New Simulation Explains how Supermassive Black Holes Grew so Quickly

Supermassive Black Hole Survey. Credit: ESA/XMM-Newton/PSU/F. Zou et al./N.Trehnl/The TNG Collaboration

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope) has been to observe the first galaxies in the Universe – those that existed at Cosmic Dawn. This period is when the first stars, galaxies, and black holes in our Universe formed, roughly 50 million to 1 billion years after the Big Bang. By examining how these galaxies formed and evolved during the earliest cosmological periods, astronomers will have a complete picture of how the Universe has changed with time.

As addressed in previous articles, the results of Webb‘s most distant observations have turned up a few surprises. In addition to revealing that galaxies formed rapidly in the early Universe, astronomers also noticed these galaxies had particularly massive supermassive black holes (SMBH) at their centers. This was particularly confounding since, according to conventional models, these galaxies and black holes didn’t have enough time to form. In a recent study, a team led by Penn State astronomers has developed a model that could explain how SMBHs grew so quickly in the early Universe.

Continue reading “New Simulation Explains how Supermassive Black Holes Grew so Quickly”

This New Map of 1.3 Million Quasars Is A Powerful Tool

This figure from the research shows the sky distribution of the new Quaia quasar catalogue in Galactic coordinates and is displayed using a Mollweide projection. The grey region across the center is the Milky Way, a blind spot in the Quaia catalogue. Image Credit: K. Storey-Fisher et al. 2024

Quasars are the brightest objects in the Universe. The most powerful ones are thousands of times more luminous than entire galaxies. They’re the visible part of a supermassive black hole (SMBH) at the center of a galaxy. The intense light comes from gas drawn toward the black hole, emitting light across several wavelengths as it heats up.

But quasars are more than just bright ancient objects. They have something important to show us about the dark matter.

Continue reading “This New Map of 1.3 Million Quasars Is A Powerful Tool”

Little Red Dots in Webb Photos Turned Out to Be Quasars

A n EIGER JWST image of the luminous quasar J1148+5251, an extremely rare active SMBH of 10 billion solar masses (blue box). Two “baby quasars” (red boxes) are seen in the same dataset. © NASA, ESA, CSA, J. Matthee (ISTA), R. Mackenzie (ETH Zurich), D. Kashino (National Observatory of Japan), S. Lilly (ETH Zurich)

In its first year of operation, the James Webb Space Telescope (JWST) made some profound discoveries. These included providing the sharpest views of iconic cosmic structures (like the Pillars of Creation), transmission spectra from exoplanet atmospheres, and breathtaking views of Jupiter, its largest moons, Saturn’s rings, its largest moon Titan, and Enceladus’ plumes. But Webb also made an unexpected find during its first year of observation that may prove to be a breakthrough: a series of little red dots in a tiny region of the night sky.

These little red dots were observed as part of Webb’s Emission-line galaxies and Intergalactic Gas in the Epoch of Reionization (EIGER) and the First Reionization Epoch Spectroscopically Complete Observations (FRESCO) surveys. According to a new analysis by an international team of astrophysicists, these dots are galactic nuclei containing the precursors of Supermassive Black Holes (SMBHs) that existed during the early Universe. The existence of these black holes shortly after the Big Bang could change our understanding of how the first SMBHs in our Universe formed.

Continue reading “Little Red Dots in Webb Photos Turned Out to Be Quasars”

Astronomers are Getting Really Good at Weighing Baby Supermassive Black Holes

Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

In the 1970s, astronomers deduced that the persistent radio source coming from the center of our galaxy was actually a supermassive black hole (SMBH). This black hole, known today as Sagittarius A*, is over 4 million solar masses and is detectable by the radiation it emits in multiple wavelengths. Since then, astronomers have found that SMBHs reside at the center of most massive galaxies, some of which are far more massive than our own! Over time, astronomers observed relationships between the properties of galaxies and the mass of their SMBHs, suggesting that the two co-evolve.

Using the GRAVITY+ instrument at the Very Large Telescope Interferometer (VLTI), a team from the Max Planck Institute for Extraterrestrial Physics (MPE) recently measured the mass of an SMBH in SDSS J092034.17+065718.0. At a distance of about 11 billion light-years from our Solar System, this galaxy existed when the Universe was just two billion years old. To their surprise, they found that the SMBH weighs in at a modest 320 million solar masses, which is significantly under-massive compared to the mass of its host galaxy. These findings could revolutionize our understanding of the relationship between galaxies and the black holes residing at their centers.

Continue reading “Astronomers are Getting Really Good at Weighing Baby Supermassive Black Holes”

Vera Rubin Will Find Binary Supermassive Black Holes. Here’s How.

A simulation of two merging black holes. Credit: Simulating eXtreme Spacetimes (SXS) Project

When galaxies merge, we expect them to produce binary black holes (BBHs.) BBHs orbit one another closely, and when they merge, they produce gravitational waves that have been detected by LIGO-Virgo. The upcoming Vera Rubin Observatory should be able to find them before they merge, which would open a whole new window into the study of galaxy mergers, supermassive black holes, binary black holes, and gravitational waves.

Continue reading “Vera Rubin Will Find Binary Supermassive Black Holes. Here’s How.”

Astronomers Precisely Measure a Black Hole's Accretion Disk

How astronomers can measure the width of an accretion disk. Credit: NOIRLab/NSF/AURA/P. Marenfeld

When you think of a black hole, you might think its defining feature is its event horizon. That point of no return not even light can escape. While it’s true that all black holes have an event horizon, a more critical feature is the disk of hot gas and dust circling it, known as the accretion disk. And a team of astronomers have made the first direct measure of one.

Continue reading “Astronomers Precisely Measure a Black Hole's Accretion Disk”

Could This Supermassive Black Hole Only Have Formed by Direct Collapse?

Artist's impression of an active supermassive black hole in the early universe. Credit: NOIRLab/NSF/AURA/J. da Silva

Nearly every galaxy in the universe contains a supermassive black hole. Even galaxies that are billions of light years away. This means supermassive black holes form early in the development of a galaxy. They are possibly even the gravitational seeds around which a galaxy forms. But astronomers are still unclear about just how these massive gravitational beasts first appeared.

Continue reading “Could This Supermassive Black Hole Only Have Formed by Direct Collapse?”

A Massive Galaxy With Almost No Dark Matter

This is an image of NGC 1277 taken by the Hubble Space Telescope. Credit: ESA/Hubble

According to our predominant cosmological models, Dark Matter accounts for roughly 85% of the mass in the Universe. While ongoing efforts to study this mysterious, invisible mass have yielded no direct evidence, astrophysicists have been able to measure its influence by observing Dark Matter Haloes, gravitational lenses, and the effect of General Relativity on large-scale cosmic structures. And with the help of next-generation missions like the ESA’s Euclid and NASA’s Nancy Grace Roman space telescopes, Dark Matter may not be a mystery for much longer!

And then something like this comes along: a massive galaxy that appears to have little or no Dark Matter! This is precisely what a team of astronomers led by members of the Instituto Astrofisica de Canarias (IAC) noticed when observing NGC 1277. This lenticular galaxy, located 240 million light-years away in the constellation Perseus, is several times more massive than the Milky Way. This is the first time a massive galaxy has been found that doesn’t show signs of Dark Matter, which is a serious challenge to our current cosmological models.

Continue reading “A Massive Galaxy With Almost No Dark Matter”

Early Black Holes Were Bigger Than We Thought

Every large galaxy in the nearby universe contains a supermassive black hole at its core. The mass of those black holes seems to have a relationship to the mass of the host galaxies themselves. But estimating the masses of more distant supermassive black holes is challenging. Astronomers extrapolate from what we know about nearby galaxies to estimate distant black hole masses, but it’s not a perfectly accurate measurement.

An astrophysicist at the University of Colorado, Boulder, Joseph Simon, recently proposed that there might be a better way to measure black hole mass, and his model indicates that early black holes may be much larger than other predictions suggest.

Continue reading “Early Black Holes Were Bigger Than We Thought”

eROSITA Sees Changes in the Most Powerful Quasar

Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva
Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva

After almost seventy years of study, astronomers are still fascinated by active galactic nuclei (AGN), otherwise known as quasi-stellar objects (or “quasars.”) These are the result of supermassive black holes (SMBHs) at the center of massive galaxies, which cause gas and dust to fall in around them and form accretion disks. The material in these disks is accelerated to close to the speed of light, causing it to release tremendous amounts of radiation in the visible, radio, infrared, ultraviolet, gamma-ray, and X-ray wavelengths. In fact, quasars are so bright that they temporarily outshine every star in their host galaxy’s disk combined.

The brightest quasar observed to date, 100,000 billion times as luminous as our Sun, is known as SMSS J114447.77-430859.3 (J1144). This AGN is hosted by a galaxy located roughly 9.6 billion light years from Earth between the constellations Centaurus and Hydra. Using data from the eROSITA All Sky Survey and other space telescopes, an international team of astronomers conducted the first X-ray observations of J1144. This data allowed the team to investigate prevailing theories about AGNs that could provide new insight into the inner workings of quasars and how they affect their host galaxies.

Continue reading “eROSITA Sees Changes in the Most Powerful Quasar”