right for launching powerful X-class flares our way. There’s no guarantee that it will, but then there’s no guarantee that it won’t either.

(Click the image to play the animation.)

Alan captured the images from his location in upstate New York using a 10″ Astro-Physics scope and PGR Grasshopper CCD. A master at solar photography — several of his hydrogen alpha images have been featured here on Universe Today as well as other popular astronomy news sites — Alan’s work never fails to impress.

A static, color version of sunspot 1520 can be seen here… what Alan calls “a magnetic beauty.”

Although the sunspots don’t change much over the course of the animation, the surrounding texture on the Sun’s photosphere can be seen to shift and move rapidly. These bright kernels are called granules, and are created by convective currents on the Sun. An individual granule typically lasts anywhere from 8 to 20 minutes and can be over 600 miles (1000 km) across.

The overall wavering effect is caused by distortion from Earth’s atmosphere.

While 1520 is facing Earth we’re subject to any flares or CMEs that may erupt from it, potentially sending a solar storm our way. In another week or so it will have rotated safely around the Sun’s limb and eventually dissipate altogether… but then, it is solar maximum and so there’s likely to be more active regions just like it (or even larger!) coming around the bend.

When they do come, there’s a good chance that Alan will grab some pics of those too.

Check out more of Alan’s photography on his site AvertedImagination.com.

Image © Alan Friedman. All rights reserved.

 

Astrophotos: Monster Sunspot Evolution


Caption: A 5-day sequence of sunspot group AR1520. Credit: Shahrin Ahmad, Kuala Lumpur, Malaysia. Click to see a larger version.

There’s a monster sunspot making its way across the face of the Sun, and it’s captured the attention of several astrophotographers. This first image is from Shahrin Ahmad, who created a sequence of images as the sunspot moved to face towards Earth from the southeastern limb. He used a Skywatcher 120ED at F/15 (2X barlow) with a Baader Solar Filter and a IMG132E camera for his images.

AR1520 stretches more than 127,000 km (10 Earth diameters) from end to end, and the magnetic field of this enormous sunspot harbors energy for strong solar flares. NOAA forecasters estimate an 80% chance of M-flares and a 25% chance of X-flares during the next 24 hours, according to Spaceweather.com.

Here are some more looks at AR1520:


Caption: Closeup of monster sunspot AR1520. Credit: John Chumack.

One of our favorite astrophotographer, John Chumack, took this image of AR1520 in white light on July 8, 2012 using a Lunt Solar Herschel Solar Wedge filter, DMK 21AF04 Fire-wire Camera, 2x barlow, with 1/1000 second exposure. See more at his Flickr page, or his website, Galactic Images.


Caption: Sun and sunspots: Credit: Mike Black

Mike Black took this one on July 9, 2012

Gear: Canon 1D Mark IV + Canon 400mm f/2.8 + 2x Extender III. Baader solar film in front of lens. See more on Mike’s Flickr page.

Want to see a size comparison of AR1520? The mascot of the Solar Dynamics Observatory, Camilla the Rubber Chicken posted this comparison to Jupiter, the biggest planet in the solar system:


Caption: Size comparison of AR1520 to Jupiter. Credit: Camilla_SDO on Twitter.

Here’s a look at the previously active region on the Sun, which last week blasted out numerous M-class flares and at least one X.1-class flares, again a sequence of images from Shahrin Ahmad:

Caption: A 7-day sequence of sunspot AR1515. Credit: Shahrin Ahmad, Kuala Lumpur, Malaysia.

Thanks to everyone for sharing their images!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Things on the Sun: Zipper, Airplane and Spots


Caption: ISS Solar Transit. Credit: Fred Locklear.

A couple of awesome pictures of the Sun today from amateur astrophotographers: Above is a composite view of the International Space Station transiting across the Sun, making it look like a zipper on the Sun’s face. This great image is by Fred Locklear (zAambOni on Flickr) using a Celestron C6-N and a SPC900NC webcam. Also visible is the big region of sunspots that spewed out dozens of flares this past week. Fred took this image on July 1, 2012.

What else can we find on the Sun?


Caption: A plane crossing the Sun. Credit: Steve Scheer.

This incredible shot of an airplane crossing the Sun was taken by Steve Scheer on July 7, 2012.
“Luck was on my side as I happened to go outside and saw a plane about 90 deg away from the Sun,” Scheer wrote UT, “so I quickly setup the scope, pulled the battery off charge, fitted the camera to the scope, pointed to the Sun and crossed the fingers. Luckily the focus was already set from a previous Moon imaging session as I had literally seconds to spare.”

More spots show up on this image including the monster new Active Region AR1520 on the left, which is larger than Jupiter.

Specs:
Telescope- C102-HD refractor
Camera- 500D with t-ring
Solar filter

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

NASA To Launch The Finest Mirrors Ever Made

This Wednesday NASA will launch its High Resolution Coronal Imager (HI-C) mission from White Sands Missile Range in New Mexico, sending a sounding rocket above the atmosphere with some of the best mirrors ever made to capture incredibly-detailed ultraviolet images of our Sun.

HI-C will use a state-of-the-art imaging system to focus on a region near the center of the Sun about 135,000 miles (271,000 km) across. During its brief flight — only ten minutes long — HI-C will return some of the most detailed images of the Sun’s corona ever acquired, with a resolution five times that of previous telescopes… including NASA’s Solar Dynamics Observatory.

While SDO collects images in ten wavelengths, however, HI-C will focus on just one: 193 Angstroms, a wavelength of ultraviolet radiation that best reveals the structures of the Sun’s corona present in temperatures of 1.5 million kelvin. And although HI-C’s mirrors aren’t any larger than SDO’s — about 9.5 inches in diameter — they are “some of the finest ever made.” In addition, an interior “maze” between mirrors effectively increases HI-C’s focal length.

Researchers expect HI-C’s super-smooth mirrors to resolve coronal structures as small as 100 miles (160 km) across (0.1 arcsec/pixel).

“Other instruments in space can’t resolve things that small, but they do suggest – after detailed computer analysis of the amount of light in any given pixel – that structures in the sun’s atmosphere are about 100 miles across,” said Jonathan Cirtain, project scientist for HI-C at NASA’s Marshall Space Flight Center. “And we also have theories about the shapes of structures in the atmosphere, or corona, that expect that size. HI-C will be the first chance we have to see them.”

One of the main goals of HI-C will be to place significant new constraints on theories of coronal heating and structuring, by observing the small-scale processes that exist everywhere in hot magnetized coronal plasma and establishing whether or not there are additional structures below what can currently be seen.

“This instrument could push the limits on theories of coronal heating, answering questions such as why the temperature of the sun’s corona is millions of degrees higher than that of the surface,” said Marshall’s Dr. Jonathan Cirtain, heliophysicist and principle investigator on the mission.

Read more on the NASA news release here.

Top image: A Black Brant sounding rocket containing NASA’s HI-C mission will launch on July 11, 2012 to observe the sun’s corona. (NASA) Bottom image: TRACE image of the Sun at a resolution of 0.5 arcsec/pixel. HI-C will have a resolution 5 times finer.

The Sun Blasts Out an X1-Class Solar Flare

An active region on the Sun, AR1515, has been putting on quite a show over the last 8 days, sending out all sorts of solar flares. Scientists were sure the huge sunspot was building up to produce an X-class explosion, and they were right. At 23:08 UT on July 6, 2012 it unleashed an X1-class solar flare. The explosion hurled a coronal mass ejection into space, and scientists say the cloud appears to be heading south and away from Earth; however, there is the possibility of a glancing blow to our planet on July 8th or 9th. There could be some auroral activity today, July 7, from a previous batch of CME’s hurled from the same active region.

According to the Solar Dynamics Observatory team, the movie above shows the X1 flare in various different wavelengths, which show different layers and temperatures. Each segment is about 30 minutes in real-time.

Below is another video from July 5-6, where AR1515 pulsed with with C- and M-class solar flares, about 14 flares in all:

Here’s an image of the action from SDO, with lots of activity going on:

“X1-class solar flare on the right, new active region on the left. Will the action continue?” asked Camilla_SDO, the mascot for the Solar Dynamics Observatory, via Twitter.

So, what’s the difference in the classes of solar flares and how could they affect us on Earth?

Flares happen when the powerful magnetic fields in and around the Sun reconnect. They’re usually associated with active regions, which we call sunspots, where the magnetic fields are strongest.

Flares are classified according to their strength. The smallest ones are B-class, followed by C, M and X, the largest. Similar to the Richter scale for earthquakes, each letter represents a ten-fold increase in energy output. So an X is 10 times an M and 100 times a C. Within each letter class, there is a finer scale from 1 to 9. Although X is the last letter, there are flares more than 10 times the power of an X1, so X-class flares can go higher than 9.

C-class flares are too weak to noticeably affect Earth. M-class flares can cause brief radio blackouts at the poles and minor radiation storms that might endanger astronauts. The most powerful flare on record was in 2003, during the last solar maximum. It was so powerful that it overloaded the sensors measuring it. They cut-out at X28. A powerful X-class flare like that can create long lasting radiation storms, which can harm satellites and even give airline passengers, flying near the poles, small radiation doses. X flares also have the potential to create global transmission problems and world-wide blackouts.

That’s why we keep an eye on all this activity.

Sources: SDO, Spaceweather.com

Fireworks from the Sun

From July 2 to July 5, the Sun shot off a whopping eighteen M-class solar flares. Most originated from Active Region 1515 and ranged from M1.1 to M6.1. On July 4th alone, there were seven M-class solar flares. According to SpaceWeather.com, big sunspot AR1515 appears to be on the verge of producing an X-class explosion. NOAA forecasters estimate an 80% chance of M-flares and a 10% chance of X-flares during the next 24 hours.
Continue reading “Fireworks from the Sun”

New Warning System Designed to Keep Astronauts Safe from Solar Storms

A new solar storm prediction system based in Antarctica could provide astronauts in space warning time of over two hours for them to take cover after massive flares or Coronal Mass Ejections erupt from the Sun. The South Pole Neutron Monitor is able to forecast the radiation intensity of solar protons using two different types of neutron detectors installed at the geographic South Pole, which measures gigaelectron volt neutrons that are produced during a solar storm.

The designers of the device have been testing it and say it could provide a warning times of up to 166 minutes, depending on the protons’ energy. Additionally, the team says, it is a practical system for forecasting peak intensity of solar energetic protons in the tens to hundreds of megaelectron volt energy range.

With activity on the Sun increasing as the Solar Maxiumum approaches, there will likely be heightened rates of flares and CMEs, putting at risk the human presence in space, which will likely be ever-increasing, with the advent of commercial space flights and NASA’s plans to send astronauts into deep space, along with crews of six that are usually on board the International Space Station. Even people in airplanes at high altitudes near the poles can be exposed to this increased radiation. Exposure can potentially cause radiation sickness, with symptoms such as fever and vomiting.

During a solar flare or CME, particles from the Sun can be accelerated to very high energies—in some cases traveling near the speed of light. Protons with energies surpassing 100 megaelectron volts essentially sandblast everything in their path.

S.Y. Oh from Chungnam National University in South Korea and an international team of researchers have created and installed the warning system at the Amundsen-Scott South Pole Station. Using one detector located indoors and another outside, they can measure the intensity of the much faster gigaelectron volt neutrons also produced during a solar storm when protons interact with Earth’s atmosphere. By combining the observations of the two detectors, they can then extrapolate this spectrum to estimate the peak intensity and event-averaged flux (fluence) of the later-arriving megaelectron volt protons.

The team compared their predictions for 12 solar events against observations made by geosynchronous satellites, such as some of the GOES satellites, and found their measurements were similar for intensity and fluence predictions for protons with energies higher than 40 and 80 megaelectron volts, respectively.

The researchers say the system could be useful for forecasting radiation hazard, because peak intensity and fluence are closely related to the known medical thresholds of radiation doses.

The lead times would allow for astronauts to take shelter in a shielded area of their spacecraft, or polar-flying airplanes ample time to reduce their altitude to be protected by Earth’s magnetic field.

Read the team’s paper: South Pole neutron monitor forecasting of solar proton radiation intensity

Lead image caption: The South Pole neutron monitor. Credit: University of Delaware.

Source: AGU

Astrophotos: Crazy Solar Prominences

We’ve got three cool images of the hot Sun submitted by various astrophotographers! Raymond Gilchrist enhanced his image from June 23, 2012 of three solar prominences using Inspire Pro on his iPad. He used different colors to differentiate the the various “strands” of the prominences, which highlights the “texture” of these huge solar features. See more of Raymond’s great astrophotos at his Flickr page.

See more below:


Renown Australian amateur astronomy Month Leventhal captured this pyramid-shaped prominence on the NW limb of the Sun, which reaches an approximate height of 93,000km! Wow! Monty took this image early today (June 25, 2012) using a Canon 600D camera, H-alpha 6Å filter and a Meade S.C. 10 inch telescope.

This is an awesome look at the Sun on June 16th from Efrain Morales Rivera from the Jaicoa Observatory in Puerto Rico. Visible are a huge prominence, several active regions, (AR1504, 5, 7 & 8), and interesting filaments. At the time this image was taken, Efrain noted that AR1504 had developed a ‘beta-gamma-delta’ magnetic field that harbors energy for strong solar flares. See more at the Jaicoa Observatory website.

Lead image caption: Solar Prominences, imaged edited with Inspire Pro. Credit: Raymond Gilchrist.

Second image caption: Prominence on the NW limb reaching an approximate height of 93,000km. Credit: Monty Leventhal.

Third image caption: Several sunspots, prominences and filaments on the Sun on June 16th 13:27UT. Credit: Efrain Morales Rivera, Jaicoa Observatory

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

The “Deep Blue Sea” of the Sun

Looking like an intricate pen-and-ink illustration, the complex and beautiful structures of the Sun’s surface come to life in yet another stunning photo by Alan Freidman, captured from the historic Mount Wilson Observatory near Los Angeles, California.

Click below for the full-size image in all its hydrogen alpha glory.


An oft-demonstrated master of solar photography, Alan took the image above while preparing for the transit of Venus on June 5 — which he also skillfully captured on camera (see a video below).

Hydrogen is the most abundant element found on the sun. The sun’s “surface” and the layer just above it — the photosphere and chromosphere, respectively — are regions where atomic hydrogen exists profusely in upper-state form. It’s these absorption layers that hydrogen alpha imaging reveals in detail.

The images above are “negatives”… check out a “positive” version of the same image here.

” The seeing was superb… definitely the best of the visit and among the best solar conditions I’ve ever experienced,” Alan writes on his blog.

The video below was made by Alan on June 5, showing Venus transiting the Sun while both passed behind a tower visible from the Observatory.

Alan’s work is always a treat… see more of his astrophotography on his website AvertedImagination.com.

Image © Alan Friedman. All rights reserved.