It Turns out, We Have a Very Well-Behaved Star

Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.
Our Sun is a Population II star about 5 billion years old. It contains elements heavier than hydrogen and helium, including oxygen, carbon, neon, and iron, though only in tiny percentags. Image: NASA/Solar Dynamics Observatory.

Should we thank our well-behaved Sun for our comfy home on Earth?

Some stars behave poorly. They’re unruly and emit powerful stellar flares that can devastate life on any planets within range of those flares. New research into stellar flares on other stars makes our Sun seem downright quiescent.

Continue reading “It Turns out, We Have a Very Well-Behaved Star”

Just How Bad are Superflares to a Planet’s Habitability?

superflare
An artist's conception of a superflare event, on a dwarf star. Image credit: Mark Garlick/University of Warwick

Star’s can be full of surprises; some of them nasty. While our own Sun appears pretty placid, science has shown us that’s not the case. Coronal mass ejections and solar flares are the Sun’s angry side.

And the Sun has only a mild case of the flares, compared to some other stars.

Continue reading “Just How Bad are Superflares to a Planet’s Habitability?”

Without a Magnetosphere, Planets Orbiting Flare Stars Don’t Stand a Chance

superflare
An artist's conception of a superflare event, on a dwarf star. Image credit: Mark Garlick/University of Warwick

Earthlings are fortunate. Our planet has a robust magnetic shield. Without out magnetosphere, the Sun’s radiation would’ve probably ended life on Earth before it even got going. And our Sun is rather tame, in stellar terms.

What’s it like for exoplanets orbiting more active stars?

Continue reading “Without a Magnetosphere, Planets Orbiting Flare Stars Don’t Stand a Chance”