X-ray Burst May Be the First Sign of a Supernova

GRB 080913, a distant supernova detected by Swift. This image merges the view through Swift’s UltraViolet and Optical Telescope, which shows bright stars, and its X-ray Telescope. Credit: NASA/Swift/Stefan Immler

The first moments of a massive star going supernova may be heralded by a blast of x-rays, detectable by space telescopes like Swift, which could then tell astronomers where to look for the full show in gamma rays and optical wavelengths. These findings come from the University of Leicester in the UK where a research team was surprised by the excess of thermal x-rays detected along with gamma ray bursts associated with supernovae.

“The most massive stars can be tens to a hundred times larger than the Sun,” said Dr. Rhaana Starling of the University of Leicester  Department of Physics and Astronomy. “When one of these giants runs out of hydrogen gas it collapses catastrophically and explodes as a supernova, blowing off its outer layers which enrich the Universe.

“But this is no ordinary supernova; in the explosion narrowly confined streams of material are forced out of the poles of the star at almost the speed of light. These so-called relativistic jets give rise to brief flashes of energetic gamma-radiation called gamma-ray bursts, which are picked up by monitoring instruments in space, that in turn alert astronomers.”

Powerful gamma ray bursts — GRBs — emitted from supernovae can be detected by both ground-based observatories and NASA’s Swift telescope. Within seconds of detecting a burst (hence its name) Swift relays its location to ground stations, allowing both ground-based and space-based telescopes around the world the opportunity to observe the burst’s afterglow.

But the actual moment of the star’s collapse, when its collapsing core reacts with its surface, isn’t observed — it happens too quickly, too suddenly. If these “shock breakouts” are the source of the excess thermal x-rays (a.k.a. black body emission) that have been recently identified in Swift data, some of the galaxy’s most energetic supernovae could be pinpointed and witnessed at a much earlier moment in time — literally within the first seconds of their birth.

“This phenomenon is only seen during the first thousand seconds of an event, and it is challenging to distinguish it from X-ray emission solely from the gamma-ray burst jet,” Dr. Starling said. “That is why astronomers have not routinely observed this before, and only a small subset of the 700+ bursts we detect with Swift show it.”

Read more: Finding the Failed Supernovae

More observations will be needed to determine if the thermal emissions are truly from the initial collapse of stars and not from the GRB jets themselves. Even if the x-rays are determined to be from the jets it will provide valuable insight to the structure of GRBs… “but the strong association with supernovae is tantalizing,” according to Dr. Starling.

Read more on the University of Leicester press release here, and see the team’s paper in the Nov. 28 online issue of the Monthly Notices of the Royal Astronomical Society here (Full PDF on arXiv.org here.)

Inset image: An artist’s rendering of the Swift spacecraft with a gamma-ray burst going off in the background. Credit: Spectrum Astro. Find out more about the Swift telescope’s instruments here.

 

Unraveling the Secrets of Type Ia Supernovae: a New Two-Minute Thesis

The folks over at PHD Comics have put together a new video in their Two-Minute Thesis series, this one featuring Ph.D candidate Or Graur of the University of Tel Aviv and the American Museum of Natural History discussing the secret lives — and deaths — of astronomers’ “standard candles” of universal distance, Type Ia supernovae.

Judging distances across intergalactic space isn’t easy, so in order to figure out how far away galaxies are astronomers have learned to use the light from Type Ia supernovae, which flare up with the brilliance of 5 billion Suns… and rather precisely so.

Type Ia supernovae are thought to be created from a pairing of two stars: one super-dense white dwarf which draws in material from a binary companion until a critical mass — about 40% more mass than the Sun – is reached. The overpacked white dwarf suddenly undergoes a rapid series of thermonuclear reactions and explodes in an incredibly bright outburst of material and energy.

But exactly what sorts of stellar pairs lead to Type Ia supernovae and how frequently they occur aren’t known, and that’s what Ph.D candidate Or Graur is aiming to learn more about.

Read more: A New Species of Type Ia Supernova?

“We don’t really know what kind of star it is that leads to these explosions, which is kind of embarrassing,” says Graur. “The companion star could be a regular star like our Sun, a red giant or supergiant, or another white dwarf.”

Because stars age at certain rates, by looking deeper into space with the Hubble and Subaru telescopes Graur hopes to determine how often and when in the Universe’s history Type Ia supernovae occur, and thus figure out what types of stars are most likely responsible.

“My rate measurements favor a second white dwarf as the binary companion,” Graur says, “but the issue is far from settled.”

Watch the video for the full story, and visit PHD TV and PHD Comics for more great science illustrations.

Video: PHDComics. Animation: Jorge Cham. Series Producer: Meg Rosenburg. Inset image: merging white dwarfs causing a Type Ia supernova. (NASA/CXC/M Weiss)

Rare Supernova Pair are Most Distant Ever

High-resolution simulation of a galaxy hosting a super-luminous supernova and its chaotic environment in the early Universe. Credit: Adrian Malec and Marie Martig (Swinburne University)

Some of the earliest stars were massive and short-lived, destined to end their lives in huge explosions. Astronomers have detected some of the earliest and most distant of these exploding stars, called ‘super-luminous’ supernovae — stellar explosions 10–100 times brighter than other supernova types. The duo sets a record for the most distant supernova yet detected, and offers clues about the very early Universe.

“The light of these supernovae contains detailed information about the infancy of the Universe, at a time when some of the first stars are still condensing out of the hydrogen and helium formed by the Big Bang,” said Dr. Jeffrey Cooke, an astrophysicist from Swinburne University of Technology in Australia, whose team made the discovery.

The team used a combination of data from the Canada-France-Hawaii Telescope and the Keck 1 Telescope, both located in Hawaii.

“The type of supernovae we’ve found are extremely rare,” Cooke said. “In fact, only one has been discovered prior to our work. This particular type of supernova results from the death of a very massive star (about 100 – 250 times the mass of our Sun) and explodes in a completely different way compared to other supernovae. Discovering and studying these events provides us with observational examples to better understand them and the chemicals they eject into the Universe when they die.”

Super-luminous supernovae were discovered only a few years ago, and are rare in the nearby Universe. Their origins are not well understood, but a small subset of them are thought to occur when extremely massive stars, 150 to 250 times more massive than our Sun, undergo a nuclear explosion triggered by the conversion of photons into electron-positron pairs. This process is completely different compared to all other types of supernovae. Such events are expected to have occurred more frequently in the early Universe, when massive stars were more common.

This, and the extreme brightness of these events, encouraged Cooke and colleagues to search for super-luminous supernovae at redshifts, z, greater than 2, when the Universe was less than one-quarter of its present age.

“We used LRIS (Low Resolution Imaging Spectrometer) on Keck I to get the deep spectroscopy to confirm the host redshifts and to search for late-time emission from the supernovae,” Cooke said. “The initial detections were found in the CFHT Legacy Survey Deep fields. The light from the supernovae arrived here on Earth 4 to 6 years ago. To confirm their distances, we need to get a spectrum of their host galaxies which are very faint because of their extreme distance. The large aperture of Keck and the high sensitivity of LRIS made this possible. In addition, some supernovae have bright enough emission features that persist for years after they explode. The deep Keck spectroscopy is able to detect these lines as a further means of confirmation and study.”

Cooke and co-workers searched through a large volume of the Universe at z greater than or equal to 2, and found two super-luminous supernovae, at redshifts of 2.05 and 3.90 — breaking the previous supernova redshift record of 2.36, and implying a production rate of super-luminous supernovae at these redshifts at least 10 times higher than in the nearby Universe. Although the spectra of these two objects make it unlikely that their progenitors were among the first generation of stars, the present results suggest that detection of those stars may not be far from our grasp.

Detecting the first stars allows us much greater understanding of the first stars in the Universe, Cooke said.

“Shortly after the Big Bang, there was only hydrogen and helium in the Universe,” he said. “All the other elements that we see around us today, such as carbon, oxygen, iron, and silicon, were manufactured in the cores of stars or during supernova explosions. The first stars to form after the Big Bang laid the framework for the long process of enriching the Universe that eventually produced the diverse set of galaxies, stars, and planets we see around us today. Our discoveries probe an early time in the Universe that overlaps with the time we expect to see the first stars.”

Sources: Keck Observatory, Nature

Integral: Ten Years Tracking Extreme Radiation Across the Universe

Caption: Artist’s impression of ESA’s orbiting gamma-ray observatory Integral. Image credit: ESA

Integral, ESA’s International Gamma-Ray Astrophysics Laboratory launched ten years ago this week. This is a good time to look back at some of the highlights of the mission’s first decade and forward to its future, to study at the details of the most sensitive, accurate, and advanced gamma-ray observatory ever launched. But the mission has also had some recent exciting research of a supernova remnant.

Integral is a truly international mission with the participation of all member states of ESA and United States, Russia, the Czech Republic, and Poland. It launched from Baikonur, Kazakhstan on October 17th 2002. It was the first space observatory to simultaneously observe objects in gamma rays, X-rays, and visible light. Gamma rays from space can only be detected above Earth’s atmosphere so Integral circles the Earth in a highly elliptical orbit once every three days, spending most of its time at an altitude over 60 000 kilometres – well outside the Earth’s radiation belts, to avoid interference from background radiation effects. It can detect radiation from events far away and from the processes that shape the Universe. Its principal targets are gamma-ray bursts, supernova explosions, and regions in the Universe thought to contain black holes.

5 metres high and more than 4 tonnes in weight Integral has two main parts. The service module is the lower part of the satellite which contains all spacecraft subsystems, required to support the mission: the satellite systems, including solar power generation, power conditioning and control, data handling, telecommunications and thermal, attitude and orbit control. The payload module is mounted on the service module and carries the scientific instruments. It weighs 2 tonnes, making it the heaviest ever placed in orbit by ESA, due to detectors’ large area needed to capture sparse and penetrating gamma rays and to shield the detectors from background radiation in order to make them sensitive. There are two main instruments detecting gamma rays. An imager producing some of the sharpest gamma-ray images and a spectrometer that gauges gamma-ray energies very precisely. Two other instruments, an X-ray monitor and an optical camera, help to identify the gamma-ray sources.

During its extended ten year mission Integral has has charted in extensive detail the central region of our Milky Way, the Galactic Bulge, rich in variable high-energy X-ray and gamma-ray sources. The spacecraft has mapped, for the first time, the entire sky at the specific energy produced by the annihilation of electrons with their positron anti-particles. According to the gamma-ray emission seen by Integral, some 15 million trillion trillion trillion pairs of electrons and positrons are being annihilated every second near the Galactic Centre, that is over six thousand times the luminosity of our Sun.

A black-hole binary, Cygnus X-1, is currently in the process of ripping a companion star to pieces and gorging on its gas. Studying this extremely hot matter just a millisecond before it plunges into the jaws of the black hole, Integral has discovered that some of it might be escaping along structured magnetic field lines. By studying the alignment of the waves of high-energy radiation originating from the Crab Nebula, Integral found that the radiation is strongly aligned with the rotation axis of the pulsar. This implies that a significant fraction of the particles generating the intense radiation must originate from an extremely organised structure very close to the pulsar, perhaps even directly from the powerful jets beaming out from the spinning stellar core.

Just today ESA reported that Integral has made the first direct detection of radioactive titanium associated with supernova remnant 1987A. Supernova 1987A, located in the Large Magellanic Cloud, was close enough to be seen by the naked eye in February 1987, when its light first reached Earth. Supernovae can shine as brightly as entire galaxies for a brief time due to the enormous amount of energy released in the explosion, but after the initial flash has faded, the total luminosity comes from the natural decay of radioactive elements produced in the explosion. The radioactive decay might have been powering the glowing remnant around Supernova 1987A for the last 20 years.

During the peak of the explosion elements from oxygen to calcium were detected, which represent the outer layers of the ejecta. Soon after, signatures of the material from the inner layers could be seen in the radioactive decay of nickel-56 to cobalt-56, and its subsequent decay to iron-56. Now, after more than 1000 hours of observation by Integral, high-energy X-rays from radioactive titanium-44 in supernova remnant 1987A have been detected for the first time. It is estimated that the total mass of titanium-44 produced just after the core collapse of SN1987A’s progenitor star amounted to 0.03% of the mass of our own Sun. This is close to the upper limit of theoretical predictions and nearly twice the amount seen in supernova remnant Cas A, the only other remnant where titanium-44 has been detected. It is thought both Cas A and SN1987A may be exceptional cases

Christoph Winkler, ESA’s Integral Project Scientist says “Future science with Integral might include the characterisation of high-energy radiation from a supernova explosion within our Milky Way, an event that is long overdue.”

Find out more about Integral here
and about Integral’s study of Supernova 1987A here

The Unusually Colossal Kepler Supernova

A composite image of Chandra X-ray data shows a rainbow of reds, yellows, green, blue and purple, from lower to higher energies. Optical data from the Digitized Sky Survey, shown in pale yellow and blue, offer a starry background for the image. Optical: DSS

An arc of hot gas that spewed from the Kepler Supernova offers tantalizing clues that the cataclysmic stellar explosion of 1604 was not only more powerful than previously thought but also farther away according to a recent study using Chandra X-ray Observatory data published in the September 1, 2012 edition of The Astrophysical Journal.

A new star appeared in the autumn skies of 1604. Although it was described by other astronomers, it was famous astronomer Johannes Kepler who thoroughly detailed the the second supernova sighting in a generation. The star shined more brilliant than Jupiter and remained visible – even during the day – over several weeks.

Look for Kepler’s Supernova at the foot of the constellation Ophiuchus, the Serpent Bearer, in visible light and you won’t see much. But the hot gas and dust glow brightly in the X-ray images from Chandra. Astronomers have long puzzled over Kepler’s Supernova. Astronomers now know the explosion that created the remnant was a Type Ia supernova. Supernovae of this class occur when a white dwarf, the white-hot dead core of a once Sun-like star, gains mass by either merging with another white dwarf or drawing gas onto its surface from a larger companion star until temperatures soar and thermonuclear processes spiral out of control resulting in a detonation that destroys the star.

Kepler’s Supernova is a bit different because the expanding debris cloud is shaped by gas and dust clouds throughout the area. Most Type Ia supernovae are symmetrical; nearly perfect expanding bubbles of material. A quick look at the Chandra image of the supernova and one notices the bright arc of material across the top edge of shockwave. In one model, a pre-supernova white dwarf and its companion were moving through a nebulous area creating a bow shock, like a boat plowing through water, in front. Another model suggests that the glowing arc is the edge of the supernova shockwave as it passes through an area of increasingly dense gas and dust. Both models push the distance of the supernova from the previously believed 13,000 light-years to more than 20,000 light-years from Earth, scientists say in the paper.

Scientists also found large amounts of iron by looking at the X-ray light from Chandra meaning that the explosion was far more powerful than an average Type Ia supernova. Astronomers have observed a similar Type Ia supernova using Chandra and an optical telescope in the Large Magellanic Cloud.

Kepler’s Supernova is the last Milky Way supernova visible to the naked eye. It was the second supernova to be observed in that generation after SN 1572 in Cassiopeia studied by the famous astronomer Tycho Brahe.

Source: http://chandra.harvard.edu

About the author: John Williams is owner of TerraZoom, a Colorado-based web development shop specializing in web mapping and online image zooms. He also writes the award-winning blog, StarryCritters, an interactive site devoted to looking at images from NASA’s Great Observatories and other sources in a different way. A former contributing editor for Final Frontier, his work has appeared in the Planetary Society Blog, Air & Space Smithsonian, Astronomy, Earth, MX Developer’s Journal, The Kansas City Star and many other newspapers and magazines. Follow John on Twitter @terrazoom.

A New Species of Type Ia Supernova?

Artist’s conception of a binary star system that produces recurrent novae, and ultimately, the supernova PTF 11kx. (Credit: Romano Corradi and the Instituto de Astrofísica de Canarias)

Although they have been used as the “standard candles” of cosmic distance measurement for decades, Type Ia supernovae can result from different kinds of star systems, according to recent observations conducted by the Palomar Transient Factory team at California’s Berkeley Lab.


Judging distances across intergalactic space from here on Earth isn’t easy. Within the Milky Way — and even nearby galaxies — the light emitted by regularly pulsating stars (called Cepheid variables) can be used to determine how far away a region in space is. Outside of our own local group of galaxies, however, individual stars can’t be resolved, and so in order to figure out how far away distant galaxies are astronomers have learned to use the light from much brighter objects: Type Ia supernovae, which can flare up with a brilliance equivalent to 5 billion Suns.

Type Ia supernovae are created from a special pairing of two stars orbiting each other: one super-dense white dwarf drawing material in from a companion until a critical mass — about 40% more massive than the Sun — is reached. The overpacked white dwarf suddenly undergoes a rapid series of thermonuclear reactions, exploding in an incredibly bright outburst of material and energy… a beacon visible across the Universe.

Because the energy and luminance of Type Ia supernovae have been found to be so consistently alike, distance can be gauged by their apparent brightness as seen from Earth. The dimmer one is when observed, the farther away its galaxy is. Based on this seemingly universal similarity it’s been thought that these supernovae must be created under very similar situations… especially since none have been directly observed — until now.

An international team of astronomers working on the Palomar Transient Factory collaborative survey have observed for the first time a Type Ia supernova-creating star pair — called a progenitor system — located in the constellation Lynx. Named PTF 11kx, the system, estimated to be some 600 million light-years away, contains a white dwarf and a red giant star, a coupling that has not been seen in previous (although indirect) observations.

“It’s a total surprise to find that thermonuclear supernovae, which all seem so similar, come from different kinds of stars,” says Andy Howell, a staff scientist at the Las Cumbres Observatory Global Telescope Network (LCOGT) and a co-author on the paper, published in the August 24 issue of Science. “How could these events look so similar, if they had different origins?”

The initial observations of PTF 11kx were made possible by a robotic telescope mounted on the 48-inch Samuel Oschin Telescope at California’s Palomar Observatory as well as a high-speed data pipeline provided by the NSF, NASA and Department of Energy. The supernova was identified on January 16, 2011 and supported by subsequent spectrography data from Lick Observatory, followed up by immediate “emergency” observations with the Keck Telescope in Hawaii.

“We basically called up a fellow UC observer and interrupted their observations in order to get time critical spectra,” said Peter Nugent, a senior scientist at the Lawrence Berkeley National Laboratory and a co-author on the paper.

The Keck observations showed the PTF 11kx post-supernova system to contain slow-moving clouds of gas and dust that couldn’t have come from the recent supernova event. Instead, the clouds — which registered high in calcium in the Lick spectrographic data — must have come from a previous nova event in which the white dwarf briefly ignited and blew off an outer layer of its atmosphere. This expanding cloud was then seen to be slowing down, likely due to the stellar wind from a companion red giant.

(What’s the difference between a nova and a supernova? Read NASA’s STEREO Spots a New Nova)

Eventually the decelerating nova cloud was impacted by the rapidly-moving outburst from the supernova, evidenced by a sudden burst in the calcium signal which had gradually diminished in the two months since the January event. This calcium burst was, in effect, the supernova hitting the nova and causing it to “light up”.

The observations of PTF 11kx show that Type Ia supernova can occur in progenitor systems where the white dwarf has undergone nova eruptions, possibly repeatedly — a scenario that many astronomers had previously thought couldn’t happen. This could even mean that PTF 11kx is an entirely new species of Type Ia supernova, and while previously unseen and rare, not unique.

Which means our cosmic “standard candles” may need to get their wicks trimmed.

“We know that Type 1a supernovae vary slightly from galaxy to galaxy, and we’ve been calibrating for that, but this PTF 11kx observation is providing the first explanation of why this happens,” Nugent said. “This discovery gives us an opportunity to refine and improve the accuracy of our cosmic measurements.”

Source: Berkeley Lab news center

Inset images: PTF 11kx observation (BJ Fulton, Las Cumbres Observatory Global Telescope Network) / The 48-inch Samuel Oschin Telescope dome at Palomar Observatory. Video: Romano Corradi and the Instituto de Astrofísica de Canarias

The Last Outbursts of a Dying Star

As stars approach the inevitable ends of their lives they run out of stellar fuel and begin to lose a gravitational grip on their outermost layers, which can get periodically blown far out into space in enormous gouts of gas — sometimes irregularly-shaped, sometimes in a neat sphere. The latter is the case with the star above, a red giant called U Cam in the constellation Camelopardalis imaged by the Hubble Space Telescope.

From the Hubble image description:

U Cam is an example of a carbon star. This is a rare type of star whose atmosphere contains more carbon than oxygen. Due to its low surface gravity, typically as much as half of the total mass of a carbon star may be lost by way of powerful stellar winds. Located in the constellation of Camelopardalis (The Giraffe), near the North Celestial Pole, U Cam itself is actually much smaller than it appears in Hubble’s picture. In fact, the star would easily fit within a single pixel at the center of the image. Its brightness, however, is enough to saturate the camera’s receptors, making the star look much bigger than it really is.

The shell of gas, which is both much larger and much fainter than its parent star, is visible in intricate detail in Hubble’s portrait. While phenomena that occur at the ends of stars’ lives are often quite irregular and unstable, the shell of gas expelled from U Cam is almost perfectly spherical.

Image credit: ESA/NASA

Pulsar Sets New Speed Record

A pulsar may have been spotted racing through space at over 6 million miles per hour (9.65 million km/h), setting a new speed record for these curious cosmic objects. If observations are what they appear to be, astronomers will have to recalculate the incredible forces created by supernova explosions.

Seen in observations made with 3 different telescopes — NASA’s Chandra X-ray Observatory, ESA’s XMM-Newton, and the Parkes radio telescope in Australia — the x-ray-emitting object IGR J11014-6103 appears to be racing away from the remnants of a supernova in the constellation Carina, 30,000 light-years from Earth.

The comet-shaped object is thought to be a pulsar, the rapidly-spinning, superdense remains of a star. The facts that it’s dim in optical and infrared wavelengths and hasn’t changed in x-ray brightness between XMM-Newton observations in 2003 and Chandra measurements in 2011 support the claim.

IGR J11014’s comet-like shape may be the result of its breakneck speed through space as its pulsar wind nebula gets blown back by the high-energy bow shock created at the forefront of its passage.

Pulsar wind nebulae are the results of charged particles streaming out from the pulsar itself. The particles, traveling at nearly light-speed, are rapidly decelerated by the interstellar medium and create a visible shock wave. In the case of IGR J11014, the pulsar wind is formed into a “tail” by its bow shock — effectively a sonic boom in front of it.

Further observations will be needed to confirm that IGR J11014 is indeed a pulsar, especially considering that actual pulsations have not yet been detected. If it is a pulsar, and is really traveling at the record-breaking speeds it appears to be — between 5.4 and 6.5 million miles per hour, more than 12 times faster than the Sun travels around the center of the galaxy — a new model of supernova explosions may be required.

Read more on the Chandra news release here.

Image: X-ray: NASA/CXC/UC Berkeley/J.Tomsick et al & ESA/XMM-Newton, Optical: DSS; IR: 2MASS/UMass/IPAC-Caltech/NASA/NSF. Video: NASA/CXC/A. Hobart.

Light Echoes: The Re-Run Of The Eta Carinae “Great Eruption”

The color image at left shows the Carina Nebula, a star-forming region located 7,500 light-years from Earth. The massive double-star system Eta Carinae resides near the top of the image. The star system, about 120 times more massive than the Sun, produced a spectacular outburst that was seen on Earth from 1837 to 1858. The three black-and-white images at right show light from the eruption illuminating dust clouds near the doomed star system as it moves through them. The effect is like shining a flashlight on different regions of a vast cavern. The images were taken over an eight-year span by the U.S. National Optical Astronomy Observatory's Blanco 4-meter telescope at the CTIO. Credit: NASA, NOAO, and A. Rest (Space Telescope Science Institute, Baltimore, Md.)

[/caption]

In this modern age, we’re used to catching a favorite program at a later time. We use our DVR equipment and, not so long ago, a VCR to record now and watch later. Once upon a great time ago we relied upon a quaint customer called the “re-run” – the same program broadcast at a later date. However, a re-run can’t occur when it comes to astronomy event… Or can it? Oh, you’re gonna’ love this!

Way back in 1837, Eta Carinae had an event they called the “Great Eruption”. It was an outburst so powerful that it was observable in the southern night sky for 21 years. While it could be seen, sketched and recorded for astronomy posterity, one thing didn’t happen – and that was study with modern scientific instruments. But this great double star was about to do an even greater double-take as the light from the eruption continued away from Earth and on towards some dust clouds. Now, 170 years later, the “Great Eruption” has returned to us again in an effect known as a light echo. Because of its longer path, this re-run only took 17 decades to play again!

“When the eruption was seen on Earth 170 years ago, there were no cameras capable of recording the event,” explained the study’s leader, Armin Rest of the Space Telescope Science Institute in Baltimore, Maryland. “Everything astronomers have known to date about Eta Carinae’s outburst is from eyewitness accounts. Modern observations with science instruments were made years after the eruption actually happened. It’s as if nature has left behind a surveillance tape of the event, which we are now just beginning to watch. We can trace it year by year to see how the outburst changed.”

As one of the largest and brightest systems in the Milky Way, Eta Carinae is at home some 7,500 light years from Earth. During the outburst, it shed around one solar mass for every 20 years it was active and it became the second brightest star in the sky. During that time, its signature twin lobes formed. Being able to study an event like this would help us greatly understand the lives of powerful, massive stars on the eve of destruction. Because it is so close, Eta has also been prime candidate for spectroscopic studies, giving us insight on its behavior, including the temperature and speed of the ejected material.

But there’s more…

Eta Carinae could possibly be considered more famous for its “misbehavior”. Unlike stars of its class, Eta is more of a Luminous Blue Variable – an uber bright star known for periodic outbursts. The temperature of the outflow from Eta Carinae’s central region, for example, is about 8,500 degrees Fahrenheit (5,000 Kelvin), which is much cooler than that of other erupting stars. “This star really seems to be an oddball,” Rest said. “Now we have to go back to the models and see what has to change to actually produce what we are measuring.”

Through the eyes of the U.S. National Optical Astronomy Observatory’s Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile, Rest and the team first spotted the light echo in 2010 and then again in 2011 while comparing visible light observations. From there he quickly compared it with another set of CTIO observations taken in 2003 by astronomer Nathan Smith of the University of Arizona in Tucson and pieced together the 20 year old puzzle. What he saw was nothing short of amazing…

“I was jumping up and down when I saw the light echo,” said Rest, who has studied light echoes from powerful supernova blasts. “I didn’t expect to see Eta Carinae’s light echo because the eruption was so much fainter than a supernova explosion. We knew it probably wasn’t material moving through space. To see something this close move across space would take decades of observations. We, however, saw the movement over a year’s time. That’s why we thought it was probably a light echo.”

While the images would appear to move with time, this is only an “optical illusion” as each parcel of light information arrives at a different time. Follow up observations include more spectroscopy pinpointing the outflow’s speed and temperature – where ejected material was clocked at speed of roughly 445,000 miles an hour (more than 700,000 kilometers an hour) – a speed which matched computer modeling predictions. Rest’s group also cataloged changes in the light echo intensity using the Las Cumbres Observatory Global Telescope Network’s Faulkes Telescope South in Siding Spring, Australia. Their results were then compared the historic measurements during the actual event and the peak brightness findings matched!

You can bet the team is continuing to monitor this re-run very closely. “We should see brightening again in six months from another increase in light that was seen in 1844,” Rest said. “We hope to capture light from the outburst coming from different directions so that we can get a complete picture of the eruption.”

Original Story Source: HubbleSite News Release. For Further Reading: Nature Science Paper by A. Rest et al.

X-rays Unwrap a Poky Little Pulsar

A pulsar within a supernova remnant in the Small Magellanic Cloud. X-rays are blue; optical data is red and green. (NASA/CXC/Univ.Potsdam/L.Oskinova et al.)

[/caption]

For the first time astronomers have located a pulsar – the super-dense, spinning remains of a star – nestled within the remnants of a supernova in the Small Magellanic Cloud. The image above, a composite of x-ray  and optical light data acquired by NASA’s Chandra Observatory and ESA’s XMM-Newton, shows the pulsar shining brightly on the right surrounded by the ejected outer layers of its former stellar life.

The optically-bright area on the left is a large star-forming region of dust and gas nearby SXP 1062.

A pulsar is a neutron star that emits high-energy beams of radiation from its magnetic poles. These poles are not always aligned with its axis of rotation, and so the beams swing through space as the neutron star spins. If the Earth happens to be in direct line with the beams at some point along their path, we see them as rapidly flashing radiation sources… sort of like a cosmic lighthouse on overdrive.

What’s unusual about this pulsar – called SXP 1062 – is its slow rate of rotation. Its beams spin around at a rate of about once every 18 minutes, which is downright poky for a pulsar, most of which spin several times a second.

X-ray image of SXP 1062

This makes SXP 1062 one of the slowest known pulsars discovered within the Small Magellanic Cloud, a dwarf galaxy cruising alongside our own Milky Way about 200,000 light-years distant.

The supernova that presumably created the pulsar and its surrounding remnant wrapping is estimated to have taken place between 10,000 and 40,000 years ago – relatively recently, by cosmic standards. To see a young pulsar spinning so slowly is extra unusual since younger pulsars have typically been observed to have rapid rotation rates. Understanding the cause of its leisurely pace will be the next goal for SXP 1062 researchers.

Read more about SXP 1062on the Chandra photo album page.

 

Image credit: X-ray & Optical: NASA/CXC/Univ.Potsdam/L.Oskinova et al.