Is the Universe Dying?

Is the Universe Dying?

Is our 13.8 billion year old universe actually in its death throes?

Poor Universe, its demise announced right in it’s prime. At only 13.8 billion years old, when you peer across the multiverse it’s barely middle age. And yet, it sadly dwindles here in hospice.

Is it a Galactus infestation? The Unicronabetes? Time to let go, move on and find a new Universe, because this one is all but dead and gone and but a shell of its former self.

The news of imminent demise was recently broadcast in mid 2015. Based on research looking at the light coming from over 200,000 galaxies, they found that the galaxies are putting out half as much light as they were 2 billion years ago. So if our math is right, less light equals more death.

So tell it to me straight, Doctor Spaceman(SPAH-CHEM-AN), how long have we got? Astronomers have known for a long time that the Universe was much more active in the distant past, when everything was closer and denser, and better. Back then, more of it was the primordial hydrogen left over from the Big Bang, supplying galaxies for star formation. Currently, there are only 1 to 3 new stars formed in the Milky Way every year. Which is pretty slow by Milky Way standards.

Not even at the busiest time of star formation, our Sun formed 5 billion years ago. 5 billion years before that, just a short 4 billion after the Big Bang, star formation peaked out. There were 30 times more stars forming then, than we see today.

When stars were formed actually makes a difference. For example, the fact that it took so long for our Sun to form is a good thing. The heavier elements in the Solar System, really anything higher up the periodic table from hydrogen and helium, had to be formed inside other stars. Main sequence stars like our own Sun spew out heavier elements from their solar winds, while supernovae created the heaviest elements in a moment of catastrophic collapse. Astronomers are pretty sure we needed a few generations of stars to build up enough of the heavier elements that life depends on, and probably wouldn’t be here without it.

Even if life did form here on Earth billions of years ago, when the Universe was really cranking, it would wish it was never born. With 30 times as much star formation going on, there would be intense radiation blasting away from all these newly forming stars and their subsequent supernovae detonations. So be glad life formed when it did. Sometimes a little quiet is better.

So, how long has the Universe got? It appears that it’s not going to crash together in the future, it’s just going to keep on expanding, and expanding, forever and ever.

Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

In a few billion years, star formation will be a fraction of what it is today. In a few trillion, only the longest lived, lowest mass red dwarfs will still be pushing out their feeble light. Then, one by one, galaxies will see their last star flicker and fade away into the darkness. Then there’ll only be dead stars and dead planets, cooling down to the background temperature of the Universe as their galaxies accelerate from one another into the expanding void.

Eventually everything will be black holes, or milling about waiting to be trapped in black holes. And these black holes themselves will take an incomprehensible mighty pile of years to evaporate away to nothing.

So yes, our Universe is dying. Just like in a cheery Sartre play, it started dying the moment it began its existence. According to astronomers, the Universe will never truly die. It’ll just reach a distant future when there’s so little usable energy, it’ll be mostly dead. Dead enough? Dead inside.

As Miracle Max knows, mostly dead is still slightly alive. Who knows what future civilizations will figure out in the googol years between then and now.

Too sad? Let’s wildly speculate on futuristic technologies advanced civilizations will use to outlast the heat death of the Universe or flat out cheat death and re-spark it into a whole new cycle of Universal renewal.

How Do Stars Go Rogue?

How Do Stars Go Rogue?

Rogue stars are moving so quickly they’re leaving the Milky Way, and never coming back. How in the Universe could this happen?

Stars are built with the lightest elements in the Universe, hydrogen and helium, but they contain an incomprehensible amount of mass. Our Sun is made of 2 x 10^30 kgs of stuff. That’s a 2 followed by 30 zeros. That’s 330,000 times more stuff than the Earth.

You would think it’d be a bit of challenge to throw around something that massive, but there are events in the Universe which are so catastrophic, they can kick a star so hard in the pills that it hits galactic escape velocity.

Rogue, or hypervelocity stars are moving so quickly they’re leaving the Milky Way, and never coming back. They’ve got a one-way ticket to galactic voidsville. The velocity needed depends on the location, you’d need to be traveling close to 500 kilometers per second. That’s more than twice the speed the Solar System is going as it orbits the centre of the Milky Way.

There are a few ways you can generate enough kick to fire a star right out of the park. They tend to be some of the most extreme events and locations in the Universe. Like Supernovae, and their big brothers, gamma ray bursts.

Supernovae occur when a massive star runs out of hydrogen, keeps fusing up the periodic table of elements until it reaches iron. Because iron doesn’t allow it to generate any energy, the star’s gravity collapses it. In a fraction of a second, the star detonates, and anything nearby is incinerated. But what if you happen to be in a binary orbit with a star that suddenly vaporizes in a supernova explosion?

That companion star is flung outward with tremendous velocity, like it was fired from a sling, clocking up to 1,200 km/s. That’s enough velocity to escape the pull of the Milky Way. Huzzah! Onward, to adventure! Ahh, crap… please do not be pointed at the Earth?

This artist’s impression shows the dust and gas around the double star system GG Tauri-A.
This artist’s impression shows the dust and gas around the double star system GG Tauri-A.

Another way to blast a star out of the Milky Way is by flying it too close to Kevin, the supermassive black hole at the heart of the galaxy.

And for the bonus round, astronomers recently discovered stars rocketing away from the galactic core as fast as 900 km/s. It’s believed that these travelers were actually part of a binary system. Their partner was consumed by the Milky Way’s supermassive black hole, and the other is whipped out of the galaxy in a gravitational jai halai scoop.

Interestingly, the most common way to get flung out of your galaxy occurs in a galactic collision. Check out this animation of two galaxies banging together. See the spray of stars flung out in long tidal tails? Billions of stars will get ejected when the Milky Way hammers noodle first into Andromeda.

A recent study suggests half the stars in the Universe are rogue stars, with no galaxies of their own. Either kicked out of their host galaxy, or possibly formed from a cloud of hydrogen gas, flying out in the void. They are also particularly dangerous to Carol Danvers.

Considering the enormous mass of a star, it’s pretty amazing that there are events so catastrophic they can kick entire stars right out of our own galaxy.

What do you think life would be like orbiting a hypervelocity star? Tell us your thoughts in the comments below.

Weekly Space Hangout – March 27, 2015: Dark Matter Galaxy “X” with Dr. Sukanya Chakrabarti

Host: Fraser Cain (@fcain)
Special Guest: Dr. Sukanya Chakrabarti, Lead Investigator for team that may have discovered Dark Matter Galaxy “X”.

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Dave Dickinson (@astroguyz / www.astroguyz.com)
Brian Koberlein (@briankoberlein)
Continue reading “Weekly Space Hangout – March 27, 2015: Dark Matter Galaxy “X” with Dr. Sukanya Chakrabarti”

How Many Stars Did It Take To Make Us?

How Many Stars Did It Take To Make Us?

You know the quote, we’re made of stardust. Generation after generation of stars created the materials that make us up. How? And how many stars did it take?

Carl Sagan once said, “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff.” To an average person, this might sound completely bananas. I feel it could easily be adopted into the same dirty realm as “My grandpappy wasn’t no gorilla”.

After all, if my teeth are made of stars, and my toothpaste supplier can be believed, why aren’t they brighter and whiter? If my bones are made of stars, shouldn’t I have this creepy inner glow like the aliens from Cocoon? Does this mean everything I eat is made of stars? And conversely, the waste products of my body then are also made of stars? Shouldn’t all this star business include some cool interstellar powers, like Nova? Also, shouldn’t my face be burning?

When the Big Bang happened, 13.8 billion years ago, the entire Universe was briefly the temperature and pressure of a star. And in this stellar furnace, atoms of hydrogen were fused together to make helium and heavier elements like lithium and a little bit of beryllium.

This all happened between 100 and 300 seconds after the Big Bang, and then the Universe wasn’t star-like enough for fusion to happen any more. It’s like someone set a microwave timer and cooked the heck of the whole business for 5 minutes. DING! Your Universe is done! All the other elements in the Universe, including the carbon in our bodies to the gold in our jewelry were manufactured inside of stars.

But how many stars did it take to make “us”? Main sequence stars, like our own Sun, create elements slowly, but surely within their cores. As we speak, the Sun is relentlessly churning hydrogen into helium. Once when it runs out of hydrogen, it’ll switch to crushing helium into carbon and oxygen. More massive stars keep going up the periodic table, making neon and magnesium, oxygen and silicon. But those elements aren’t in you. Once a regular star gets going, it’ll hang onto its elements forever with its intense gravity. Even after it dies and becomes a white dwarf.

White Dwarf Star
White Dwarf Star

No, something needs to happen to get those elements out. That star needs to explode. The most massive stars, ones with dozens of times the mass of our Sun don’t know when to stop. They just keep on churning more and more massive elements, right on up the periodic table. They keep fusing and fusing until they reach iron in their cores. And as iron is the stellar equivalent of ash, fusion reactions no longer generate energy, and instead require energy. Without the fusion energy pushing against the force of gravity pulling everything inward, the massive star collapses in on itself, creating a neutron star or black hole, or detonating as a supernova.

It’s in this moment, a fraction of a second, when all the heavier elements are created. The gold, platinum, uranium and other rare elements that we find on Earth. All of them were created in supernovae in the past. The materials of everything around you was either created during the Big Bang or during a supernova detonation. Only supernovae “explode” and spread their material into the surrounding nebula. Our Solar System formed within a nebula of hydrogen that was enriched by multiple supernovae. Everything around you was pretty much made in a supernova.

These images taken by the Spitzer Space Telescope show the dust and gas concentrations around a supernova. Credit: NASA/JPL-Caltech
These images taken by the Spitzer Space Telescope show the dust and gas concentrations around a supernova. Credit: NASA/JPL-Caltech

So how many? How many times has this cycle been repeated? We don’t know. Lots. There were the original stars that formed shortly after the Big Bang, and then successive generations of massive stars that formed in various nebulae. Astronomers are pretty sure it was a least 3 generations of supernovae, but there’s no way to know exactly.

Carl Sagan said you’re made of star-stuff. But actually you’re made up mostly of Big Bang stuff and generations of supernova stuff. Tasty tasty supernova stuff.

What’s your favorite supernova remnant? Tell us in the comments below.

Gamma Ray Bursts Limit The Habitability of Certain Galaxies, Says Study

An artistic image of the explosion of a star leading to a gamma-ray burst. (Source: FUW/Tentaris/Maciej Fro?ow)

Gamma ray bursts (GRBs) are some of the brightest, most dramatic events in the Universe. These cosmic tempests are characterized by a spectacular explosion of photons with energies 1,000,000 times greater than the most energetic light our eyes can detect. Due to their explosive power, long-lasting GRBs are predicted to have catastrophic consequences for life on any nearby planet. But could this type of event occur in our own stellar neighborhood? In a new paper published in Physical Review Letters, two astrophysicists examine the probability of a deadly GRB occurring in galaxies like the Milky Way, potentially shedding light on the risk for organisms on Earth, both now and in our distant past and future.

There are two main kinds of GRBs: short, and long. Short GRBs last less than two seconds and are thought to result from the merger of two compact stars, such as neutron stars or black holes. Conversely, long GRBs last more than two seconds and seem to occur in conjunction with certain kinds of Type I supernovae, specifically those that result when a massive star throws off all of its hydrogen and helium during collapse.

Perhaps unsurprisingly, long GRBs are much more threatening to planetary systems than short GRBs. Since dangerous long GRBs appear to be relatively rare in large, metal-rich galaxies like our own, it has long been thought that planets in the Milky Way would be immune to their fallout. But take into account the inconceivably old age of the Universe, and “relatively rare” no longer seems to cut it.

In fact, according to the authors of the new paper, there is a 90% chance that a GRB powerful enough to destroy Earth’s ozone layer occurred in our stellar neighborhood some time in the last 5 billion years, and a 50% chance that such an event occurred within the last half billion years. These odds indicate a possible trigger for the second worst mass extinction in Earth’s history: the Ordovician Extinction. This great decimation occurred 440-450 million years ago and led to the death of more than 80% of all species.

Today, however, Earth appears to be relatively safe. Galaxies that produce GRBs at a far higher rate than our own, such as the Large Magellanic Cloud, are currently too far from Earth to be any cause for alarm. Additionally, our Solar System’s home address in the sleepy outskirts of the Milky Way places us far away from our own galaxy’s more active, star-forming regions, areas that would be more likely to produce GRBs. Interestingly, the fact that such quiet outer regions exist within spiral galaxies like our own is entirely due to the precise value of the cosmological constant – the factor that describes our Universe’s expansion rate – that we observe. If the Universe had expanded any faster, such galaxies would not exist; any slower, and spirals would be far more compact and thus, far more energetically active.

In a future paper, the authors promise to look into the role long GRBs may play in Fermi’s paradox, the open question of why advanced lifeforms appear to be so rare in our Universe. A preprint of their current work can be accessed on the ArXiv.

How Do We Measure Distance in the Universe?

How Do We Measure Distance in the Universe?

This star is X light-years away, that galaxy is X million light-years away. That beginning the Universe is X billion light-years away. But how do astronomers know?

I’m perpetually in a state where I’m talking about objects which are unimaginably far away. It’s pretty much impossible to imagine how huge some our Universe is. Our brains can comprehend the distances around us, sort of, especially when we’ve got a pile of tools to help. We can measure our height with a tape measure, or the distance along the ground using an odometer. We can get a feel for how far away 100 kilometers is because we can drive it in a pretty short period of time.

But space is really big, and for most of us, our brains can’t comprehend the full awesomeness of the cosmos, let alone measure it. So how do astronomers figure out how far away everything is? How do they know how far away planets, stars, galaxies, and even the edge of the observable Universe is? Assuming it’s all trickery? You’re bang on.

Astronomers have a bag of remarkably clever tricks and techniques to measure distance in the Universe. For them, different distances require a different methodologies. Up close, they use trigonometry, using differences in angles to puzzle out distances. They also use a variety of standard candles, those are bright objects that generate a consistent amount of light, so you can tell how far away they are. At the furthest distances, astronomers use expansion of space itself to detect distances.

Fortunately, each of these methods overlap. So you can use trigonometry to test out the closest standard candles. And you can use the most distant standard candles to verify the biggest tools. Around our Solar System, and in our neighborhood of the galaxy, astronomers use trigonometry to discover the distance to objects.

They measure the location of a star in the sky at one point of the year, and then measure again 6 months later when the Earth is on the opposite side of the Solar System. The star will have moved a tiny amount in the sky, known as parallax. Because we know the distance from one side of the Earth’s orbit to the other, we can calculate the angles, and compute the distance to the star.

I’m sure you can spot the flaw, this method falls apart when the distance is so great that the star doesn’t appear to move at all. Fortunately, astronomers shift to a different method, observing a standard candle known as a Cepheid variable. These Cepheids are special stars that dim and brighten in a known pattern. If you can measure how quickly a Cepheid pulses, you can calculate its true luminosity, and therefore its distance.

Hubble Frontier Fields observing programme, which is using the magnifying power of enormous galaxy clusters to peer deep into the distant Universe.. Credit: NASA.
Hubble Frontier Fields observing programme, which is using the magnifying power of enormous galaxy clusters to peer deep into the distant Universe. Credit: NASA.

Cepheids let you measure distances to nearby galaxies. Out beyond a few dozen megaparsecs, you need another tool: supernovae. In a very special type of binary star system, one star dies and becomes a white dwarf, while the other star lives on. The white dwarf begins to feed material off the partner star until it hits exactly 1.4 times the mass of the Sun. At this point, it detonates as a Type 1A supernova, generating an explosion that can be seen halfway across the Universe. Because these stars always explode with exactly the same amount of material, we can detect how far away they are, and therefore their absolute brightness.

At the greatest scales, astronomers use the Hubble Constant. This is the discovery by Edwin Hubble that the Universe is expanding in all directions. The further you look, the faster galaxies are speeding away from us. By measuring the redshift of light from a galaxy, you can tell how fast it’s moving away from us, and thus its approximate distance. At the very end of this scale is the Cosmic Microwave Background Radiation, the edge of the observable Universe, and the limit of how far we can see.

Astronomers are always looking for new types of standard candles, and have discovered all kinds of clever ways to measure distance. They measure the clustering of galaxies, beams of microwave radiation from stars, and the surface of red giant stars – all in the hopes of verifying the cosmic distance ladder. Measuring distance has been one of the toughest problems for astronomers to crack and their solutions have been absolutely ingenious. Thanks to them, we can have a sense of scale for the cosmos around us.

What concept in astronomy do you have the hardest time holding in your brain? Tell us, in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Hypervelocity Neutron Stars Crashing Into White Dwarfs — A Scenario for the Loneliest Supernovae?

University of Warwick researchers explain mystery of the loneliest supernovas. Compact binary star systems that have been thrown far from their host galaxy when one star of that pair became a neutron star, go through a second trauma when the remaining white dwarf star is eventually pulled onto the neutron star Credit: Artist’s impression is free to use with story but must include this credit: © Mark A. Garlick / space-art.co.uk / University of Warwick

It’s hard to comprehend the vast emptiness of space. Especially when we detect odd signatures, such as luminous explosions that are neither as bright nor as long as traditional supernovae, originating in the unfathomable emptiness.

But a team of astronomers is now beginning to understand these so-called calcium-rich transients, often referred to as the Universe’s loneliest supernovae, hypothesizing that they’re created by collisions between white dwarf stars and neutron stars — both of which have been thrown out of their galaxy.

“One of the weirdest aspects is that they seem to explode in unusual places. For example, if you look at a galaxy, you expect any explosions to roughly be in line with the underlying light you see from that galaxy, since that is where the stars are” said lead author Joseph Lyman from the University of Warwick in a press release. “However, a large fraction of these are exploding at huge distances from their galaxies, where the number of stellar systems is miniscule.”

The team guessed there could be very faint dwarf galaxies, hiding beneath the limit of detection, but found nothing with our best telescopes, namely the Very Large Telescope in Chile and the Hubble Space Telescope.

“So the question becomes, how did the get there?” pondered Lyman. Roughly a third of these events occur at least 65 thousand light-years away from a potential host galaxy.

We’ve discovered dozens of so-called hypervelocity stars — single stars that escape their home galaxy, traveling rapidly throughout intergalactic space — and even one runaway globular cluster. Nature clearly has a way of kicking systems out of an entire galaxy, likely by an interaction with the supermassive black hole lurking in the center of that galaxy.

So it’s viable that the source of these supernovae was first kicked out of its host galaxy. But the second puzzle wondered what type of system could have caused such an odd explosion.

Previous studies show that calcium comprises up to half of the material thrown off in these transients, compared to only a tiny fraction in normal supernovae. It remained unclear how to explain such a calcium-rich system.

So the research team compared their data to short-duration gamma ray bursts, which are also seen to explode in remote locations with no coincident galaxy detected. We think these enigmatic bursts occur when two neutron stars collide, or when a neutron star merges with a black hole.

Alas, the research team discovered that if a neutron star collided with a white dwarf, the explosion would not only provide enough energy to generate the low luminosity of the calcium rich transients, but it would also produce calcium rich material.

“What we therefore propose is these are systems that have been ejected from their galaxy,” said Lyman. “A good candidate in this scenario is a white dwarf and a neutron star in a binary system. The neutron star is formed when a massive star goes supernova. The mechanism of the supernova explosion causes the neutron star to be ‘kicked’ to very high velocities (100s of km/s). This high velocity system can then escape its galaxy, and if the binary system survives the kick, the white dwarf and neutron star will merge causing the explosive transient.”

Any merger should also produce high-energy gamma-ray bursts, motivating further observations of any new examples.

The paper has been published today in the journal Monthly Notices of the Royal Astronomical Society and is available online.

New VLT Observations Clear Up Dusty Mystery

The dwarf galaxy UGC 5189A, site of the supernova SN 2010jl. Image Credit: ESO

The Universe is overflowing with cosmic dust. Planets form in swirling clouds of dust around a young star; Dust lanes hide more-distant stars in the Milky Way above us; And molecular hydrogen forms on the dust grains in interstellar space.

Even the soot from a candle is very similar to cosmic carbon dust. Both consist of silicate and amorphous carbon grains, although the size grains in the soot are 10 or more times bigger than typical grain sizes in space.

But where does the cosmic dust come from?

A group of astronomers has been able to follow cosmic dust being created in the aftermath of a supernova explosion. The new research not only shows that dust grains form in these massive explosions, but that they can also survive the subsequent shockwaves.

Stars initially draw their energy by fusing hydrogen into helium deep within their cores. But eventually a star will run out of fuel. After slightly messy physics, the star’s contracted core will begin to fuse helium into carbon, while a shell above the core continues to fuse hydrogen into helium.

The pattern continues for medium to high mass stars, creating layers of different nuclear burning around the star’s core. So the cycle of star birth and death has steadily produced and dispersed more heavy elements throughout cosmic history, providing the substances necessary for cosmic dust.

“The problem has been that even though dust grains composed of heavy elements would form in supernovae, the supernova explosion is so violent that the grains of dust may not survive,” said coauthor Jens Hjorth, head of the Dark Cosmology Center at the Niels Bohr Institute in a press release. “But cosmic grains of significant size do exist, so the mystery has been how they are formed and have survived the subsequent shockwaves.”

The team led by Christa Gall used ESO’s Very Large Telescope at the Paranal Observatory in northern Chile to observe a supernova, dubbed SN2010jl, nine times in the months following the explosion, and for a tenth time 2.5 years after the explosion. They observed the supernova in both visible and near-infrared wavelengths.

SN2010jl was 10 times brighter than the average supernova, making the exploding star 40 times the mass of the Sun.

“By combining the data from the nine early sets of observations we were able to make the first direct measurements of how the dust around a supernova absorbs the different colours of light,” said lead author Christa Gall from Aarhus University. “This allowed us to find out more about the dust than had been possible before.”

The results indicate that dust formation starts soon after the explosion and continues over a long time period.

The dust initially forms in material that the star expelled into space even before it exploded. Then a second wave of dust formation occurs, involving ejected material from the supernova. Here the dust grains are massive — one thousandth of a millimeter in diameter — making them resilient to any following shockwaves.

“When the star explodes, the shockwave hits the dense gas cloud like a brick wall. It is all in gas form and incredibly hot, but when the eruption hits the ‘wall’ the gas gets compressed and cools down to about 2,000 degrees,” said Gall. “At this temperature and density elements can nucleate and form solid particles. We measured dust grains as large as around one micron (a thousandth of a millimeter), which is large for cosmic dust grains. They are so large that they can survive their onward journey out into the galaxy.”

If the dust production in SN2010jl continues to follow the observed trend, by 25 years after the supernova explosion, the total mass of dust will have half the mass of the Sun.

The results have been published in Nature and are available for download here. Niels Bohr Institute’s press release and ESO’s press release are also available.

Which Star Will Explode Next?

Which Star Will Explode Next?

Come on Betelguese, explode already. Or maybe it’ll be Eta Carinae. Which of the billions of stars in the galaxy can we count on to explode next, and when?

When a new supernova is discovered, we can take that as a reminder that we live in a terribly hostile Universe. Sometimes stars just explode, and devastate a corner of a galaxy. On average, a supernova goes off twice a century in a galaxy the size of the Milky Way. Since there are potentially hundreds of billions of galaxies out there, dozens of supernovae are detonating every second in the observable Universe.

The last bright supernova was SN 1987A, located in the Large Magellanic Cloud, about 168,000 light years away. Even though it was far, it exploded with so much energy it was visible to the unaided eye. That one wasn’t even in our galaxy.

The Milky Way’s most recent supernova that we know of was G1.9+0.3, recently confirmed by the Chandra X-Ray Observatory. It would have been visible from Earth about 100 years ago, but it was located in the dusty regions of the Milky Way and obscured from our view.

The last bright supernova was discovered in 1604 by the astronomer Johannes Kepler. This was a naked-eye supernova, in fact, at its peak, it was brighter than any other star in the night sky and for a few weeks it was even visible during the day.

So, which star is likely to explode next? Can we even know that?

Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada
Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada

We can, and there are even likely candidates. There’s Betelgeuse, the red supergiant star located in the constellation of Orion, only 640 light-years from Earth. Betelgeuse is massive, and it’s only been around for 10 million years. It will likely explode within a million years. Which, in astronomical time, is just before lunch.

Another candidate is Eta Carinae, located about 8,000 light years from us. This blue supergiant has roughly 120 times the mass of the Sun, and it’s ready to explode in the next few hundred thousand years. Which, from the Universe’s perspective is any moment now.

The closest star that could go supernova is most likely Spica, a short 240 light-years from Earth.
Spica has several times the mass of the Sun, it shouldn’t go off for a few million years yet. According to Phil Plait, the Bad Astronomer, another candidate is the star IK Pegasus A at just 150 light-years away.

Bright Star Spica - Brightest Star  in Virgo 16" F4.5   2 minute exposure , 400 ISO
Bright Star Spica – Brightest Star in Virgo by John Chumack

If any of these supernovae do go off, they’ll be incredibly bright. Supernova Betelgeuse would be visible during the day, it might even brighter than the full Moon. It would shine in the sky for weeks, possibly months before fading away.

These explosions are destructive, releasing a torrent of gamma radiation and high energy particles. Fortunately for us, we’re safe. You’d need to be within about 75 light years to really receive a lethal dose. Which means that even the closest supernova candidate is still too far to cause us any real harm.

Which star is set to explode next? Well, in the last second, 30 supernovae just went off, somewhere in the Universe. Here in our galaxy, there should be a supernova in the next 50 years or so, but we still might not be able to see it.
And if we’re really really lucky, Betelgeuse or Eta Carinae will detonate, and we’ll witness one of the most awe inspiring events in the cosmos from the safety of the front porch of our galactic suburban home. Any time now.

Which star would you like to see go supernova? Tell us in the comments below!