The SOHO spacecraft coronagraph captured a sun-diving comet on May 10th and 11th that met its demise as it plunged into the Sun just as Old Sol released a huge flare. The two events were coincidental and not related, but spectacular to see.
The Solar Dynamics Observatory captured some plasma streaming off the Sun, doing a quick dance, and diving back into the surface. This video zooms into an active region over two days (Apr. 30 – May 2, 2011). The cloud of ionized gas, or plasma that comes off the Sun is caused by an active, erupting sunspot. Why does the plasma return instead of streaming off into space? Magnetic forces are pulling the material along magnetic field lines on the Sun, and the plasma follows the Sun’s magnetic fields as it flies outwards, and either returns to the Sun or goes out into space. Here, the plasma returned. What you are seeing is ionized Helium at about 60,000 degrees C. in extreme ultraviolet light.
Early today, the Solar Dynamics Observatory was able to observe the Moon coming in between the spacecraft and the Sun. If you look closely, you can actually see mountains on the Moon subtly backlit by the Sun’s atmosphere.
Cool!
The SDO science team says that not only is this amazing to see, but it actually allows them to “sharpen-up” the SDO images. The sharp edge of the lunar limb allows our team to measure the in-orbit characteristics of the telescopes on board the spacecraft.
See a close-up image (processed by our own Jason Major) below.
Over the past year, the Sun has gone from one of quietest periods in decades to the ramping up of activity marking the beginning of Solar Cycle 24. And with impeccable timing, the Solar Dynamics Observatory has been there, in orbit, capturing every moment with a level of detail never-before possible. The mission has returned unprecedented images of solar flares, eruptions of prominences, and the early stages of coronal mass ejections (CMEs). It was on April 21st, 2010 that the SDO scientists were able to reveal the first images from their fledgling satellite, and now, one year on, who has not loved the intricate details of old Sol that we’ve been able to see in the imagery and video SDO has provided!
This video shows some of the most beautiful and compelling solar events seen by SDO so far, and at the SDO website, you can vote for your favorite. The contest runs through Thursday May 5, 2011. Check back on May 6 to see which video the public selected as their all-time favorite SDO video from the past year.
The largest solar flare recorded in nearly five years was triggered by interactions between five rotating sunspots, say researchers who studied observations of the flaring region of the Sun taken by the Solar Dynamics Observatory over a period of five days. The flare occurred at 1.44am on February 15,2011, when the Sun released the largest recorded solar flare since December 2006 and the first flare of the current solar cycle to be classified as the most powerful “X-class”. Continue reading “Interacting Sunspots Spawn Gigantic Solar Flare”
Cascades of spiraling magnetic loops observed in extreme ultraviolet light by Solar Dynamics Observatory danced and twisted above an active region on the Sun recently (April 3-5, 2011). These loops are charged particles spinning along the magnetic field lines. The bright active region was fairly strong and the activity persistent, though not explosive. At one point darker plasma can be seen being pulled back and forth across the region’s center.
This video provided by the Solar Dynamics Observatory provides a side-by-side comparison of the Sun from precisely two years ago (left, from SOHO in 2009) to the present (right, from Solar Dynamics Observatory, showing March 27-28, 2011) which dramatically illustrates just how active the Sun has become. The comparisons shown in two similar wavelengths of extreme ultraviolet light, reveal how the Sun now sports numerous active regions that appear as lighter areas that are capable of producing solar storms. Two years ago the Sun was in an extremely quiet solar minimum. The Sun’s maximum period of activity is predicted to be around 2013, so activity will likely continue to ramp up.
It looks like something is eating the Sun in recent pictures from the Solar Dynamics Observatory — and in recent SDO videos, the Sun suddenly disappears! What is going on? Could it be aliens, Planet X, or the Great Galactic Ghoul? Nope, just orbital mechanics and syzygy (an alignment of three celestial objects). At this time of year the Sun, Earth, and the SDO spacecraft in geosynchronous orbit line up, creating syzygencially spectacular Sun-Earth eclipses. The folks from SDO explain it this way:
“Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth’s shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth’s shadow.”
This video shows how the alignment works:
Here’s a sped-up video of what SDO sees from space:
The Sun continues to be active! This movie from the Solar Dynamics Observatory starts at 11:35 UT on March 24, 2011 and goes through midnight. It shows the active area 1176 – and active it was. Several flares are visible — according to the SDO website, there are B, C and M class flares all seen in this 20 second video. See below for another movie from March 19 of a looping solar prominence eruption on the limb of the Sun. Continue reading “Fireworks on the Sun”
Amateur astronomer Catalin Fus from Poland has captured one of the most amazing images I’ve ever seen – and his timing was impeccable. On March 7th at 13:05:49 UTC, just after space shuttle Discovery had undocked from the International Space Station, the two ships flew in formation directly in front of the Sun, as seen from Fus’ location just outside of Krakow. With his solar-filtered telescope focused on active sunspot region 1166, he found there were a couple extra spots in his image – Discovery and the ISS. Given that this was Discovery’s final mission in space and final visit to the ISS, this image has historical significance, as well as just being absolutely fantastic. Keep in mind that transits like this last just over a half a second.
He used the following equipment:
Telescope : 102mm f6.3 GPU oilspaced apochromat
self-made Herschel Prism + Meade TeleXtender 2x 1.25”
Mount: Losmandy G11
Camera: Canon EOS 550D
1frame @ ISO 100, 1/1000s
With just a touch of post processing done in PixInsight and PS CS5
You can see more Fus’ handiwork at his website, www.catalinfus.ro. Our thanks to Catalin for allowing Universe Today to post his incredible image.