When Was the Sun Discovered?

Solar flares on the Sun

[/caption]
When was the Sun discovered? Obviously the Sun is such an important feature in our lives, and the absolute necessity to all life on Earth. It’s kind of impossible to say when the Sun was discovered, since the first life forms on Earth probably relied on its energy. Humans have been well aware of the Sun for tens of thousands of years, and before modern astronomy had no idea what it was.

So perhaps a better question might be, when did we realize that the Sun is a star?

The Sun is incredibly important to our lives. When the Sun is in the sky, we have day. And when the Sun is below the horizon, we have night. Our biological clocks are programmed on it, and we life our lives by this routine. Ancient peoples thought the Sun was some kind of deity, and many civilizations – like the Inca in South America – worshipped it.

The Greek philosopher Anaxagoras first proposed that the Sun was a burning ball of fire, larger than a Greek Island, and not the chariot of a god. And other astronomers were able to calculate the distance to the Sun with surprising accuracy. In the modern scientific era Lord Kelvin proposed that the Sun was ball of hot liquid that was slowly cooling. But it wasn’t until the early 20th century that scientists were finally able to figure out what the source of the Sun’s energy is.

Ernest Rutherford proposed that the Sun’s heat came from radioactive decay, and it was Albert Einstein who used his famous mass-energy equation (E=mc2) to suggest that the Sun was converting mass into energy. And finally, the theoretical concept of fusion was created in the 30s by Subrahmanyan Chandrasekhar and Hans Bethe. They were able to calculate the actual fusion reactions in the Sun that convert hydrogen into helium.

I would say then, that the Sun was really discovered in the 1930s, when astrophysicists finally understood the mechanisms working inside the Sun that gave off so much energy.

We have written many articles about the Sun for Universe Today. Here’s an article about how big the Sun is, and here’s an article about the Sun’s future.

If you’d like more information about the Sun, check out NASA’s website for the SOHO spacecraft mission.

And you should check out an episode of Astronomy Cast where we talk all about the Sun. Listen here, Episode 30: The Sun, Spots and All.

References:
NASA: The Sun, Our Nearest Star
NASA: A History of Our Understanding of the Sun – A Closer Look
NASA: The Life Cycles of Stars

What Causes Tides?

The Earth is a water-dominated planet. (Image credit: Ian O'Neill)

Tides refer to the rise and fall of our oceans’ surfaces. It is caused by the attractive forces of the Moon and Sun’s gravitational fields as well as the centrifugal force due to the Earth’s spin. As the positions of these celestial bodies change, so do the surfaces’ heights. For example, when the Sun and Moon are aligned with the Earth, water levels in ocean surfaces fronting them are pulled and subsequently rise.

The Moon, although much smaller than the Sun, is much closer. Now, gravitational forces decrease rapidly as the distance between two masses widen. Thus, the Moon’s gravity has a larger effect on tides than the Sun. In fact, the Sun’s effect is only about half that of the Moon’s.

Since the total mass of the oceans does not change when this happens, part of it that was added to the high water regions must have come from somewhere. These mass-depleted regions then experience low water levels. Hence, if water on a beach near you is advancing, you can be sure that in other parts of the world, it is receding.

Most illustrations containing the Sun, Moon, Earth and tides depict tides to be most pronounced in regions near or at the equator. On the contrary, it is actually in these regions where the difference in high tide and low tide are not as great as those in other places in the world.

This is because the bulging of the oceans’ surface follows the Moon’s orbital plane. Now, this plane is not in line with the Earth’s equatorial plane. Instead, it actually makes a 23-degree angle relative to it. This essentially allows the water levels at the equator to seesaw within a relatively smaller range (compared to the ranges in other places) as the orbiting moon pulls the oceans’ water.

Not all tides are caused by the relative positions of these celestial bodies. Some bodies of water, like those that are relatively shallow compared to oceans, experience changing water levels because of variations in the surrounding atmospheric pressure. There are also other extreme situations wherein tides are manifested but have nothing to do with astronomical positioning.

A tidal wave or tsunami, for example, makes use of the word ‘tide’ and actually exhibits rise and fall of water levels (in fact, it is very noticeable). However, this phenomena is caused entirely by a displacement of a huge amount of water due to earthquakes, volcanic eruptions, underwater explosions, and others. All these causes take place on the Earth’s surface and have nothing to do with the Moon or Sun.

A thorough study of tides was conducted by Isaac Newton and included in his published work entitled Philosophiæ Naturalis Principia Mathematica.

We have some related articles here that may interest you:

There’s more about it at NASA. Here are a couple of sources there:

Here are two episodes at Astronomy Cast that you might want to check out as well:

Sources:
Princeton University
NASA
NOAA

Researchers Say Sun Cycle Alters Earth’s Climate

The sunspot cycle from 1995 to the present. The jagged curve traces actual sunspot counts. Smooth curves are fits to the data and one forecaster's predictions of future activity. Credit: David Hathaway, NASA/MSFC

[/caption]
If the energy from the sun varies by only 0.1 percent during the 11-year solar cycle, could such a small variation drive major changes in weather patterns on Earth? Yes, say researchers from the National Center for Atmospheric Research (NCAR) who used more than a century of weather observations and three powerful computer models in their study. They found subtle connections between solar cycle, the stratosphere, and the tropical Pacific Ocean that work in sync to generate periodic weather patterns that affect much of the globe. Scientists say this will help in predicting the intensity of certain climate phenomena, such as the Indian monsoon and tropical Pacific rainfall, years in advance.

“The Sun, the stratosphere, and the oceans are connected in ways that can influence events such as winter rainfall in North America,” says NCAR scientist Gerald Meehl, the lead author. “Understanding the role of the solar cycle can provide added insight as scientists work toward predicting regional weather patterns for the next couple of decades.”

The new study looked at the connection between the Sun’s impact on two seemingly unrelated regions. Chemicals in the stratosphere and sea surface temperatures in the Pacific Ocean respond during solar maximum in a way that amplifies the Sun’s influence on some aspects of air movement. This can intensify winds and rainfall, change sea surface temperatures and cloud cover over certain tropical and subtropical regions, and ultimately influence global weather.

The team first confirmed an earlier theory, that the slight increase in solar energy during the peak production of sunspots is absorbed by stratospheric ozone. The energy warms the air in the stratosphere over the tropics, where sunlight is most intense, while also stimulating the production of additional ozone there that absorbs even more solar energy. Since the stratosphere warms unevenly, with the most pronounced warming occurring at lower latitudes, stratospheric winds are altered and, through a chain of interconnected processes, end up strengthening tropical precipitation.

At the same time, the increased sunlight at solar maximum causes a slight warming of ocean surface waters across the subtropical Pacific, where Sun-blocking clouds are normally scarce. That small amount of extra heat leads to more evaporation, producing additional water vapor. In turn, the moisture is carried by trade winds to the normally rainy areas of the western tropical Pacific, fueling heavier rains and reinforcing the effects of the stratospheric mechanism.

The top-down influence of the stratosphere and the bottom-up influence of the ocean work together to intensify this loop and strengthen the trade winds. As more sunshine hits drier areas, these changes reinforce each other, leading to less clouds in the subtropics, allowing even more sunlight to reach the surface, and producing a positive feedback loop that further magnifies the climate response.

These stratospheric and ocean responses during solar maximum keep the equatorial eastern Pacific even cooler and drier than usual, producing conditions similar to a La Nina event. However, the cooling of about 1-2 degrees Fahrenheit is focused farther east than in a typical La Nina, is only about half as strong, and is associated with different wind patterns in the stratosphere.

Earth’s response to the solar cycle continues for a year or two following peak sunspot activity. The La Nina-like pattern triggered by the solar maximum tends to evolve into a pattern similar to El Nino as slow-moving currents replace the cool water over the eastern tropical Pacific with warmer water. The ocean response is only about half as strong as with El Nino and the lagged warmth is not as consistent as the La Nina-like pattern that occurs during peaks in the solar cycle.

Solar maximum could potentially enhance a true La Nina event or dampen a true El Nino event. The La Nina of 1988-89 occurred near the peak of solar maximum. That La Nina became unusually strong and was associated with significant changes in weather patterns, such as an unusually mild and dry winter in the southwestern United States.

The Indian monsoon, Pacific sea surface temperatures and precipitation, and other regional climate patterns are largely driven by rising and sinking air in Earth’s tropics and subtropics. Therefore the new study could help scientists use solar-cycle predictions to estimate how that circulation, and the regional climate patterns related to it, might vary over the next decade or two.

The team used three different computer models to look at all the variables and each came up with the same result, that even a small variablilty in the sun’s energy could have profound effects on Earth.

“With the help of increased computing power and improved models, as well as observational discoveries, we are uncovering more of how the mechanisms combine to connect solar variability to our weather and climate,” Meehl says.

The team’s research was published in the Journal Science.

What Are The Different Types of Stars?

Artist's depiction of the Morgan-Keenan spectral diagram, showing how stars differ in colors as well as size. Credit: Wikipedia Commons

A star is a star, right? Sure there are some difference in terms of color when you look up at the night sky. But they are all basically the same, big balls of gas burning up to billions of light years away, right?  Well, not exactly. In truth, stars are about as diverse as anything else in our Universe, falling into one of many different classifications based on its defining characteristics.

All in all, there are many different types of stars, ranging from tiny brown dwarfs to red and blue supergiants. There are even more bizarre kinds of stars, like neutron stars and Wolf-Rayet stars. And as our exploration of the Universe continues, we continue to learn things about stars that force us to expand on the way we think of them. Let’s take a look at all the different types of stars there are.

Protostar:

A protostar is what you have before a star forms. A protostar is a collection of gas that has collapsed down from a giant molecular cloud. The protostar phase of stellar evolution lasts about 100,000 years. Over time, gravity and pressure increase, forcing the protostar to collapse down. All of the energy release by the protostar comes only from the heating caused by the gravitational energy – nuclear fusion reactions haven’t started yet.

Size chart showing our Sun (far left) compared to larger stars. Credit: earthspacecircle.blogspot.ca
Size chart showing our Sun (far left) compared to larger stars. Credit: earthspacecircle.blogspot.ca

T Tauri Star:

A T Tauri star is stage in a star’s formation and evolution right before it becomes a main sequence star. This phase occurs at the end of the protostar phase, when the gravitational pressure holding the star together is the source of all its energy. T Tauri stars don’t have enough pressure and temperature at their cores to generate nuclear fusion, but they do resemble main sequence stars; they’re about the same temperature but brighter because they’re a larger. T Tauri stars can have large areas of sunspot coverage, and have intense X-ray flares and extremely powerful stellar winds. Stars will remain in the T Tauri stage for about 100 million years.

Main Sequence Star:

The majority of all stars in our galaxy, and even the Universe, are main sequence stars. Our Sun is a main sequence star, and so are our nearest neighbors, Sirius and Alpha Centauri A. Main sequence stars can vary in size, mass and brightness, but they’re all doing the same thing: converting hydrogen into helium in their cores, releasing a tremendous amount of energy.

A star in the main sequence is in a state of hydrostatic equilibrium. Gravity is pulling the star inward, and the light pressure from all the fusion reactions in the star are pushing outward. The inward and outward forces balance one another out, and the star maintains a spherical shape. Stars in the main sequence will have a size that depends on their mass, which defines the amount of gravity pulling them inward.

The lower mass limit for a main sequence star is about 0.08 times the mass of the Sun, or 80 times the mass of Jupiter. This is the minimum amount of gravitational pressure you need to ignite fusion in the core. Stars can theoretically grow to more than 100 times the mass of the Sun.

Red Giant Star:

When a star has consumed its stock of hydrogen in its core, fusion stops and the star no longer generates an outward pressure to counteract the inward pressure pulling it together. A shell of hydrogen around the core ignites continuing the life of the star, but causes it to increase in size dramatically. The aging star has become a red giant star, and can be 100 times larger than it was in its main sequence phase. When this hydrogen fuel is used up, further shells of helium and even heavier elements can be consumed in fusion reactions. The red giant phase of a star’s life will only last a few hundred million years before it runs out of fuel completely and becomes a white dwarf.

White Dwarf Star:

When a star has completely run out of hydrogen fuel in its core and it lacks the mass to force higher elements into fusion reaction, it becomes a white dwarf star. The outward light pressure from the fusion reaction stops and the star collapses inward under its own gravity. A white dwarf shines because it was a hot star once, but there’s no fusion reactions happening any more. A white dwarf will just cool down until it becomes the background temperature of the Universe. This process will take hundreds of billions of years, so no white dwarfs have actually cooled down that far yet.

Red Dwarf Star:

Red dwarf stars are the most common kind of stars in the Universe. These are main sequence stars but they have such low mass that they’re much cooler than stars like our Sun. They have another advantage. Red dwarf stars are able to keep the hydrogen fuel mixing into their core, and so they can conserve their fuel for much longer than other stars. Astronomers estimate that some red dwarf stars will burn for up to 10 trillion years. The smallest red dwarfs are 0.075 times the mass of the Sun, and they can have a mass of up to half of the Sun.

Neutron Stars:

If a star has between 1.35 and 2.1 times the mass of the Sun, it doesn’t form a white dwarf when it dies. Instead, the star dies in a catastrophic supernova explosion, and the remaining core becomes a neutron star. As its name implies, a neutron star is an exotic type of star that is composed entirely of neutrons. This is because the intense gravity of the neutron star crushes protons and electrons together to form neutrons. If stars are even more massive, they will become black holes instead of neutron stars after the supernova goes off.

Supergiant Stars:

The largest stars in the Universe are supergiant stars. These are monsters with dozens of times the mass of the Sun. Unlike a relatively stable star like the Sun, supergiants are consuming hydrogen fuel at an enormous rate and will consume all the fuel in their cores within just a few million years. Supergiant stars live fast and die young, detonating as supernovae; completely disintegrating themselves in the process.

As you can see, stars come in many sizes, colors and varieties. Knowing what accounts for this, and what their various life stages look like, are all important when it comes to understanding our Universe. It also helps when it comes to our ongoing efforts to explore our local stellar neighborhood, not to mention in the hunt for extra-terrestrial life!

We have written many articles about stars on Universe Today. Here’s What is the Biggest Star in the Universe?, What is a Binary Star?, Do Stars Move?, What are the Most Famous Stars?, What is the Brightest Star in the Sky, Past and Future?

Want more information on stars? Here’s Hubblesite’s News Releases about Stars, and more information from NASA’s imagine the Universe.

We have recorded several episodes of Astronomy Cast about stars. Here are two that you might find helpful: Episode 12: Where Do Baby Stars Come From, and Episode 13: Where Do Stars Go When they Die?

SoHO Celebrates its 12th Birthday

171cycle_dates.thumbnail.jpg

On December 2nd, 1995 a large joint ESA and NASA mission was launched to gain an insight to the dynamics of the Sun and its relationship with the space between the planets. 12 years on, the Solar and Heliospheric Observatory (SoHO) continues to witness some of the largest explosions ever seen in the solar system, observes beautiful magnetic coronal arcs reach out into space and tracks comets as they fall to a fiery death. In the line of duty, SoHO even suffered a near-fatal shutdown (in 1998). As far as astronomy goes, this is a tough assignment.

By the end of 1996, SoHO had arrived at the First Lagrange Point between the Earth and the Sun (a gravitationally stable position balanced by the masses of the Sun and Earth, about 1.5 million km away) and orbits this silent outpost to this day. It began to transmit data at “solar minimum”, a period of time at the beginning of the Solar Cycle, where sunspots are few and solar activity is low, and continues toward the upcoming solar minimum after the exciting firworks of the last “solar maximum”. This gives physicists another chance to observe the majority of a Solar Cycle with a single observatory (the previous long-lasting mission was the Japanese Yohkoh satellite from 1991-2001).

On board this ambitious observatory, 11 instruments constantly gaze at the Sun, observing everything from solar oscillations (“Sun Quakes�), coronal loops, flares, CMEs and the solar wind; just about everything the Sun does. SoHO has become an indispensable mission for helping us to understand how the Sun influences the environment around our planet and how this generates the potentially dangerous “Space Weather�.

The SoHO mission site confidently states that SoHO will remain in operation far into the next Solar Cycle. I hope this is the case as the new Hinode and STEREO probes will be good company for this historic mission.

Source: NASA News Release

Hinode Discovers the Sun’s Hidden Sparkle

hinode_xray_jet.thumbnail.jpg

Blinking spots of intense light are being observed all over the lower atmosphere of the Sun. Not just in the active regions, but in polar regions, quiet regions, sunspots, coronal holes and loops. These small explosions fire elegant jets of hot solar matter into space, generating X-rays as they go. Although X-ray jets are known to have existed for many years, the Japanese Hinode observatory is seeing these small flares with unprecedented clarity, showing us that X-ray jets may yet hold the answers to some of the most puzzling questions about the Sun and its hot corona.

Although a comparatively small mission (weighing 875 kg and operating just three instruments), Hinode is showing the world some stunning high resolution pictures of our nearest star. In Earth orbit and kitted out with an optical telescope (the Solar Optical Telescope, SOT), Extreme ultraviolet Imaging Spectrometer (EIS) and an X-Ray Telescope (XRT), the light emitted from the Sun can be split into its component optical, ultraviolet and X-ray wavelengths. This in itself is not new, but never before has mankind been able to view the Sun in such detail.

It is widely believed that the violent, churning solar surface may be the root cause of accelerating the solar wind (blasting hot solar particles into space at a mind-blowing 1.6 million kilometers per hour) and heating the million plus degree solar atmosphere. But the small-scale processes close to the Sun driving the whole system are only just beginning to come into focus.

Up until now, small-scale turbulent processes have been impossible to observe. Generally, any feature below 1000 km in size has remained undetected. Much like trying to follow a golf ball in flight from 200 meters away, it is very difficult (try it!). Compare this with Hinode, the same golf ball can be resolved by the SOT instrument from nearly 2000 km away. That’s one powerful telescope!

The limit of observable solar features has now been lifted. The SOT can resolve the fine structure of the solar surface to 180 km, this is an obvious improvement. Also, the EIS and XRT can capture images very quickly, one per second. The SOT can produce hi-res pictures every 5 minutes. Therefore, fast, explosive events such as flares can be tracked easier.

Putting this new technology to the test, a team led by Jonathan Cirtain, a solar physicist at NASA’s Marshall Space Flight Center, Huntsville, Alabama, has unveiled new results from research with the XRT instrument. X-ray jets in the highly dynamic chromosphere and lower corona appear to occur with greater regularity than previously thought.

X-ray jets are very important to solar physicists. As magnetic field lines are forced together, snap, and form new configurations, vast quantities of heat and light are generated in the form of a “microflare”. Although these are small events on a solar scale, they still generate huge amounts of energy, heating solar plasma to over 2 million Kelvin, create spurts of X-ray emitting plasma jets and generate waves. This is all very interesting, but why are jets so important?

The solar atmosphere (or corona) is hot. In fact, very hot. Actually, it is too hot. What I’m trying to say is that measurements of coronal particles tell us the atmosphere of the Sun is actually hotter than the Suns surface. Traditional thinking would suggest that this is wrong; all sorts of physical laws would be violated. The air around a light bulb isn’t hotter than the bulb itself, the heat from an object will decrease the further away you measure the temperature (obvious really). If you’re cold, you don’t move away from the fire, you get closer to it!

The Sun is different. Through interactions near the surface of the Sun between plasma and magnetic flux (a field known as “magnetohydrodynamics” – magneto = magnetic, hydro = fluid, dynamics = motion: “magnetic-fluid-motion” in plain English, or “MHD” for short), MHD waves are able to propagate and heat up the plasma. The MHD waves under scrutiny are known as “Alfvén wavesâ€? (named after Hannes Alfvén, 1908-1995, the plasma physics supremo) which, theoretically, carry enough energy from the Sun to heat the solar corona hotter than the solar surface. The one thing that has dogged the solar community for the last half a century is: how are Alfvén waves produced? Solar flares have always been a candidate as a source, but observation suggested that there wasn’t enough flares to generate enough waves. But now, with advanced optics used by Hinode, many small-scale events appear to be common… bringing us back to our X-ray jets…

Previously, only the largest X-ray jets have been observed, putting this phenomenon at the bottom of the priority list. NASA’s Marshall Space Flight Center group has now turned this idea on its head by observing hundreds of jet events each and every day:

“We now see that jets happen all the time, as often as 240 times a day. They appear at all latitudes, within coronal holes, inside sunspot groups, out in the middle of nowhere–in short, wherever we look on the sun we find these jets. They are a major form of solar activity” – Jonathan Cirtain, Marshall Space Flight Center.

So, this little solar probe has very quickly changed our views on solar physics. Launched on September 23, 2006, by a consortium of countries including Japan, USA and Europe, Hinode has already revolutionized our thinking about how the Sun works. Not only looking deep into the chaotic processes in the solar chromosphere, it is also finding new sources where Alfvén waves may be generated. Jets are now confirmed as common events that occur all over the Sun. Could they provide the corona with enough Alfvén waves to heat the Sun’s corona more than the Sun itself? I don’t know. But what I do know is, the sight of solar jets flashing to life in these movies is awesome, especially as you see the jet launch into space from the original flash. This is also a very good time to be seeing this amazing phenomenon, as Jonathan Cirtain points out the site of solar jets reminds him of “the twinkle of Christmas lights, randomly oriented. It’s very pretty”. Even the Sun is getting festive.