What Happens When Galaxies Collide?

This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth's night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. (Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger)

We don’t want to scare you, but our own Milky Way is on a collision course with Andromeda, the closest spiral galaxy to our own. At some point during the next few billion years, our galaxy and Andromeda – which also happen to be the two largest galaxies in the Local Group – are going to come together, and with catastrophic consequences.

Stars will be thrown out of the galaxy, others will be destroyed as they crash into the merging supermassive black holes. And the delicate spiral structure of both galaxies will be destroyed as they become a single, giant, elliptical galaxy. But as cataclysmic as this sounds, this sort of process is actually a natural part of galactic evolution.

Astronomers have know about this impending collision for some time. This is based on the direction and speed of our galaxy and Andromeda’s. But more importantly, when astronomers look out into the Universe, they see galaxy collisions happening on a regular basis.

The Antennae galaxies. Credit: Hubble / ESA
The Antennae galaxies, a pair of interacting galaxies located 45 – 65 million light years from Earth. Credit: Hubble / ESA

Gravitational Collisions:

Galaxies are held together by mutual gravity and orbit around a common center. Interactions between galaxies is quite common, especially between giant and satellite galaxies. This is often the result of a galaxies drifting too close to one another, to the point where the gravity of the satellite galaxy will attract one of the giant galaxy’s primary spiral arms.

In other cases, the path of the satellite galaxy may cause it to intersect with the giant galaxy. Collisions may lead to mergers, assuming that neither galaxy has enough momentum to keep going after the collision has taken place. If one of the colliding galaxies is much larger than the other, it will remain largely intact and retain its shape, while the smaller galaxy will be stripped apart and become part of the larger galaxy.

Such collisions are relatively common, and Andromeda is believed to have collided with at least one other galaxy in the past. Several dwarf galaxies (such as the Sagittarius Dwarf Spheroidal Galaxy) are currently colliding with the Milky Way and merging with it.

However, the word collision is a bit of a misnomer, since the extremely tenuous distribution of matter in galaxies means that actual collisions between stars or planets is extremely unlikely.

The Atacama Large Millimeter/submillimeter Array (ALMA) and many other telescopes on the ground and in space have been used to obtain the best view yet of a collision that took place between two galaxies when the Universe was only half its current age. The astronomers enlisted the help of a galaxy-sized magnifying glass to reveal otherwise invisible detail. These new studies of the galaxy H-ATLAS J142935.3-002836 have shown that this complex and distant object looks surprisingly like the well-known local galaxy collision, the Antennae Galaxies. In this picture you can see the foreground galaxy that is doing the lensing, which resembles how our home galaxy, the Milky Way, would appear if seen edge-on. But around this galaxy there is an almost complete ring — the smeared out image of a star-forming galaxy merger far beyond. This picture combines the views from the NASA/ESA Hubble Space Telescope and the Keck-II telescope on Hawaii (using adaptive optics). Credit: ESO/NASA/ESA/W. M. Keck Observatory
Image obtained by the Hubble Space Telescope and the Keck-II telescope, showing a collision that took place billions of years ago. Credit: ESO/NASA/ESA/W. M. Keck Observatory

Andromeda–Milky Way Collision:

In 1929, Edwin Hubble revealed observational evidence which showed that distant galaxies were moving away from the Milky Way. This led him to create Hubble’s Law, which states that a galaxy’s distance and velocity can be determined by measuring its redshift – i.e. a phenomena where an object’s light is shifted toward the red end of the spectrum when it is moving away.

However, spectrographic measurements performed on the light coming from Andromeda showed that its light was shifted towards the blue end of the spectrum (aka. blueshift). This indicated that unlike most galaxies that have been observed since the early 20th century, Andromeda is moving towards us.

In 2012, researchers determined that a collision between the Milky Way and the Andromeda Galaxy was sure to happen, based on Hubble data that tracked the motions of Andromeda from 2002 to 2010. Based on measurements of its blueshift, it is estimated that Andromeda is approaching our galaxy at a rate of about 110 km/second (68 mi/s).

At this rate, it will likely collide with the Milky Way in around 4 billion years. These studies also suggest that M33, the Triangulum Galaxy – the third largest and brightest galaxy of the Local Group – will participate in this event as well. In all likelihood, it will end up in orbit around the Milky Way and Andromeda, then collide with the merger remnant at a later date.

Galactic Wrecks Far from Earth: These images from NASA's Hubble Space Telescope's ACS in 2004 and 2005 show four examples of interacting galaxies far away from Earth. The galaxies, beginning at far left, are shown at various stages of the merger process. The top row displays merging galaxies found in different regions of a large survey known as the AEGIS. More detailed views are in the bottom row of images. (Credit: NASA; ESA; J. Lotz, STScI; M. Davis, University of California, Berkeley; and A. Koekemoer, STScI)
Images from Hubble’s ACS in 2004 and 2005 show four examples of interacting galaxies (at various stages in the process) far away from Earth. Credit: NASA/ESA/J. Lotz, STScI/M. Davis, University of California, Berkeley/A. Koekemoer, STScI.

Consequences:

In a galaxy collision, large galaxies absorb smaller galaxies entirely, tearing them apart and incorporating their stars. But when the galaxies are similar in size – like the Milky Way and Andromeda – the close encounter destroys the spiral structure entirely. The two groups of stars eventually become a giant elliptical galaxy with no discernible spiral structure.

Such interactions can also trigger a small amount of star formation. When the galaxies collide, it causes vast clouds of hydrogen to collect and become compressed, which can trigger a series of gravitational collapses. A galaxy collision also causes a galaxy to age prematurely, since much of its gas is converted into stars.

After this period of rampant star formation, galaxies run out of fuel. The youngest hottest stars detonate as supernovae, and all that’s left are the older, cooler red stars with much longer lives. This is why giant elliptical galaxies, the results of galaxy collisions, have so many old red stars and very little active star formation.

Despite the Andromeda Galaxy containing about 1 trillion stars and the Milky Way containing about 300 billion, the chance of even two stars colliding is negligible because of the huge distances between them. However, both galaxies contain central supermassive black holes, which will converge near the center of the newly-formed galaxy.

Two galaxies are squaring off in Corvus and here are the latest pictures.. Credit: B. Whitmore (STScI), F. Schweizer (DTM), NASA
Two galaxies colliding in the Corvus constellation. Credit: B. Whitmore (STScI), F. Schweizer (DTM),

This black hole merger will cause orbital energy to be transferred to stars, which will be moved to higher orbits over the course of millions of years. When the two black holes come within a light year of one another, they will emit gravitational waves that will radiate further orbital energy, until they merge completely.

Gas taken up by the combined black hole could create a luminous quasar or an active nucleus to form at the center of the galaxy. And last, the effects of a black hole merger could also kick stars out of the larger galaxy, resulting in hypervelocity rogue stars that could even carry their planets with them.

Today, it is understood that galactic collisions are a common feature in our Universe. Astronomy now frequently simulate them on computers, which realistically simulate the physics involved – including gravitational forces, gas dissipation phenomena, star formation, and feedback.

And be sure to check out this video of the impending galactic collision, courtesy of NASA:

We have written many articles about galaxies for Universe Today. Here’s What is Galactic Cannibalism?, Watch Out! Galactic Collisions Could Snuff Out Star Formation, New Hubble Release: Dramatic Galaxy Collision, A Virtual Galactic Smash-Up!, It’s Inevitable: Milky Way, Andromeda Galaxy Heading for Collision, A Cosmic Collision: Our Best View Yet of Two Distant Galaxies Merging, and Determining the Galaxy Collision Rate.

If you’d like more info on galaxies, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

We have also recorded an episode of Astronomy Cast about galaxies – Episode 97: Galaxies.

Sources:

Supermassive Black Holes In Distant Galaxies Are Mysteriously Aligned

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech
A team of astronomers from South Africa have noticed a series of supermassive black holes in distant galaxies that are all spinning in the same direction. Credit: NASA/JPL-Caltech

In 1974, astronomers detected a massive source of radio wave emissions coming from the center of our galaxy. Within a few decades time, it was concluded that the radio wave source corresponded to a particularly large, spinning black hole. Known as Sagittarius A, this particular black hole is so large that only the designation “supermassive” would do. Since its discovery, astronomers have come to conclude that supermassive black holes (SMBHs) lie at the center of almost all of the known massive galaxies.

But thanks to a recent radio imaging by a team of researchers from the University of Cape Town and University of the Western Cape, in South Africa, it has been further determined that in a region of the distant universe, the SMBHs are all spinning out radio jets in the same direction. This finding, which shows an alignment of the jets of galaxies over a large volume of space, is the first of its kind, and could tell us much about the early Universe.

Continue reading “Supermassive Black Holes In Distant Galaxies Are Mysteriously Aligned”

Are Supermassive Black Holes Hiding Matter?

Illustris simulation, showing the distribution of dark matter in 350 million by 300,000 light years. Galaxies are shown as high-density white dots (left) and as normal, baryonic matter (right). Credit: Markus Haider/Illustris

Mapping the Universe with satellites and ground-based observatories have not only provided scientists with a pretty good understanding of its structure, but also of its composition. And for some time now, they have been working with a model that states that the Universe consists of 4.9% “normal” matter (i.e. that which we can see), 26.8% “dark matter” (that which we can’t), and 68.3% “dark energy”.

From what they have observed, scientists have also concluded that the normal matter in the Universe is concentrated in web-like filaments, which make up about 20% of the Universe by volume. But a recent study performed by the Institute of Astro- and Particle Physics at the University of Innsbruck in Austria has found that a surprising amount of normal matter may live in the voids, and that black holes may have deposited it there.

In a paper submitted to the Royal Astronomical Society, Dr. Haider and his team described how they performed measurements of the mass and volume of the Universe’s filamentary structures to get a better idea of where the Universe’s mass is located. To do this, they used data from the Illustris project – a large computer simulation of the evolution and formation of galaxies.

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

As an ongoing research project run by an international collaboration of scientists (and using supercomputers from around the world), Illustris has created the most detailed simulations of our Universe to date. Beginning with conditions roughly 300,000 years after the Big Bang, these simulations track how gravity and the flow of matter changed the structure of the cosmos up to the present day, roughly 13.8 billion years later.

The process begins with the supercomputers simulating a cube of space in the universe, which measures some 350 million light years on each side. Both normal and dark matter are dealt with, particularly the gravitational effect that dark matter has on normal matter. Using this data, Haider and his team noticed something very interesting about the distribution of matter in the cosmos.

Essentially, they found that about 50% of the total mass of the Universe is compressed into a volume of 0.2%, consisting of the galaxies we see. A further 44% is located in the enveloping filaments, consisting of gas particles and dust. The remaining 6% is located in the empty spaces that fall between them (aka. the voids), which make up 80% of the Universe.

However, a surprising faction of this normal matter (20%) appears to have been transported there, apparently by the supermassive black holes located at the center of galaxies. The method for this delivery appears to be in how black holes convert some of the matter that regularly falls towards them into energy, which is then delivered to the sounding gas, leading to large outflows of matter.

This artist's concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. Image credit: NASA/JPL-Caltech
Artist’s impression of a supermassive black holes at the hearts of a galaxy. Credit: NASA/JPL-Caltech

These outflows stretch for hundreds of thousands of lights years beyond the host galaxy, filling the void with invisible mass. As Dr. Haider explains, these conclusions supported by this data are rather startling. “This simulation,” he said, “one of the most sophisticated ever run, suggests that the black holes at the center of every galaxy are helping to send matter into the loneliest places in the universe. What we want to do now is refine our model, and confirm these initial findings.”

The findings are also significant because they just may offer an explanation to the so-called “missing baryon problem”. In short, this problem describes how there is an apparent discrepancy between our current cosmological models and the amount of normal matter we can see in the Universe. Even when dark matter and dark energy are factored in, half of the remaining 4.9% of the Universe’s normal matter still remains unaccounted for.

For decades, scientists have been working to find this “missing matter”, and several suggestions have been made as to where it might be hiding. For instance, in 2011, a team of students at the Monash School of Physics in Australia confirming that some of it was in the form of low-density, high energy matter that could only be observed in the x-ray wavelength.

In 2012, using data from the Chandra X-ray Observatory, a NASA research team reported that our galaxy, and the nearby Large and Small Magellanic Clouds, were surrounded by an enormous halo of hot gas that was invisible at normal wavelengths. These findings indicated that all galaxies may be surrounded by mass that, while not visible to the naked eye, is nevertheless detectable using current methods.

And just days ago, researchers from the Commonwealth Scientific and Industrial Research Organization (CSIRO) described how they had used fast radio bursts (FRBs) to measure the density of cosmic baryons in the intergalactic medium – which yielded results that seem to indicate that our current cosmological models are correct.

Factor in all the mass that is apparently being delivered to the void by supermassive black holes, and it could be that we finally have a complete inventory of all the normal matter of the Universe. This is certainly an exciting prospect, as it means that one of the greatest cosmological mysteries of our time could finally be solved.

Now if we could just account for the “abnormal” matter in the Universe, and all that dark energy, we’d be in business!

Further Reading: Royal Astronomical Society

Will Minds Appear in the Cosmos?

Will Minds Appear in the Cosmos?

One of the interesting consequences of quantum theory is that particles can randomly appear in the cosmos, and if you wait long enough, conscious minds and maybe even whole new Universes. Welcome to the baffling concept of Boltzmann brains.

We blow minds here on Guide to Space.

All we want is for you to start watching, especially on a topic that you knew something about. And then you say “whoa…” when you realize the cosmic scope of an idea, like black holes, gamma ray bursts, or the Fermi Paradox.

Today, I think some kind of warning is in order. We’re going to blow your mind so thoroughly, that you’re going to be a hollowed out shell for the next few days. You’ll going to stumble around, glassy-eyed, in an almost catatonic state as you contemplate the humbling awesomeness of the Universe.

Let’s start with a familiar landscape, the implications of infinite time and space. The Universe might be infinite in space. Once you’re talking about infinity, a lot of strange ideas join the party over at Prismo’s.

Even if the Universe isn’t infinite in space it’ll most likely be infinite in time, expanding at an accelerating pace thanks to the leftover momentum from the Big Bang and dark energy. One way or another, there’s infinity in play. Thanks to quantum mechanics, the Universe is all about probabilities.

The air inside your living room is most likely going to remain evenly spaced, so you can breathe it and stay conscious. But there’s a teeny, tiny chance. A chance so small, that it’s not worth considering, that all the atoms of air in the room will spontaneously shift their position into one tiny corner, or maybe to the Andromeda Galaxy. The chances are small, it’ll practically never happen.

Once you’re dealing with forever, however, almost never, means sometimes always. You can imagine a situation, in an incomprehensible amount of time where quantum fluctuations spontaneously generate a hydrogen atom, floating in space, or perhaps a sperm whale or potted petunias.

We’re talking a seriously long amount of time. Long after all the stars have used up their hydrogen and died. Long after even the most supermassive black holes have evaporated away. If you could wait long enough, these quantum fluctuations would just pop things into existence.

One of the most compelling ideas is the concept of a Boltzmann Brain, named after the physicist Ludwig Boltzmann. It’s possible that entire, fully conscious minds could appear randomly in the cosmos. Keep rolling the dice for an infinite amount of time, and eventually, you’re going to get that Paladin with 18 charisma, 18 strength and a dreamy voice like Patrick Stewart.

The chances of this are 10 to the power of 10 to the power of 50. That’s a huge huge number. Trust me, you’re going to need more pencils to even write it out. Actually, you could turn every atom of the Universe into a pencil and it wouldn’t be enough.

Just imagine what it would be like to be that self-aware conscious entity that suddenly appeared floating in a completely empty cosmos, contemplating the mystery and wonder of all that vast nothingness. Perhaps it’s just a bunch of telepathic screaming because one thing this particular brain was missing was the ability to survive in a vacuum.

A binary star system Credit: Michael Osadciw/University of Rochester
A binary star system Credit: Michael Osadciw/University of Rochester

Now, then imagine an entire planet, orbiting a sun-like star, filled with human beings and other life. Again, that number is even more incomprehensibly small, but it’s not zero. And so, in a Universe of infinite space, those things are popping up an infinite number of times, and in infinite time, it’ll happen an infinite number of times.

And now, I shall deliver the final mind bending blow. Imagine you took all the particles and energy in the entire Universe. All the protons, photons, neutrons and hadrons. There’s a tiny, tiny chance that all those particles could suddenly appear in an infinitely dense region of space, and undergo a rapid expansion.

In other words, it’s possible that another Big Bang could spontaneously appear in an infinite amount of time. How long? Physicist Sean Carroll has done the math. You’d just need to wait 10 to the power of 10 to the power of 10 to the power of 56 years for it to happen.

It’s a long time, but it’s not forever. So, in an infinite amount of time, you’ll get an infinite number of Big Bangs, spontaneously appearing in a finite Universe. Or an infinite number of Big Bangs happening all the time in an infinite Universe.

I’d drop my mic now, but it’s sort of clipped onto my shirt here. So imagine that’s what I just did.

Can’t wrap your mind around these ideas? Don’t worry, just wait a nearly infinite amount of time, and a better version of me will spontaneously appear to explain them a little better. Thanks infinity.

We love to bend minds here at the Guide to Space. What ideas should we talk about next? Post your suggestions in the comments!

What Are The Biggest Mysteries in Astronomy?

What Are The Biggest Mysteries in Astronomy?

Black Holes? Dark Energy? Dark Matter? Alien Life? What are the biggest mysteries that still exist out there for us to figure out?

“The more I learn, the more I realize how much I don’t know.” These are the words of Albert Einstein. I assume he was talking about Minecraft, but I guess it applies to the Universe too.

There are many examples: astronomers try to discover the rate of the expansion of the Universe, and learn a dark energy is accelerating its expansion. NASA’s Cassini spacecraft finally images Saturn’s moon Iapetus, and finds a strange equatorial ridge – how the heck did that get there? Did the Celestials forget to trim it when it came out of the packaging?

There have always been, and, let’s go as far as to say that there always will be, mysteries in astronomy. Although the nature of the mysteries may change, the total number is always going up.

Hundreds of years ago, people wanted to know how the planets moved through sky (conservation of angular momentum), how old the Earth was (4.54 billion years), or what kept the Moon from flying off into space (gravity). Just a century ago, astronomers weren’t sure what galaxies were (islands of stars), or how the Sun generated energy (nuclear fusion). And just a few decades ago, we didn’t know what caused quasars (feeding supermassive black holes), or how old the Universe was (13.8 billion years). Each of these mysteries has been solved, or at least, we’ve a got a pretty good understanding of what’s going on.

Science continues to explore and seek answers to the mysteries we have, and as it does it opens up new brand doors. Fortunately for anyone who’s thinking of going into astronomy as a career, there are a handful of really compelling mysteries to explore right now:

Is the Universe finite or infinite? We can see light that left shortly after the Big Bang, 13.8 billion years in all directions. And the expansion of the Universe has carried these regions more than 45 billion light-years away from us. But the Universe is probably much larger than that, and may be even infinite.

Images from the Hubble Space Telescope showing a gravitational lensing effect. Credit: NASA/ESA.
Images from the Hubble Space Telescope showing a gravitational lensing effect. Credit: NASA/ESA.

What is dark matter? Thanks to gravitational lensing, astronomers can perceive vast halos of invisible material around all galaxies. But what is this stuff, and why doesn’t it interact with any other matter?

What is dark energy? When trying to discover the expansion rate of the Universe, astronomers discovered that the expansion is actually accelerating? Why is this happening? Is something causing this force, or do we just not understand gravity at the largest scales?

There are supermassive black holes at the heart of pretty much every galaxy. Did these supermassive black holes form first, and then the galaxies around them? Or was it the other way around?

The Big Bang occurred 13.8 billion years ago, and the expansion of the Universe has continued ever since. But what came before the Big Bang? In fact, what even caused the Big Bang? Has it been Big Bangs over and over again?

The Universe 590 million years after the Big Bang. Credit: Alvaro Orsi, Institute for Computational Cosmology, Durham University.
The Universe 590 million years after the Big Bang. Credit: Alvaro Orsi, Institute for Computational Cosmology, Durham University.

Are we alone in the Universe? Is there life on any other world or star system? And is anyone out there we could talk to?

Shortly after the Big Bang, incomprehensible amounts of matter and antimatter annihilated each other. But for some reason, there was a slightly higher ratio of matter – and so we have a matter dominated Universe. Why?

Is this the only Universe? Is there a multiverse of universes out there? How do I get to the Whedonverse?

In the distant future, after all the stars are dead and gone, maybe protons themselves will decay and there will be nothing left but energy. Physicists haven’t been able to catch a proton decaying yet. Will the ever?

And these are just some of the big ones. There are hundreds, thousands, millions of unanswered questions. The more we learn, the more we discover how little we actually understand.

Whenever we do a video about concepts in astronomy where we have a basic understanding, like gravity, evolution, or the Big Bang, trolls show up and say that scientists are so arrogant. That they think they know everything. But scientists don’t know everything, and they’re willing to admit when something is a mystery. When the answer to the question is: I don’t know.

What’s your favorite unanswered question in space and astronomy? Give us your best mystery in the comments below.

Could the Milky Way Become a Quasar?

Could the Milky Way Become a Quasar?

There’s a supermassive black hole in the center of our Milky Way galaxy. Could this black hole become a Quasar?

Previously, we answered the question, “What is a Quasar”. If you haven’t watched that one yet, you might want to pause this video and click here. … or you could bravely plow on ahead because you already know or because clicking is hard.

Should you fall in the latter category. I’m here to reward your laziness. A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions of light-years away.

Our Milky Way is a galaxy, it has a supermassive black hole at the core. Could this black hole feed on material and become a quasar? Quasars are actually very rare events in the life of a galaxy, and they seem to happen early on in a galaxy’s evolution, when it’s young and filled with gas.

Normally material in the galactic disk orbits well away from the the supermassive black hole, and it’s starved for material. The occasional gas cloud or stray star gets too close, is torn apart, and we see a brief flash as it’s consumed. But you don’t get a quasar when a black hole is snacking on stars. You need a tremendous amount of material to pile up, so it’s chokes on all the gas, dust, planets and stars. An accretion disk grows; a swirling maelstrom of material bigger than our Solar System that’s as hot as a star. This disk creates the bright quasar, not the black hole itself.

Quasars might only happen once in the lifetime of a galaxy. And if it does occur, it only lasts for a few million years, while the black hole works through all the backed up material, like water swirling around a drain. Once the black hole has finished its “stuff buffet”, the accretion disk disappears, and the light from the quasar shuts off.

Sounds scary. According to New York University research scientist Gabe Perez-Giz, even though a quasar might be emitting more than 100 trillion times as much energy as the Sun, we’re far enough away from the core of the Milky Way that we would receive very little of it – like, one hundredth of a percent of the intensity we get from the Sun.

This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA
This annotated artist’s conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA

Since the Milky Way is already a middle aged galaxy, its quasaring days are probably long over. However, there’s an upcoming event that might cause it to flare up again. In about 4 billion years, Andromeda is going to cuddle with the Milky Way, disrupting the cores of both galaxies. During this colossal event, the supermassive black holes in our two galaxies will interact, messing with the orbits of stars, planets, gas and dust.

Some will be thrown out into space, while others will be torn apart and fed to the black holes. And if enough material piles up, maybe our Milky Way will become a quasar after all. Which as I just mentioned, will be totally harmless to us. The galactic collision? Well that’s another story.

It’s likely our Milky Way already was a quasar, billions of years ago. And it might become one again billions of years from now. And that’s interesting enough that I think we should stick around and watch it happen. How do you feel about the prospects for our Milky Way becoming a quasar? Are you a little nervous by an event that won’t happen for another 4 billion years?

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Damon Reith and Jay Allbright, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

10 Amazing Facts About Black Holes

An artists illustration of the central engine of a Quasar. These "Quasi-stellar Objects" QSOs are now recognized as the super massive black holes at the center of emerging galaxies in the early Universe. (Photo Credit: NASA)

Imagine matter packed so densely that nothing can escape. Not a moon, not a planet and not even light. That’s what black holes are — a spot where gravity’s pull is huge, ending up being dangerous for anything that accidentally strays by. But how did black holes come to be, and why are they important? Below we have 10 facts about black holes — just a few tidbits about these fascinating objects.

Fact 1: You can’t directly see a black hole.

Because a black hole is indeed “black” — no light can escape from it — it’s impossible for us to sense the hole directly through our instruments, no matter what kind of electromagnetic radiation you use (light, X-rays, whatever.) The key is to look at the hole’s effects on the nearby environment, points out NASA. Say a star happens to get too close to the black hole, for example. The black hole naturally pulls on the star and rips it to shreds. When the matter from the star begins to bleed toward the black hole, it gets faster, gets hotter and glows brightly in X-rays.

Fact 2: Look out! Our Milky Way likely has a black hole.

A natural next question is given how dangerous a black hole is, is Earth in any imminent danger of getting swallowed? The answer is no, astronomers say, although there is probably a huge supermassive black hole lurking in the middle of our galaxy. Luckily, we’re nowhere near this monster — we are about two-thirds of the way out from the center, relative to the rest of our galaxy — but we can certainly observe its effects from afar. For example: the European Space Agency says it’s four million times more massive than our Sun, and that it’s surrounded by surprisingly hot gas.

Sagittarius A in infrared (red and yellow, from the Hubble Space Telescope) and X-ray (blue, from the Chandra space telescope). Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI
Sagittarius A in infrared (red and yellow, from the Hubble Space Telescope) and X-ray (blue, from the Chandra space telescope). Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

Fact 3: Dying stars create stellar black holes.

Say you have a star that’s about 20 times more massive than the Sun. Our Sun is going to end its life quietly; when its nuclear fuel burns out, it’ll slowly fade into a white dwarf. That’s not the case for far more massive stars. When those monsters run out of fuel, gravity will overwhelm the natural pressure the star maintains to keep its shape stable. When the pressure from nuclear reactions collapses, according to the Space Telescope Science Institute, gravity violently overwhelms and collapses the core and other layers are flung into space. This is called a supernova. The remaining core collapses into a singularity — a spot of infinite density and almost no volume. That’s another name for a black hole.

Fact 4: Black holes come in a range of sizes.

There are at least three types of black holes, NASA says, ranging from relative squeakers to those that dominate a galaxy’s center. Primordial black holes are the smallest kinds, and range in size from one atom’s size to a mountain’s mass. Stellar black holes, the most common type, are up to 20 times more massive than our own Sun and are likely sprinkled in the dozens within the Milky Way. And then there are the gargantuan ones in the centers of galaxies, called “supermassive black holes.” They’re each more than one million times more massive than the Sun. How these beasts formed is still being examined.

A binary black hole system, viewed from above. Image Credit: Bohn et al. (see http://arxiv.org/abs/1410.7775)
A binary black hole system, viewed from above. Credit: Bohn et al. (see http://arxiv.org/abs/1410.7775)

Fact 5: Weird time stuff happens around black holes.

This is best illustrated by one person (call them Unlucky) falling into a black hole while another person (call them Lucky) watches. From Lucky’s perspective, Unlucky’s time clock appears to be ticking slower and slower. This is in accordance with Einstein’s theory of general relativity, which (simply put) says that time is affected by how fast you go, when you’re at extreme speeds close to light. The black hole warps time and space so much that Unlucky’s time appears to be running slower. From Unlucky’s perspective, however, their clock is running normally and Lucky’s is running fast.

Fact 6: The first black hole wasn’t discovered until X-ray astronomy was used.

Cygnus X-1 was first found during balloon flights in the 1960s, but wasn’t identified as a black hole for about another decade. According to NASA, the black hole is 10 times more massive to the Sun. Nearby is a blue supergiant star that is about 20 times more massive than the Sun, which is bleeding due to the black hole and creating X-ray emissions.

Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)
Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. Credit: NASA/CXC/M.Weiss

Fact 7: The nearest black hole is likely not 1,600 light-years away.

An erroneous measurement of V4641 Sagitarii led to a slew of news reports a few years back saying that the nearest black hole to Earth is astoundingly close, just 1,600 light-years away. Not close enough to be considered dangerous, but way closer than thought. Further research, however, shows that the black hole is likely further away than that. Looking at the rotation of its companion star, among other factors, yielded a 2014 result of more than 20,000 light years.

Fact 8: We aren’t sure if wormholes exist.

A popular science-fiction topic concerns what happens if somebody falls into a black hole. Some people believe these objects are a sort of wormhole to other parts of the Universe, making faster-than-light travel possible. But as this Smithsonian Magazine article points out, anything is possible since we still have a lot to figure out about physics. “Since we do not yet have a theory that reliably unifies general relativity with quantum mechanics, we do not know of the entire zoo of possible spacetime structures that could accommodate wormholes,” said Abi Loeb, who is with the Harvard-Smithsonian Center for Astrophysics.

Diagram of a wormhole, or theoretical shortcut path between two locations in the universe. Credit: Wikipedia
Diagram of a wormhole, or theoretical shortcut path between two locations in the universe. Credit: Wikipedia

Fact 9: Black holes are only dangerous if you get too close.

Like creatures behind a cage, it’s okay to observe a black hole if you stay away from its event horizon — think of it like the gravitational field of a planet. This zone is the point of no return, when you’re too close for any hope of rescue. But you can safely observe the black hole from outside of this arena. By extension, this means it’s likely impossible for a black hole to swallow up everything in the Universe (barring some sort of major revision to physics or understanding of our Cosmos, of course.)

Fact 10: Black holes are used all the time in science fiction.

There are so many films and movies using black holes, for example, that it’s impossible to list them all. Interstellar‘s journeys through the universe includes a close-up look at a black hole. Event Horizon explores the phenomenon of artificial black holes — something that is also discussed in the Star Trek universe. Black holes are also talked about in Battlestar: Galactica, Stargate: SG1 and many, many other space shows.

Here on Universe Today we have a great article about a practical use for black holes: as spacecraft engines. No one can get to a black hole without space travel. Astronomy Cast offers a good episode about interstellar travel.

When Two Supermassive Black Holes Merge, It’s a Galactic Train Wreck

An artist's conception of a black hole binary in a heart of a quasar, with the data showing the periodic variability superposed. Credit: Santiago Lombeyda/Caltech Center for Data-Driven Discovery

Most large galaxies harbor central supermassive black holes with masses equivalent to millions, or even billions, of Suns. Some, like the one in the center of the Milky Way Galaxy, lie quiet. Others, known as quasars, chow down on so much gas they outshine their host galaxies and are even visible across the Universe.

Although their brilliant light varies across all wavelengths, it does so randomly — there’s no regularity in the peaks and dips of brightness. Now Matthew Graham from Caltech and his colleagues have found an exception to the rule.

Quasar PG 1302-102 shows an unusual repeating light signature that looks like a sinusoidal curve. Astronomers think hidden behind the light are two supermassive black holes in the final phases of a merger — something theoretically predicted but never before seen. If the theory holds, astronomers might be able to witness two black holes en route to a collision of incredible scale.

The light curve combines data from two CRTS telescopes (CSS and MLS) with historical data from the LINEAR and ASAS surveys, and the literature15, 16 (see Methods for details). The error bars represent one standard deviation errors on the photometry values. The red dashed line indicates a sinusoid with period 1,884 days and amplitude 0.14 mag. The uncertainty in the measured period is 88 days. Note that this does not reflect the expected shape of the periodic waveform, which will depend on the physical properties of the system. MJD, modified Julian day. Image Credit: Graham et al.
The light curve combines data from two CRTS telescopes (CSS and MLS) with historical data from the LINEAR and ASAS surveys. Image Credit: Graham et al.

Graham and his colleagues discovered the unusual quasar on a whim. They were aiming to study quasar variability using the Catalina Real-Time Transient Survey (CRTS), which uses three ground-based telescopes to monitor some 500 million objects strewn across 80 percent of the sky, when 20 or so periodic sources popped up.

Of those 20 periodic quasars, PG 1302-102 was the most promising. It had a strong signal that appeared to repeat every five years or so. But what causes the repeating signal?

The black holes that power quasars do not emit light. Instead the light originates from the hot accretion disk that feeds the black hole. Orbiting clouds of gas, which are heated and ionized by the disk, also contribute in the form of visible emission lines.

“When you look at the emission lines in a spectrum from an object, what you’re really seeing is information about speed — whether something is moving toward you or away from you and how fast. It’s the Doppler effect,” said study coauthor Eilat Glikman from Middlebury College in Vermont, in a news release. “With quasars, you typically have one emission line, and that line is a symmetric curve. But with this quasar, it was necessary to add a second emission line with a slightly different speed than the first one in order to fit the data. That suggests something else, such as a second black hole, is perturbing this system.”

So a tight supermassive black hole binary is the most likely explanation for this oddly periodic quasar.

“Until now, the only known examples of supermassive black holes on their way to a merger have been separated by tens or hundreds of thousands of light years,” said study coauthor Daniel Stern from NASA’s Jet Propulsion Laboratory. “At such vast distances, it would take many millions, or even billions, of years for a collision and merger to occur. In contrast, the black holes in PG 1302-102 are, at most, a few hundredths of a light year apart and could merge in about a million years or less.”

But astronomers remain unsure about what physical mechanism is responsible for the quasar’s repeating light signal. It’s possible that one quasar is funneling material from its accretion disk into jets, which are rotating like beams from a lighthouse. Or perhaps a portion of the accretion disk itself is thicker than the rest, causing light to be blocked at certain spots in its orbit. Or maybe the accretion disk is dumping material onto the black hole in a regular fashion, causing periodic bursts of energy.

“Even though there are a number of viable physical mechanisms behind the periodicity we’re seeing — either the precessing jet, warped accretion disk or periodic dumping — these are all still fundamentally caused by a close binary system,” said Graham.

Astronomers still don’t have a good handle on what happens in the final few light-years of a black hole merger. And of course these two black holes still won’t collide for thousands to millions of years. Even watching for the period to shorten as they spiral inward would dwarf human timescales. But the discovery of a system so late in the game proves promising for future work.

The results have been published in Nature.

10 Interesting Facts About the Milky Way

Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.
Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.

The Milky Way Galaxy is an immense and very interesting place. Not only does it measure some 120,000–180,000 light-years in diameter, it is home to planet Earth, the birthplace of humanity. Our Solar System resides roughly 27,000 light-years away from the Galactic Center, on the inner edge of one of the spiral-shaped concentrations of gas and dust particles called the Orion Arm.

But within these facts about the Milky Way lie some additional tidbits of information, all of which are sure to impress and inspire. Here are ten such facts, listed in no particular order:

1. It’s Warped:

For starters, the Milky Way is a disk about 120,000 light years across with a central bulge that has a diameter of 12,000 light years (see the Guide to Space article for more information). The disk is far from perfectly flat though, as can be seen in the picture below. In fact, it is warped in shape, a fact which astronomers attribute to the our galaxy’s two neighbors -the Large and Small Magellanic clouds.

These two dwarf galaxies — which are part of our “Local Group” of galaxies and may be orbiting the Milky Way — are believed to have been pulling on the dark matter in our galaxy like in a game of galactic tug-of-war. The tugging creates a sort of oscillating frequency that pulls on the galaxy’s hydrogen gas, of which the Milky Way has lots of (for more information, check out How the Milky Way got its Warp).

The Spiral Galaxy ESO 510-13 is warped similar to our own. Credit: NASA/Hubble Heritage Team (STScI / AURA), C. Conselice (U. Wisconsin / STScI/ NASA
The warp of Spiral Galaxy ESO 510-13 is similar to that of our own. Credit: NASA/Hubble

2. It Has a Halo, but You Can’t Directly See It:

Scientists believe that 90% of our galaxy’s mass consists of dark matter, which gives it a mysterious halo. That means that all of the “luminous matter” – i.e. that which we can see with the naked eye or a telescopes – makes up less than 10% of the mass of the Milky Way. Its halo is not the conventional glowing sort we tend to think of when picturing angels or observing comets.

In this case, the halo is actually invisible, but its existence has been demonstrated by running simulations of how the Milky Way would appear without this invisible mass, and how fast the stars inside our galaxy’s disk orbit the center.

The heavier the galaxy, the faster they should be orbiting. If one were to assume that the galaxy is made up only of matter that we can see, then the rotation rate would be significantly less than what we observe. Hence, the rest of that mass must be made up of an elusive, invisible mass – aka. “dark matter” – or matter that only interacts gravitationally with “normal matter”.

To see some images of the probable distribution and density of dark matter in our galaxy, check out The Via Lactea Project.

3. It has Over 200 Billion Stars:

As galaxies go, the Milky Way is a middleweight. The largest galaxy we know of, which is designated IC 1101, has over 100 trillion stars, and other large galaxies can have as many as a trillion. Dwarf galaxies such as the aforementioned Large Magellanic Cloud have about 10 billion stars. The Milky Way has between 100-400 billion stars; but when you look up into the night sky, the most you can see from any one point on the globe is about 2,500. This number is not fixed, however, because the Milky Way is constantly losing stars through supernovae, and producing new ones all the time (about seven per year).

These images taken by the Spitzer Space Telescope show the dust and gas concentrations around a supernova. Credit: NASA/JPL-Caltech
These images taken by the Spitzer Space Telescope show dust and gas concentrations around a distant supernova. Credit: NASA/JPL-Caltech

4. It’s Really Dusty and Gassy:

Though it may not look like it to the casual observer, the Milky Way is full of dust and gas. This matter makes up a whopping 10-15% of the luminous/visible matter in our galaxy, with the remainder being the stars. Our galaxy is roughly 100,000 light years across, and we can only see about 6,000 light years into the disk in the visible spectrum. Still, when light pollution is not significant, the dusty ring of the Milky Way can be discerned in the night sky.

The thickness of the dust deflects visible light (as is explained here) but infrared light can pass through the dust, which makes infrared telescopes like the Spitzer Space Telescope extremely valuable tools in mapping and studying the galaxy. Spitzer can peer through the dust to give us extraordinarily clear views of what is going on at the heart of the galaxy and in star-forming regions.

5. It was Made From Other Galaxies:

The Milky Way wasn’t always as it is today – a beautiful, warped spiral. It became its current size and shape by eating up other galaxies, and is still doing so today. In fact, the Canis Major Dwarf Galaxy is the closest galaxy to the Milky Way because its stars are currently being added to the Milky Way’s disk. And our galaxy has consumed others in its long history, such as the Sagittarius Dwarf Galaxy.

6. Every Picture You’ve Seen of the Milky Way Isn’t It:

Currently, we can’t take a picture of the Milky Way from above. This is due to the fact that we are inside the galactic disk, about 26,000 light years from the galactic center. It would be like trying to take a picture of your own house from the inside. This means that any of the beautiful pictures you’ve ever seen of a spiral galaxy that is supposedly the Milky Way is either a picture of another spiral galaxy, or the rendering of a talented artist.

Artist's concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL
Artist’s concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL-Caltech

Imaging the Milky Way from above is a long, long way off. However, this doesn’t mean that we can’t take breathtaking images of the Milky Way from our vantage point!

7. There is a Black Hole at the Center:

Most larger galaxies have a supermassive black hole (SMBH) at the center, and the Milky Way is no exception. The center of our galaxy is called Sagittarius A*, a massive source of radio waves that is believed to be a black hole that measures 22,5 million kilometers (14 million miles) across – about the size of Mercury’s orbit. But this is just the black hole itself.

All of the mass trying to get into the black hole – called the accretion disk – forms a disk that has 4.6 million times the mass of our Sun and would fit inside the orbit of the Earth. Though like other black holes, Sgr A* tries to consume anything that happens to be nearby, star formation has been detected near this behemoth astronomical phenomenon.

8. It’s Almost as Old as the Universe Itself:

The most recent estimates place the age of the Universe at about 13.7 billion years. Our Milky Way has been around for about 13.6 billion of those years, give or take another 800 million. The oldest stars in our the Milky Way are found in globular clusters, and the age of our galaxy is determined by measuring the age of these stars, and then extrapolating the age of what preceded them.

Though some of the constituents of the Milky Way have been around for a long time, the disk and bulge themselves didn’t form until about 10-12 billion years ago. And that bulge may have formed earlier than the rest of the galaxy.

9. It’s Part of the Virgo Supercluster:

As big as it is, the Milky Way is part of an even larger galactic structures. Our closest neighbors include the Large and Small Magellanic Clouds, and the Andromeda Galaxy – the closest spiral galaxy to the Milky Way. Along with some 50 other galaxies, the Milky Way and its immediate surroundings make up a cluster known as the Local Group.

A mosaic of telescopic images showing the galaxies of the Virgo Supercluster. Credit: NASA/Rogelio Bernal Andreo
A mosaic of telescopic images showing the galaxies of the Virgo Supercluster. Credit: NASA/Rogelio Bernal Andreo

And yet, this is still just a small fraction of our stellar neighborhood. Farther out, we find that the Milky Way is part of an even larger grouping of galaxies known as the Virgo Supercluster. Superclusters are groupings of galaxies on very large scales that measure in the hundreds of millions of light years in diameter. In between these superclusters are large stretches of open space where intrepid explorers or space probes would encounter very little in the way of galaxies or matter.

In the case of the Virgo Supercluster, at least 100 galaxy groups and clusters are located within it massive 33 megaparsec (110 million light-year) diameter. And a 2014 study indicates that the Virgo Supercluster is only a lobe of a greater supercluster, Laniakea, which is centered on the Great Attractor.

10. It’s on the move:

The Milky Way, along with everything else in the Universe, is moving through space. The Earth moves around the Sun, the Sun around the Milky Way, and the Milky Way as part of the Local Group, which is moving relative to the Cosmic Microwave Background (CMB) radiation – the radiation left over from the Big Bang.

The CMB is a convenient reference point to use when determining the velocity of things in the universe. Relative to the CMB, the Local Group is calculated to be moving at a speed of about 600 km/s, which works out to about 2.2 million km/h. Such speeds stagger the mind and squash any notions of moving fast within our humble, terrestrial frame of reference!

We have written many interesting articles about the Milky Way for Universe Today. Here’s 10 Interesting Facts about the Milky Way, How Big is the Milky Way?, What is the Closest Galaxy to the Milky Way?, and How Many Stars Are There in the Milky Way?

For many more facts about the Milky Way, visit the Guide to Space, listen to the Astronomy Cast episode on the Milky Way, or visit the Students for the Exploration and Development of Space at seds.org.