The Sun has enormous destructive power. Any objects that collide with the Sun, such as comets and asteroids, are immediately destroyed.
But now we’re finding that the Sun has the ability to reach out and touch asteroids at a far greater distance than previously thought. The proof of this came when a team at the University of Hawaii Institute of Astronomy was looking at Near-Earth Objects (NEOs) catalogued by the Catalina Sky Survey, and trying to understand what asteroids might be missing from that survey.
An asteroid is classified as an NEO when, at its closest point to the Sun, it is less than 1.3 times the distance from the Earth to the Sun. We need to know where these objects are, how many of them there are, and how big they are. They’re a potential threat to spacecraft, and to Earth itself.
The Catalina Sky Survey (CSS) detected over 9,000 NEOs in eight years. But asteroids are notoriously difficult to detect. They are tiny points of light, and they’re moving. The team knew that there was no way the CSS could have detected all NEOs, so Dr. Robert Jedicke, a team member from the University of Hawaii Institute of Astronomy, developed software that would tell them what CSS had missed in its survey of NEOs.
This took an enormous amount of work—and computing power—and when it was completed, they noticed a discrepancy: according to their work, there should be over ten times as many objects within ten solar diameters of the Sun as they found. The team had a puzzle on their hands.
The team spent a year verifying their work before concluding that the problem did not lay in their analysis, but in our understanding of how the Solar System works. University of Helsinki scientist Mikael Granvik, lead author of the Nature article that reported these results, hypothesized that their model of the NEO population would better suit their results if asteroids were destroyed at a much greater distance from the sun than previously thought.
They tested this idea, and found that it agreed with their model and with the observed population of NEOs, once asteroids that spent too much time within 10 solar diameters of the Sun were eliminated. “The discovery that asteroids must be breaking up when they approach too close to the Sun was surprising and that’s why we spent so much time verifying our calculations,” commented Dr. Jedicke.
There are other discrepancies in our Solar System between what is observed and what is predicted when it comes to the distribution of small objects. Meteors are small pieces of dust that come from asteroids, and when they enter our atmosphere they burn up and make star-gazing all the more eventful. Meteors exist in streams that come from their parent objects. The problems is, most of the time the streams can’t be matched with their parent object. This study shows that the parent objects must have been destroyed when they got too close to the Sun, leaving behind a stream of meteors, but no apparent source.
There was another surprise in store for the team. Darker asteroids are destroyed at a greater distance from the Sun than lighter ones are. This explains an earlier discovery, which showed that brighter NEOs travel closer to the Sun than darker ones do. If darker asteroids are destroyed at a greater distance from the Sun than their lighter counterparts, then the two must have differing compositions and internal structure.
“Perhaps the most intriguing outcome of this study is that it is now possible to test models of asteroid interiors simply by keeping track of their orbits and sizes. This is truly remarkable and was completely unexpected when we first started constructing the new NEO model,” says Granvik.
If you took a picture of the Sun every day, always at the same hour and from the same location, would the Sun appear in the same spot in the sky? A very fine image, compiled by astrophotographer Giuseppe Petricca from Italy, proves the answer is no.
“A combination of the Earth’s 23.5 degree tilt and its slightly elliptical orbit combine to generate this figure “8” pattern of where the Sun would appear at the same time throughout the year,” said Petricca.
This pattern is called an analemma, the full version shown below:
The Scientific Revolution, which took place in the 16th and 17th centuries, was a time of unprecedented learning and discovery. During this period, the foundations of modern science were laid, thanks to breakthroughs in the fields of physics, mathematics, chemistry, biology, and astronomy. And when it comes to astronomy, the most influential scholar was definitely Nicolaus Copernicus, the man credited with the creation of the Heliocentric model of the Universe.
Based on ongoing observations of the motions of the planets, as well as previous theories from classical antiquity and the Islamic World, Copernicus’ proposed a model of the Universe where the Earth, the planets and the stars all revolved around the Sun. In so doing, he resolved the mathematical problems and inconsistencies arising out of the classic geocentric model and laid the foundations for modern astronomy.
While Copernicus was not the first to propose a model of the Solar System in which the Earth and planets revolved around the Sun, his model of a heliocentric universe was both novel and timely. For one, it came at a time when European astronomers were struggling to resolve the mathematical and observational problems that arose out of the then-accepted Ptolemaic model of the Universe, a geocentric model proposed in the 2nd century CE.
In addition, Copernicus’ model was the first astronomical system that offered a complete and detailed account of how the Universe worked. Not only did his model resolves issues arising out of the Ptolemaic system, it offered a simplified view of the universe that did away with complicated mathematical devices that were needed for the geocentric model to work. And with time, the model gained influential proponents who contributed to it becoming the accepted convention of astronomy.
The Ptolemaic (Geocentric) Model:
The geocentric model, in which planet Earth is the center of the Universe and is circled by the Sun and all the planets, had been the accepted cosmological model since ancient times. By late antiquity, this model had come to be formalized by ancient Greek and Roman astronomers, such as Aristotle (384 – 322 BCE) – who’s theories on physics became the basis for the motion of the planets – and Ptolemy (ca. 100 – ca.?170 CE), who proposed the mathematical solutions.
The geocentric model essentially came down to two common observations. First of all, to ancient astronomers, the stars, the Sun, and the planets appeared to revolve around the Earth on daily basis. Second, from the perspective of the Earth-bound observer, the Earth did not appear to move, making it a fixed point in space.
The belief that the Earth was spherical, which became an accepted fact by the 3rd century BCE, was incorporated into this system. As such, by the time of Aristotle, the geocentric model of the universe became one where the Earth, Sun and all the planets were spheres, and where the Sun, planets and stars all moved in perfect circular motions.
However, it was not until Egyptian-Greek astronomer Claudius Ptolemaeus (aka. Ptolemy) released his treatise Almagest in the 2nd century BCE that the details became standardized. Drawing on centuries of astronomical traditions, ranging from Babylonian to modern times, Ptolemy argued that the Earth was in the center of the universe and the stars were all at a modest distance from the center of the universe.
Each planet in this system is also moved by a system of two spheres – a deferent and an epicycle. The deferent is a circle whose center point is removed from the Earth, which was used to account for the differences in the lengths of the seasons. The epicycle is embedded in the deferent sphere, acting as a sort of “wheel within a wheel”. The purpose of he epicycle was to account for retrograde motion, where planets in the sky appear to be slowing down, moving backwards, and then moving forward again.
Unfortunately, these explanations did not account for all the observed behaviors of the planets. Most noticeably, the size of a planet’s retrograde loop (especially Mars) were sometimes smaller, and larger, than expected. To alleviate the problem, Ptolemy developed the equant – a geometrical tool located near the center of a planet’s orbit that causes it to move at a uniform angular speed.
To an observer standing at this point, a planet’s epicycle would always appear to move at uniform speed, whereas it would appear to be moving at non-uniform speed from all other locations.While this system remained the accepted cosmological model within the Roman, Medieval European and Islamic worlds for over a thousand years, it was unwieldy by modern standards.
However, it did manage to predict planetary motions with a fair degree of accuracy, and was used to prepare astrological and astronomical charts for the next 1500 years. By the 16th century, this model was gradually superseded by the heliocentric model of the universe, as espoused by Copernicus, and then Galileo and Kepler.
The Copernican (Heliocentric) Model:
In the 16th century, Nicolaus Copernicus began devising his version of the heliocentric model. Like others before him, Copernicus built on the work of Greek astronomer Atistarchus, as well as paying homage to the Maragha school and several notable philosophers from the Islamic world (see below). By the early 16th century, Copernicus summarized his ideas in a short treatise titled Commentariolus (“Little Commentary”).
By 1514, Copernicus began circulating copies amongst his friends, many of whom were fellow astronomers and scholars. This forty-page manuscript described his ideas about the heliocentric hypothesis, which was based on seven general principles. These principles stated that:
Celestial bodies do not all revolve around a single point
The center of Earth is the center of the lunar sphere—the orbit of the moon around Earth
All the spheres rotate around the Sun, which is near the center of the Universe
The distance between Earth and the Sun is an insignificant fraction of the distance from Earth and Sun to the stars, so parallax is not observed in the stars
The stars are immovable – their apparent daily motion is caused by the daily rotation of Earth
Earth is moved in a sphere around the Sun, causing the apparent annual migration of the Sun. Earth has more than one motion
Earth’s orbital motion around the Sun causes the seeming reverse in direction of the motions of the planets
Thereafter he continued gathering data for a more detailed work, and by 1532, he had come close to completing the manuscript of his magnum opus – De revolutionibus orbium coelestium(On the Revolutions of the Heavenly Spheres). In it, he advanced his seven major arguments, but in more detailed form and with detailed computations to back them up.
By placing the orbits of Mercury and Venus between the Earth and the Sun, Copernicus was able to account for changes in their appearances. In short, when they are on the far side of the Sun, relative to Earth, they appear smaller but full. When they are on the same side of the Sun as the Earth, they appear larger and “horned” (crescent-shaped).
It also explained the retrograde motion of planets like Mars and Jupiter by showing that Earth astronomers do not have a fixed frame of reference but a moving one. This further explained how Mars and Jupiter could appear significantly larger at certain times than at others. In essence, they are significantly closer to Earth when at opposition than when they are at conjunction.
However, due to fears that the publication of his theories would lead to condemnation from the church (as well as, perhaps, worries that his theory presented some scientific flaws) he withheld his research until a year before he died. It was only in 1542, when he was near death, that he sent his treatise to Nuremberg to be published.
Historical Antecedents:
As already noted, Copernicus was not the first to advocate a heliocentric view of the Universe, and his model was based on the work of several previous astronomers. The first recorded examples of this are traced to classical antiquity, when Aristarchus of Samos (ca. 310 – 230 BCE) published writings that contained references which were cited by his contemporaries (such as Archimedes).
In his treatise The Sand Reckoner, Archimedes described another work by Aristarchus in which he advanced an alternative hypothesis of the heliocentric model. As he explained:
Now you are aware that ‘universe’ is the name given by most astronomers to the sphere whose center is the center of the earth and whose radius is equal to the straight line between the center of the sun and the center of the earth. This is the common account… as you have heard from astronomers. But Aristarchus of Samos brought out a book consisting of some hypotheses, in which the premises lead to the result that the universe is many times greater than that now so called. His hypotheses are that the fixed stars and the sun remain unmoved, that the earth revolves about the sun in the circumference of a circle, the sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about the same center as the sun, is so great that the circle in which he supposes the earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface.
This gave rise to the notion that there should be an observable parallax with the “fixed stars” (i.e an observed movement of the stars relative to each other as the Earth moved around the Sun). According to Archimedes, Aristarchus claimed that the stars were much farther away than commonly believed, and this was the reason for no discernible parallax.
The only other philosopher from antiquity who’s writings on heliocentrism have survived is Seleucis of Seleucia (ca. 190 – 150 BCE). A Hellenistic astronomer who lived in the Near-Eastern Seleucid empire, Seleucus was a proponent of the heliocentric system of Aristarchus, and is said to have proved the heliocentric theory.
According to contemporary sources, Seleucus may have done this by determining the constants of the geocentric model and applying them to a heliocentric theory, as well as computing planetary positions (possibly using trigonometric methods). Alternatively, his explanation may have involved the phenomenon of tides, which he supposedly theorized to be related to the influence of the Moon and the revolution of the Earth around the Earth-Moon ‘center of mass’.
In the 5th century CE, Roman philosopher Martianus Capella of Carthage expressed an opinion that the planets Venus and Mercury revolved around the Sun, as a way of explaining the discrepancies in their appearances. Capella’s model was discussed in the Early Middle Ages by various anonymous 9th-century commentators, and Copernicus mentions him as an influence on his own work.
During the Late Middle Ages, Bishop Nicole Oresme (ca. 1320-1325 to 1382 CE) discussed the possibility that the Earth rotated on its axis. In his 1440 treatise De Docta Ignorantia (On LearnedIgnorance) Cardinal Nicholas of Cusa (1401 – 1464 CE) asked whether there was any reason to assert that the Sun (or any other point) was the center of the universe.
Indian astronomers and cosmologists also hinted at the possibility of a heliocentric universe during late antiquity and the Middle Ages. In 499 CE, Indian astronomer Aaryabhata published his magnum opus Aryabhatiya, in which he proposed a model where the Earth was spinning on its axis and the periods of the planets were given with respect to the Sun. He also accurately calculated the periods of the planets, times of the solar and lunar eclipses, and the motion of the Moon.
In the 15th century, Nilakantha Somayaji published the Aryabhatiyabhasya, which was a commentary on Aryabhata’s Aryabhatiya. In it, hedeveloped a computational system for a partially heliocentric planetary model, in which the planets orbit the Sun, which in turn orbits the Earth. In the Tantrasangraha (1500), he revised the mathematics of his planetary system further and incorporated the Earth’s rotation on its axis.
Also, the heliocentric model of the universe had proponents in the medieval Islamic world, many of whom would go on to inspire Copernicus. Prior to the 10th century, the Ptolemaic model of the universe was the accepted standard to astronomers in the West and Central Asia. However, in time, manuscripts began to appear that questioned several of its precepts.
For instance, the 10th-century Iranian astronomer Abu Sa’id al-Sijzi contradicted the Ptolemaic model by asserting that the Earth revolved on its axis, thus explaining the apparent diurnal cycle and the rotation of the stars relative to Earth. In the early 11th century, Egyptian-Arab astronomer Alhazen wrote a critique entitled Doubts on Ptolemy (ca. 1028) in which he criticized many aspects of his model.
Around the same time, Iranian philosopher Abu Rayhan Biruni 973 – 1048) discussed the possibility of Earth rotating about its own axis and around the Sun – though he considered this a philosophical issue and not a mathematical one. At the Maragha and the Ulugh Beg (aka. Samarkand) Observatory, the Earth’s rotation was discussed by several generations of astronomers between the 13th and 15th centuries, and many of the arguments and evidence put forward resembled those used by Copernicus.
Impact of the Heliocentric Model:
Despite his fears about his arguments producing scorn and controversy, the publication of Copernicu’s theories resulted in only mild condemnation from religious authorities. Over time, many religious scholars tried to argue against his model. But within a few generation’s time, Copernicus’ theory became more widespread and accepted, and gained many influential defenders in the meantime.
These included Galileo Galilei (1564-1642), who’s investigations of the heavens using the telescope allowed him to resolve what were seen as flaws in the heliocentric model, as well as discovering aspects about the heavens that supported heliocentrism. For example, Galileo discovered moons orbiting Jupiter, Sunspots, and the imperfections on the Moon’s surface – all of which helped to undermine the notion that the planets were perfect orbs, rather than planets similar to Earth. While Galileo’s advocacy of Copernicus’ theories resulted in his house arrest, others soon followed.
German mathematician and astronomer Johannes Kepler (1571-1630) also helped to refine the heliocentric model with his introduction of elliptical orbits. Prior to this, the heliocentric model still made use of circular orbits, which did not explain why planets orbited the Sun at different speeds at different times. By showing how the planet’s sped up while at certain points in their orbits, and slowed down in others, Kepler resolved this.
In addition, Copernicus’ theory about the Earth being capable of motion would go on to inspire a rethinking of the entire field of physics. Whereas previous ideas of motion depended on an outside force to instigate and maintain it (i.e. wind pushing a sail) Copernicus’ theories helped to inspire the concepts of gravity and inertia. These ideas would be articulated by Sir Isaac Newton, who’s Principia formed the basis of modern physics and astronomy.
Although its progress was slow, the heliocentric model eventually replaced the geocentric model. In the end, the impact of its introduction was nothing short of a revolutionary. Henceforth, humanity’s understanding of the universe and our place in it would be forever changed.
The Sun has always been the center of our cosmological systems. But with the advent of modern astronomy, humans have become aware of the fact that the Sun is merely one of countless stars in our Universe. In essence, it is a perfectly normal example of a G-type main-sequence star (G2V, aka. “yellow dwarf”). And like all stars, it has a lifespan, characterized by a formation, main sequence, and eventual death.
This lifespan began roughly 4.6 billion years ago, and will continue for about another 4.5 – 5.5 billion years, when it will deplete its supply of hydrogen, helium, and collapse into a white dwarf. But this is just the abridged version of the Sun’s lifespan. As always, God (or the Devil, depending on who you ask) is in the details!
To break it down, the Sun is about half way through the most stable part of its life. Over the course of the past four billion years, during which time planet Earth and the entire Solar System was born, it has remained relatively unchanged. This will stay the case for another four billion years, at which point, it will have exhausted its supply of hydrogen fuel. When that happens, some pretty drastic things will take place!
The Birth of the Sun:
According to Nebular Theory, the Sun and all the planets of our Solar System began as a giant cloud of molecular gas and dust. Then, about 4.57 billion years ago, something happened that caused the cloud to collapse. This could have been the result of a passing star, or shock waves from a supernova, but the end result was a gravitational collapse at the center of the cloud.
From this collapse, pockets of dust and gas began to collect into denser regions. As the denser regions pulled in more and more matter, conservation of momentum caused it to begin rotating, while increasing pressure caused it to heat up. Most of the material ended up in a ball at the center while the rest of the matter flattened out into disk that circled around it.
The ball at the center would eventually form the Sun, while the disk of material would form the planets. The Sun spent about 100,000 years as a collapsing protostar before temperature and pressures in the interior ignited fusion at its core. The Sun started as a T Tauri star – a wildly active star that blasted out an intense solar wind. And just a few million years later, it settled down into its current form. The life cycle of the Sun had begun.
The Main Sequence:
The Sun, like most stars in the Universe, is on the main sequence stage of its life, during which nuclear fusion reactions in its core fuse hydrogen into helium. Every second, 600 million tons of matter are converted into neutrinos, solar radiation, and roughly 4 x 1027 Watts of energy. For the Sun, this process began 4.57 billion years ago, and it has been generating energy this way every since.
However, this process cannot last forever since there is a finite amount of hydrogen in the core of the Sun. So far, the Sun has converted an estimated 100 times the mass of the Earth into helium and solar energy. As more hydrogen is converted into helium, the core continues to shrink, allowing the outer layers of the Sun to move closer to the center and experience a stronger gravitational force.
This places more pressure on the core, which is resisted by a resulting increase in the rate at which fusion occurs. Basically, this means that as the Sun continues to expend hydrogen in its core, the fusion process speeds up and the output of the Sun increases. At present, this is leading to a 1% increase in luminosity every 100 million years, and a 30% increase over the course of the last 4.5 billion years.
In 1.1 billion years from now, the Sun will be 10% brighter than it is today, and this increase in luminosity will also mean an increase in heat energy, which Earth’s atmosphere will absorb. This will trigger a moist greenhouse effect here on Earth that is similar to the runaway warming that turned Venus into the hellish environment we see there today.
In 3.5 billion years from now, the Sun will be 40% brighter than it is right now. This increase will cause the oceans to boil, the ice caps to permanently melt, and all water vapor in the atmosphere to be lost to space. Under these conditions, life as we know it will be unable to survive anywhere on the surface. In short, planet Earth will come to be another hot, dry Venus.
Core Hydrogen Exhaustion:
All things must end. That is true for us, that is true for the Earth, and that is true for the Sun. It’s not going to happen anytime soon, but one day in the distant future, the Sun will run out of hydrogen fuel and slowly slouch towards death. This will begin in approximate 5.4 billion years, at which point the Sun will exit the main sequence of its lifespan.
With its hydrogen exhausted in the core, the inert helium ash that has built up there will become unstable and collapse under its own weight. This will cause the core to heat up and get denser, causing the Sun to grow in size and enter the Red Giant phase of its evolution. It is calculated that the expanding Sun will grow large enough to encompass the orbit’s of Mercury, Venus, and maybe even Earth. Even if the Earth survives, the intense heat from the red sun will scorch our planet and make it completely impossible for life to survive.
Final Phase and Death:
Once it reaches the Red-Giant-Branch (RGB) phase, the Sun will haves approximately 120 million years of active life left. But much will happen in this amount of time. First, the core (full of degenerate helium), will ignite violently in a helium flash – where approximately 6% of the core and 40% of the Sun’s mass will be converted into carbon within a matter of minutes.
The Sun will then shrink to around 10 times its current size and 50 times its luminosity, with a temperature a little lower than today. For the next 100 million years, it will continue to burn helium in its core until it is exhausted. By this point, it will be in its Asymptotic-Giant-Branch (AGB) phase, where it will expand again (much faster this time) and become more luminous.
Over the course of the next 20 million years, the Sun will then become unstable and begin losing mass through a series of thermal pulses. These will occur every 100,000 years or so, becoming larger each time and increasing the Sun’s luminosity to 5,000 times its current brightness and its radius to over 1 AU.
At this point, the Sun’s expansion will either encompass the Earth, or leave it entirely inhospitable to life. Planets in the Outer Solar System are likely to change dramatically, as more energy is absorbed from the Sun, causing their water ices to sublimate – perhaps forming dense atmosphere and surface oceans. After 500,000 years or so, only half of the Sun’s current mass will remain and its outer envelope will begin to form a planetary nebula.
The post-AGB evolution will be even faster, as the ejected mass becomes ionized to form a planetary nebula and the exposed core reaches 30,000 K. The final, naked core temperature will be over 100,000 K, after which the remnant will cool towards a white dwarf. The planetary nebula will disperse in about 10,000 years, but the white dwarf will survive for trillions of years before fading to black.
Ultimate Fate of our Sun:
When people think of stars dying, what typically comes to mind are massive supernovas and the creation of black holes. However, this will not be the case with our Sun, due to the simple fact that it is not nearly massive enough. While it might seem huge to us, but the Sun is a relatively low mass star compared to some of the enormous high mass stars out there in the Universe.
As such, when our Sun runs out of hydrogen fuel, it will expand to become a red giant, puff off its outer layers, and then settle down as a compact white dwarf star, then slowly cooling down for trillions of years. If, however, the Sun had about 10 times its current mass, the final phase of its lifespan would be significantly more (ahem) explosive.
When this super-massive Sun ran out of hydrogen fuel in its core, it would switch over to converting atoms of helium, and then atoms of carbon (just like our own). This process would continue, with the Sun consuming heavier and heavier fuel in concentric layers. Each layer would take less time than the last, all the way up to nickel – which could take just a day to burn through.
Then, iron would starts to build up in the core of the star. Since iron doesn’t give off any energy when it undergoes nuclear fusion, the star would have no more outward pressure in its core to prevent it from collapsing inward. When about 1.38 times the mass of the Sun is iron collected at the core, it would catastrophically implode, releasing an enormous amount of energy.
Within eight minutes, the amount of time it takes for light to travel from the Sun to Earth, an incomprehensible amount of energy would sweep past the Earth and destroy everything in the Solar System. The energy released from this might be enough to briefly outshine the galaxy, and a new nebula (like the Crab Nebula) would be visible from nearby star systems, expanding outward for thousands of years.
All that would remain of the Sun would be a rapidly spinning neutron star, or maybe even a stellar black hole. But of course, this is not to be our Sun’s fate. Given its mass, it will eventually collapse into a white star until it burns itself out. And of course, this won’t be happening for another 6 billion years or so. By that point, humanity will either be long dead or have moved on. In the meantime, we have plenty of days of sunshine to look forward to!
There is a reason life that Earth is the only place in the Solar System where life is known to be able to live and thrive. Granted, scientists believe that there may be microbial or even aquatic life forms living beneath the icy surfaces of Europa and Enceladus, or in the methane lakes on Titan. But for the time being, Earth remains the only place that we know of that has all the right conditions for life to exist.
One of the reasons for this is because the Earth lies within our Sun’s Habitable Zone (aka. “Goldilocks Zone”). This means that it is in right spot (neither too close nor too far) to receive the Sun’s abundant energy, which includes the light and heat that is essential for chemical reactions. But how exactly does our Sun go about producing this energy? What steps are involved, and how does it get to us here on planet Earth?
While our Sun will only survive for about 5 billion more years, smaller, cooler red dwarfs can last for trillions of years. What’s the secret to their longevity?
You might say our Sun will last a long time. And sure, another 5 billion years or so of main sequence existence does sound pretty long lived. But that’s nothing compared to the least massive stars out there, the red dwarfs.
These tiny stars can have just 1/12th the mass of the Sun, but instead of living for a paltry duration, they can last for trillions of years. What’s the secret to their longevity? Is it Botox?
To understand why red dwarfs have such long lifespans, we’ll need to take a look at main sequence stars first, and see how they’re different. If you could peel back the Sun like a grapefruit, you’d see juicy layers inside.
In the core, immense pressure and temperature from the mass of all that starstuff bears down and fuses atoms of hydrogen into helium, releasing gamma radiation.
Outside the core is the radiative zone, not hot enough for fusion. Instead, photons of energy generated in the core are emitted and absorbed countless times, taking a random journey to the outermost layer of the star.
And outside the radiative zone is the convective zone, where superheated globs of hot plasma float up to the surface, where they release their heat into space.
Then they cool down enough to sink back through the Sun and pick up more heat. Over time, helium builds up in the core. Eventually, this core runs out of hydrogen and it dies. Even though the core is only a fraction of the total mass of hydrogen in the Sun, there’s no mechanism to mix it in.
A red dwarf is fundamentally different than a main sequence star like the Sun. Because it has less mass, it has a core, and a convective zone, but no radiative zone. This makes all the difference.
The convective zone connects directly to the core of the red dwarf, the helium byproduct created by fusion is spread throughout the star. This convection brings fresh hydrogen into the core of the star where it can continue the fusion process.
By perfectly using all its hydrogen, the lowest mass red dwarf could sip away at its hydrogen fuel for 10 trillion years.
One of the biggest surprises in modern astronomy is just how many of these low mass red dwarf worlds have planets. And some of the most Earthlike worlds ever seen have been found around red dwarf stars. Planets with roughly the mass of Earth, orbiting within their star’s habitable zone, where liquid water could be present.
One of the biggest problems with red dwarfs is that they can be extremely variable. For example, 40% of a red dwarf’s surface could be covered with sunspots, decreasing the amount of radiation it produces, changing the size of its habitable zone.
Other red dwarfs produce powerful stellar flares that could scour a newly forming world of life. DG Canes Venaticorum recently generated a flare 10,000 times more powerful than anything ever seen from the Sun. Any life caught in the blast would have a very bad day.
Fortunately, red dwarfs only put out these powerful flares in the first billion years or so of their lives. After that, they settle down and provide a nice cozy environment for trillions of years. Long enough for life to prosper we hope.
In the distant future, some superintelligent species may figure out how to properly mix the hydrogen back into the Sun, removing the helium, if they do, they’ll add billions of years to the Sun’s life.
It seems like such a shame for the Sun to die with all that usable hydrogen sitting just a radiative zone away from fusion.
Have you got any ideas on how we could mix up the hydrogen in the Sun and remove the helium? Post your wild ideas in the comments!
If the Sun, Earth and Moon are lined up, shouldn’t we get a lunar and solar eclipse every month? Clearly, we don’t, but why not?
Coincidences happen all the time. Right, Universe? One of the most amazing is that Moon and the Sun appear to be almost exactly the same size in the sky and they’re both the size of your pinky fingernail held at arm’s length. These coincidences just keep piling up. Thanks Universe?
There are two kinds of eclipses: solar and lunar. Well, there’s a third kind, but we’d best not think about that.
A solar eclipse occurs when the Moon passes in between the Earth and Sun, casting a shadow down on the surface of our planet. If you’re in the path of the shadow, the Moon destroys the Sun. No, wait, I mean the Moon blocks the Sun briefly.
A lunar eclipse happens when the Moon passes through the Earth’s shadow. We see one limb of the Moon darken until the entire thing is in shadow.
You’ve got the Sun, Earth and Moon all in a line. Where they’re like this, it’s a solar eclipse, and when they’re like this, it’s a lunar eclipse.
If the Moon takes about a month to orbit the Earth, shouldn’t we get an eclipse every two weeks? First a solar eclipse, and then two weeks later, lunar eclipse, back and forth? And occasionally a total one of the heart? But we don’t get them every month, in fact, it can take months and months between eclipses of any kind.
If the Sun, Earth and Moon were truly lined up perfect, this would be the case. But the reality is that they’re not lined up. The Moon is actually on an inclined plane to the Earth.
Imagine the Solar System is a flat disk, like a DVD. You kids still know what those are, right? This is the plane of the ecliptic, and all of the planets are arranged in that disk.
But the Moon is on another disk, which is inclined at an angle of 5.14 degrees. So, if you follow the orbit of the Moon as it goes around the Earth, sometimes it’s above the plane of the ecliptic and sometimes it’s below. So the shadow cast by the Moon misses the Earth, or the shadow cast by the Earth misses the Moon.
But other times, the Sun, Moon and Earth are aligned, and we get eclipses. In fact, eclipses tend to come in pairs, with a solar eclipse followed by a lunar eclipse, because everything is nicely aligned.
Wondering why the Moon turns red during a lunar eclipse? It’s the same reason we see red sunsets here on Earth – the atmosphere filters out the green to violet range of the spectrum, letting the red light pass through.
The Earth’s atmosphere refracts the sunlight so that it’s bent slightly, and can illuminate the Moon during the greatest eclipse. It’s an eerie sight, and well worth hanging around outside to watch it happen. We just had recently had a total lunar eclipse, did you get a chance to see it? Wasn’t it awesome?
Don’t forget about the total solar eclipse that’s going to be happening in August, 2017. It’s going to cross the United States from Oregon to Tennessee and should be perfect viewing for millions of people in North America. We’ve already got our road trip planned out.
Are you planning to see the 2017 eclipse? Tell us your plans in the comments below.
We know that the Sun will last another 5 billion years and then expand us a red giant. What will actually make this process happen?
One of the handy things about the Universe, apart from the fact that it exists, is that it lets us see crazy different configurations of everything, including planets, stars and galaxies.
We see stars like our Sun and dramatically unlike our Sun. Tiny, cool red dwarf stars with a fraction of the mass of our own, sipping away at their hydrogen juice boxes for billions and even trillions of years. Stars with way more mass than our own, blasting out enormous amounts of radiation, only lasting a few million years before they detonate as supernovae.
There are ones younger than the Sun; just now clearing out the gas and dust in their solar nebula with intense ultraviolet radiation. Stars much older than ours, bloated up into enormous sizes, nearing the end of their lives before they fade into their golden years as white dwarfs.
The Sun is a main sequence star, converting hydrogen into helium at its core, like it’s been doing for more than 4.5 billion years, and will continue to do so for another 5 or so. At the end of its life, it’s going to bloat up as a red giant, so large that it consumes Mercury and Venus, and maybe even Earth.
What’s the process going on inside the Sun that makes this happen? Let’s peel away the Sun and take a look at the core. After we’re done screaming about the burning burning hands, we’ll see that the Sun is this enormous sphere of hydrogen and helium, 1.4 million kilometers across, the actual business of fusion is happening down in the core, a region that’s a delicious bubblegum center a tiny 280,000 kilometers across.
The core is less than one percent of the entire volume, but because the density of hydrogen in the chewy center is 150 times more than liquid water, it accounts for a freakishly huge 35% of its mass.
It’s thanks to the mass of the entire star, 2 x 10^30 kg, bearing down on the core thanks to gravity. Down here in the core, temperatures are more than 15 million degrees Celsius. It’s the perfect spot for nuclear fusion picnic.
There are a few paths fusion can take, but the main one is where hydrogen atoms are mushed into helium. This process releases enough gamma radiation to make you a planet full of Hulks.
While the Sun has been performing hydrogen fusion, all this helium has been piling up at its core, like nuclear waste. Terrifyingly, it’s still fuel, but our little Sun just doesn’t have the temperature or pressure at its core to be able to use it.
Eventually, the fusion at the core of the Sun shuts down, choked off by all this helium and in a last gasp of high pitched mickey mouse voice terror the helium core begins to contract and heat up. At this point, an amazing thing happens. It’s now hot enough for a layer of hydrogen just around the core to heat up and begin fusion again. The Sun now gets a second chance at life.
As this outer layer contains a bigger volume than the original core of the Sun, it heats up significantly, releasing far more energy. This increase in light pressure from the core pushes much harder against gravity, and expands the volume of the Sun.
Even this isn’t the end of the star’s life. Dammit, Harkness, just stay down. Helium continues to build up, and even this extra shell around the core isn’t hot and dense enough to support fusion. So the core dies again. The star begins to contract, the gravitational energy heats up again, allowing another shell of hydrogen to have the pressure and temperature for fusion, and then we’re back in business!
Our Sun will likely go through this process multiple times, each phase taking a few years to complete as it expands and contracts, heats and cools. Our Sun becomes a variable star.
Eventually, we run out of usable hydrogen, but fortunately, it’s able to switch over to using helium as fuel, generating carbon and oxygen as byproducts. This doesn’t last long, and when it’s gone, the Sun gets swollen to hundreds of times its size, releasing thousands of times more energy.
This is when the Sun becomes that familiar red giant, gobbling up the tasty planets, including, quite possibly the Earth.The remaining atmosphere puffs out from the Sun, and drifts off into space creating a beautiful planetary nebula that future alien astronomers will enjoy for thousands of years. What’s left is a carbon oxygen core, a white dwarf.
The Sun is completely out of tricks to make fusion happen any more, and it’ll now cool down to the background temperature of the Universe. Our Sun will die in a dramatic way, billions of years from now when it bloats up 500 times its original volume.
What do you think future alien astronomers will call the planetary nebula left behind by the Sun? Give it a name in the comments below.
Since the energy required to fuse iron is more than the energy that you get from doing it, could you use iron to kill a star like our sun?
A fan favorite was How Much Water Would it Take to Extinguish the Sun? Go ahead and watch it now if you like. Or… if you don’t have time to watch me set up the science, deliver a bunch of hilarious zingers and obscure sci-fi references, here’s the short version:
The Sun is not on fire, it’s a fusion reaction. Hydrogen mashes up to produce helium and energy. Lots and lots of energy. Water is mostly hydrogen, adding water would give more fuel and make it burn hotter. But some of you clever viewers proposed another way to kill the Sun. Kill it with iron!
Iron? That seems pretty specific. Why iron and not something else, like butter, donuts, or sitting on the couch playing video games – all the things working to kill me? Is iron poison to stars? An iron bar? Possibly iron bullets? Iron punches? Possibly from fashioning a suit and attacking it as some kind of Iron Man?
Time for some stellar physics. Stars are massive balls of plasma. Mostly hydrogen and helium, and leftover salad from the Big Bang. Mass holds them together in a sphere, creating temperatures and pressures at their cores, where atoms of hydrogen are crushed together into helium, releasing energy. This energy, in the form of photons pushes outward. As they escape the star, this counteracts the force of gravity trying to pull it inward.
Over the course of billions of years, the star uses up the reserves of hydrogen, building up helium. If it’s massive enough, it will switch to helium when the hydrogen is gone. Then it can switch to oxygen, and then silicon, and all the way up the periodic table of elements.
The most massive stars in the Universe, the ones with at least 8 times the mass of the Sun, have enough temperature and pressure that they can fuse elements all the way up to iron, the 26th element on the Periodic Table. At that point, the energy required to fuse iron is more than the energy that you get from fusing iron, no matter how massive a star you are.
In a fraction of a second, the core of the Sun shuts off. It’s no longer pushing outward with its light pressure, and so the outer layers collapse inward, creating a black hole and a supernova. It sure looks like the build up of iron in the core killed it.
Is it true then? Is iron the Achilles heel of stars? Not really. Iron is the byproduct of fusion within the most massive stars. Just like ash is the byproduct of combustion, or poop is the byproduct of human digestion.
It’s not poison, which stops or destroys processes within the human body. A better analogy might be fiber. Your body can’t get any nutritional value out of fiber, like grass. If all you had to eat was grass, you’d starve, but it’s not like the grass is poisoning you. As long as you got adequate nutrition, you could eat an immense amount of grass and not die. It’s about the food, not the grass.
The Sun already has plenty of iron; it’s 0.1% iron. That little nugget would work out to be 330 times the mass of the Earth. If you gave it much more iron, it would just give the Sun more mass, which would give it more gravity to raise the temperature and pressure at the core, which would help it do even more fusion.
If you just poured iron into a star, it wouldn’t kill it. It would just make it more massive and then hotter and capable of supporting the fusion of heavier elements. As long as there’s still viable fuel at the core of the star, and adequate temperatures and pressures, it’ll continue fusing and releasing energy.
If you could swap out the hydrogen in the Sun with a core of iron, you would indeed kill it dead, or any star for that matter. It wouldn’t explode, though. Only if it was at least 8 times the mass of the Sun to begin with. Then would you have enough mass bearing down on the inert core to create a core collapse supernova.
In fact, since you’ve got the power to magically replace stellar cores, you would only need to replace the Sun’s core with carbon or oxygen to kill it. It actually doesn’t have enough mass to fuse even carbon. As soon as you replaced the Sun’s core, it would shut off fusion. It would immediately become a white dwarf, and begin slowly cooling down to the background temperature of the Universe.
Iron in bullet, bar, man or any other form isn’t poison to a star. It just happens to be an element that no star can use to generate energy from fusion. As long as there’s still viable fuel at the core of a star, and the pressure and temperature to bring them together, the star will continue to pump out energy.
What other exotic ways would you use to try and kill the Sun? Give us your suggestions in the comments below.
Is our 13.8 billion year old universe actually in its death throes?
Poor Universe, its demise announced right in it’s prime. At only 13.8 billion years old, when you peer across the multiverse it’s barely middle age. And yet, it sadly dwindles here in hospice.
Is it a Galactus infestation? The Unicronabetes? Time to let go, move on and find a new Universe, because this one is all but dead and gone and but a shell of its former self.
The news of imminent demise was recently broadcast in mid 2015. Based on research looking at the light coming from over 200,000 galaxies, they found that the galaxies are putting out half as much light as they were 2 billion years ago. So if our math is right, less light equals more death.
So tell it to me straight, Doctor Spaceman(SPAH-CHEM-AN), how long have we got? Astronomers have known for a long time that the Universe was much more active in the distant past, when everything was closer and denser, and better. Back then, more of it was the primordial hydrogen left over from the Big Bang, supplying galaxies for star formation. Currently, there are only 1 to 3 new stars formed in the Milky Way every year. Which is pretty slow by Milky Way standards.
Not even at the busiest time of star formation, our Sun formed 5 billion years ago. 5 billion years before that, just a short 4 billion after the Big Bang, star formation peaked out. There were 30 times more stars forming then, than we see today.
When stars were formed actually makes a difference. For example, the fact that it took so long for our Sun to form is a good thing. The heavier elements in the Solar System, really anything higher up the periodic table from hydrogen and helium, had to be formed inside other stars. Main sequence stars like our own Sun spew out heavier elements from their solar winds, while supernovae created the heaviest elements in a moment of catastrophic collapse. Astronomers are pretty sure we needed a few generations of stars to build up enough of the heavier elements that life depends on, and probably wouldn’t be here without it.
Even if life did form here on Earth billions of years ago, when the Universe was really cranking, it would wish it was never born. With 30 times as much star formation going on, there would be intense radiation blasting away from all these newly forming stars and their subsequent supernovae detonations. So be glad life formed when it did. Sometimes a little quiet is better.
So, how long has the Universe got? It appears that it’s not going to crash together in the future, it’s just going to keep on expanding, and expanding, forever and ever.
In a few billion years, star formation will be a fraction of what it is today. In a few trillion, only the longest lived, lowest mass red dwarfs will still be pushing out their feeble light. Then, one by one, galaxies will see their last star flicker and fade away into the darkness. Then there’ll only be dead stars and dead planets, cooling down to the background temperature of the Universe as their galaxies accelerate from one another into the expanding void.
Eventually everything will be black holes, or milling about waiting to be trapped in black holes. And these black holes themselves will take an incomprehensible mighty pile of years to evaporate away to nothing.
So yes, our Universe is dying. Just like in a cheery Sartre play, it started dying the moment it began its existence. According to astronomers, the Universe will never truly die. It’ll just reach a distant future when there’s so little usable energy, it’ll be mostly dead. Dead enough? Dead inside.
As Miracle Max knows, mostly dead is still slightly alive. Who knows what future civilizations will figure out in the googol years between then and now.
Too sad? Let’s wildly speculate on futuristic technologies advanced civilizations will use to outlast the heat death of the Universe or flat out cheat death and re-spark it into a whole new cycle of Universal renewal.