A new computer simulation is showing Earth’s magnetosphere in amazing detail – and it looks a lot like a huge pile of tangled spaghetti (with the Earth as a meatball). Or perhaps a cosmic version of modern art.
The magnetosphere is formed by the Sun’s magnetic field interacting with Earth’s own magnetic field. When charged particles from a solar storm, also known as a coronal mass ejection (CME), impact our magnetic field, the results can be spectacular, from powerful electrical currents in the atmosphere to beautiful aurorae at high altitudes. Space physicists are using the new simulations to better understand the nature of our magnetosphere and what happens when it becomes extremely tangled.
Using a Cray XT5 Jaguar supercomputer, the physicists can better predict the effects of space weather, such as solar storms, before they actually hit our planet. According to Homa Karimabadi, a space physicist at the University of California-San Diego (UCSD), “When a storm goes off on the sun, we can’t really predict the extent of damage that it will cause here on Earth. It is critical that we develop this predictive capability.” He adds: “With petascale computing we can now perform 3D global particle simulations of the magnetosphere that treat the ions as particles, but the electrons are kept as a fluid. It is now possible to address these problems at a resolution that was well out of reach until recently.”
It helps that the radiation from solar storms can take 1-5 days to reach Earth, providing some lead time to assess the impact and any potential damage.
The previous studies were done using the Cray XT5 system known as Kraken; with the new Cray XT5 Jaguar supercomputer, they can perform simulations three times as large. The earlier simulations contained a “resolution” of about 1 billion individual particles, while the new ones contain about 3.2 trillion, a major improvement.
So next time you are eating that big plate of spaghetti, look up – the universe has its own recipes as well.
The original press release from Oak Ridge National Laboratory is here.
The active region on the Sun that created all the hubbub and aurorae earlier this week put out one last shot before that area of the Sun turns away from Earth’s view. And that shot was a biggie. At 18:37 UT (1:37 pm EST) today (January 27, 2012) sunspot 1402 unleashed an X-class flare, the largest and most powerful category of flares. This flare was measured as an X2, which is at the low end of the highest powered flares, but still, this is the most powerful flare so far this year. It was not directed at Earth, but scientists from the Solar Dynamics Observatory say the energetic protons accelerated by the blast are now surrounding our planet and a S1-class radiation storm is in progress. S1-class is the lowest of 5 (S1 to S5) and has no biological impact, no satellite operations are impacted but some minor impact on HF radio could be experienced.
Solar flares, coronal mass ejections, high-energy photons, cosmic rays… space is full of various forms of radiation that a human wouldn’t want to be exposed to for very long. Energized particles traveling into and through the body can cause a host of nasty health problems, from low blood count to radiation sickness to cataracts and cancer… and potentially even death. Luckily Earth’s magnetic field and atmosphere protects us on the surface from much of this radiation, but what about the astronauts aboard the Space Station? How could events such as today’s powerful near-X-class solar flare and last week’s CME affect them, orbiting 240 miles above Earth’s surface?
Surprisingly, they are safer than you might think.
The M8.7-class flare that erupted from the Sun early on Jan. 23 sent a huge wave of high-energy protons Earthward, creating the largest solar storm seen since 2005. The cloud of energetic particles raced outwards through the Sun’s atmosphere at speeds well over a million miles per hour, blowing past our planet later the same day. (More slower-moving charged particles will impact the magnetosphere in the coming days.) We are safe on Earth but astronauts exposed to such radiation could have faced serious health risks. Fortunately, most solar protons cannot pass through the hull of the Space Station and so as long as the astronauts stay inside, they are safe.
Of course, this is not the case with more dangerous cosmic rays.
According to the NASA Science site:
Cosmic rays are super-charged subatomic particles coming mainly from outside our solar system. Sources include exploding stars, black holes and other characters that dwarf the sun in violence. Unlike solar protons, which are relatively easy to stop with materials such as aluminum or plastic, cosmic rays cannot be completely stopped by any known shielding technology.
Even inside their ships, astronauts are exposed to a slow drizzle of cosmic rays coming right through the hull. The particles penetrate flesh, damaging tissue at the microscopic level. One possible side-effect is broken DNA, which can, over the course of time, cause cancer, cataracts and other maladies.
In a nutshell, cosmic rays are bad. Especially in large, long-term doses.
Now the astronauts aboard the ISS are still well within Earth’s protective magnetic field and so are shielded from much of the cosmic radiation that passes through our solar system daily. And, strangely enough, when solar flares occur – such as today’s – the amount of cosmic radiation the ISS encounters actually decreases.
Why?
The solar particles push them away.
In an effect known as the “Forbush decrease”, magnetically-charged particles ejected from the Sun during flares and CMEs reduce the amount of cosmic radiation the ISS experiences, basically because they “sweep away” other charged particles of more cosmic origin.
Because cosmic rays can easily penetrate the Station’s hull, and solar protons are much less able to, the irony is that astronauts are actually a degree safer during solar storms than they would be otherwise.
And it’s not just in low-Earth orbit, either: Wherever CMEs go, cosmic rays are deflected. Forbush decreases have been observed on Earth and in Earth orbit onboard Mir and the ISS. The Pioneer 10 and 11 and Voyager 1 and 2 spacecraft have experienced them, too, beyond the orbit of Neptune. (via NASA Science.)
Due to this unexpected side effect of solar activity it’s quite possible that future manned missions to the Moon, Mars, an asteroid, etc. would be scheduled during a period of solar maximum, like the one we are in the middle of right now. The added protection from cosmic rays would be a big benefit for long-duration missions since we really don’t know all the effects that cosmic radiation may have on the human body. We simply haven’t been traveling in space long enough. But the less exposure to radiation, the better it is for astronauts.
Earth’s magnetic field is already full of activity from an Earth-directed Coronal Mass Ejection (CME) last week. But all indications are another blast is headed our way from the strongest solar radiation storm since September, 2005. NOAA says the storm is currently in progress and continues to get stronger, with a very fast CME headed towards Earth. Sunspot 1402 erupted, producing a long-duration M9-class solar flare. “Geomagnetic storming is a near certainty from this event,” reported NOAA. The associated solar flare peaked at about 0400 UTC on January 23 (11pm Jan 22 EST).”
A computer model just released by NOAA’s Space Weather Prediction Center forecasts the storm will arrive sometime on January 24, at about 14:18 UT (+/- 7 hours), as the CME is traveling at approx. 2,200 km per second. Click here to see the animated model.
We’ve already shown you a video of the auroral activity going on yesterday and will soon post a gallery of beautiful aurorae from around the world. And it looks like we’ll likely have more photos to share in the coming week! And NASA says skywatchers should be on the lookout for aurora in lower than normal latitudes. Scientists are also predicting that Mars will get hit too, several hours after Earth. At this point, there’s no way to predict the possible effect on Earth-orbiting satellites for communications, GPS, etc, or the effect on Mars spacecraft.
These kinds of events can cause problems for spacecrafts in geosynchronous, polar and other orbits passing could be affected by the cloud’s arrival. In addition, strong geomagnetic storms are possible, so high-latitude sky watchers should be alert for aurorae.
Below is a video from the Solar Dynamics Observatory of the event:
As seen here by the Solar Dynamics Observatory, a long duration M3-class flare began erupting on the Sun from sunspot region 1401 at 13:42 UTC (8:42 AM ET) today, Thursday, January 19, 2012, sending a coronal mass ejection (CME) directly towards Earth. Scientists predict the CME will arrive at around 16:00 UTC on January 21, 2012 GMT. Spaceweather.com says strong geomagnetic storms are possible and high-latitude (and possibly middle-latitude) skywatchers can be on the lookout for increased aurora.
Here’s a great look at a beautiful, leaping C2.2-Class solar flare from the Sun on January 5, 2012. The Solar Dynamics Observatory captured the event and what’s awesome is how SDO can video one event in several different wavelengths.
This is an awesome image of the Sun captured by Efrain Morales Rivera from the Jaicoa Observatory in Aguadilla, Puerto Rico, on December 31, 2011. It shows multiple steam-like prominences on the eastern limb of the Sun. Rivera compared them to a group of trees, and said the now-active Sun is definitely something to watch in the coming new year. Of course, the Solar Dynamics Observatory is keeping a close watch on our star, and captured a huge eruption on the western limb of the Sun on January 2, 2012, with lots of solar material ejected into space; however, it was not Earth-directed. See the video below:
You’ve likely heard the phrase “axial tilt is the reason for the seasons” and here’s a great depiction of that axial axiom. A group of Italian amateur astronomers, the Gruppo Astronomico Tradatese (GAT), have been trying for a couple of years to take images of the Sun setting from the same location on the 21st of the month for several months in a row to show the link between the changing seasons and the movement of the Sun in our sky. The group specializes in outreach to schools and had a goal creating a mosaic of sunsets in 2009, the International Year of Astronomy. However, due to cloudy skies, they weren’t able to successfully obtain the sunset images until the second half of 2011.
“The availability of clear sky for seven dates around the 20-22 of each month starting from June was a crucial necessity,” Cesare Guaita, GAT President wrote to Universe Today. “Starting from 2009, we had to wait up to the second half of year 2011 for the right situation.”
These images of the Italian horizon at approximately 45°42’44” latitude and 8°55’52” longitude shows an Alpine mountain (Monte Rosa, 4634 m high) and trees changing in appearance with the changes of the season.
“As you can see, the sunset is located far away on the right of Rosa Mount at the summer solstice and far away on the left of the Rosa Mount at the winter solstice,” Guaita noted.
Each single picture is a mosaic of 2-3 frames, with the last picture (shown on top) taken on Dec 21, 2011 at 16:30 local time.
This would be a great project for any astronomy group or class. Congratulazioni to the members of the GAT, and we thank them for sharing their mosaic with Universe Today!
A video posted today by the team at NASA’s Solar Dynamics Observatory shows two recent events on the Sun: a twisting prominence and the “eclipse” of a plasma eruption by the structure of a darker, cooler filament. Most impressive!
From the SDO team:
Over the past 24 hours we have seen some beautiful solar events. None of them have a direct impact on Earth, but they are astonishing to watch. It just shows how an active star our Sun really is… far from boring!
On December 8, 2011 a twisting prominence eruption occurred on the lower eastern limb. The view through the AIA 304 angstrom filter shows us this beautiful eruption.
In the early hours of December 9, 2011 SDO observed a little bit of a different eclipse. An erupting cloud of plasma was eclipsed by a dark magnetic filament. The eruption is still on the far side of the Sun, behind the eastern limb and is slowly moving forward and over the limb sometime next week.
In front you can observe the filament of relatively cool dark material floating across the Sun’s surface in the foreground. That filament partially blocks the view of the hot plasma eruption behind it.
Excellent footage of our constantly-active Sun! It’s easy to forget too that these events and structures are many, many times larger than our entire planet… the sheer power of a star is quite an impressive thing to see. Thanks to SDO we get an unblinking front-row seat to all the action!
While many in the U.S. will be recovering from Thanksgiving day meals and looking for ways to stretch their holiday shopping dollars at (hopefully local) retailers’ “Black Friday” sales, the face of the Sun will grow dark as the Moon passes in front of it, casting its shadow over the Earth. But it won’t be visible to American shoppers – or very many people at all, in fact… this eclipse will be hiding in the southern skies above Antarctica!
On Friday, November 25, an annular eclipse will occur, reaching a maximum coverage at 06:20:17 UT of magnitude .905. It will be the largest – and last – partial eclipse of the year.
But its visibility will be limited to the most southern latitudes… outside of the Antarctic continent, only New Zealand, Tasmania and parts of South Africa will have any visibility of the event.
An annular eclipse is similar to a total eclipse, except that the Moon is at a further distance from Earth in its orbit and so does not completely cover the disc of the Sun. Instead a bright ring of sunlight remains visible around the Moon’s silhouette, preventing total darkness.
The next solar eclipse will occur on May 20, 2012. It will also be annular, and even darker than the Black Friday one at a magnitude of .944. It will be visible from China, Japan, the Pacific and Western U.S.
Following that, the main event of 2012 would have to be a total eclipse on November 13, which will be visible from Australia, New Zealand and South America (greatest totality will occur over the South Pacific.) Several sites have already set up group travel events to witness it!
Feeling left out on cosmic occultations? Not to worry… there will be a very visible total lunar eclipse on the night of December 10, 2011 (weather permitting, of course) to viewers across the Northern Hemisphere. The Moon will pass into Earth’s shadow, turning gradually darker in the night sky until it is colored a deep rusty red. It’s a wonderful event to watch, even if not as grandiose as a total eclipse of the Sun.
(Plus it’s completely safe to look at, as opposed to solar eclipses which should never be directly observed without safety lenses or some projection device… for the same reasons that you shouldn’t stare at the Sun normally.)
For a listing of past and future eclipses, both solar and lunar, visit Mr. Eclipse here. And you can read more about the Nov. 25 eclipse on AstroGuyz.com.