Underwater Neutrino Detector Will Be Second-Largest Structure Ever Built

Artist's rendering of the KM3NeT array. (Marco Kraan/Property KM3NeT Consortium)

[/caption]

The hunt for elusive neutrinos will soon get its largest and most powerful tool yet: the enormous KM3NeT telescope, currently under development by a consortium of 40 institutions from ten European countries. Once completed KM3NeT will be the second-largest structure ever made by humans, after the Great Wall of China, and taller than the Burj Khalifa in Dubai… but submerged beneath 3,200 feet of ocean!

KM3NeT – so named because it will encompass an area of several cubic kilometers – will be composed of lengths of cable holding optical modules on the ends of long arms. These modules will stare at the sea floor beneath the Mediterranean in an attempt to detect the impacts of neutrinos traveling down from deep space.

Successfully spotting neutrinos – subatomic particles that don’t interact with “normal” matter very much at all, nor have magnetic charges – will help researchers to determine which direction they originated from. That in turn will help them pinpoint distant sources of powerful radiation, like quasars and gamma-ray bursts. Only neutrinos could make it this far and this long after such events since they can pass basically unimpeded across vast cosmic distances.

“The only high energy particles that can come from very distant sources are neutrinos,” said Giorgio Riccobene, a physicist and staff researcher at the National Institute for Nuclear Physics. “So by looking at them, we can probe the far and violent universe.”

Each Digital Optical Module (DOM) is a standalone sensor module with 31 3-inch PMTs in a 17-inch glass sphere.

In effect, by looking down beneath the sea KM3NeT will allow scientists to peer outward into the Universe, deep into space as well as far back in time.

The optical modules dispersed along the KM3NeT array will be able to identify the light given off by muons when neutrinos pass into the sea floor. The entire structure would have thousands of the modules (which resemble large versions of the hovering training spheres used by Luke Skywalker in Star Wars.)

In addition to searching for neutrinos passing through Earth, KM3NeT will also look toward the galactic center and search for the presence of neutrinos there, which would help confirm the purported existence of dark matter.

Read more about the KM3NeT project here, and check out a detailed article on the telescope and neutrinos on Popsci.com.

Height of the KM3NeT telescope structure compared to well-known buildings

Images property of KM3NeT Consortium 

NASA Developing Real-Life Tractor Beams

Artist's conception of a future space probe using a tractor beam to gather samples of material from an asteroid. Credit: NASA

[/caption]

If you are a Star Trek fan, you will of course be familiar with “tractor beams,” those cool-looking laser beams that can grab an object in space and it pull backwards toward the source of the beam (including trapping spacecraft as evil aliens would often do). They are another long-running staple of science fiction that is now closer to science reality. NASA is now working on developing just such technology, which would help primarily in obtaining material samples in real-life space missions, such as on Mars or an asteroid or comet.

A $100,000 study to look at three possible methods has been awarded to NASA’s Goddard Space Flight Center by the NASA Office of the Chief Technologist (OCT). According to Principal Investigator Paul Stysley, “Though a mainstay in science fiction, and Star Trek in particular, laser-based trapping isn’t fanciful or beyond current technological know-how.”

The methods being developed can trap and move particles of matter or even single molecules, viruses or cells, using the power of light – maybe not another spacecraft yet, but the principle is the same.

NASA has used various methods of sample-retrieving, all with great success, including aerogel on the Stardust spacecraft to obtain dust samples from the comet Wild 2 and scoops, brushes and rock abrasion tools on various Mars landers and rovers to retrieve rock and soil samples. On the next Mars rover, Curiosity, which is due to be launched later this month, there will be a scoop as well as a drill. It will also feature a laser beam to zap rocks so the resulting particles can be analyzed; not quite the same as a tractor beam but still cool.

The first technique being studied is the optical vortex or “optical tweezers” method which uses two counter-propagating beams of light. Particles are confined to the “dark core” of the overlapping beams. Particles can be moved along the ring’s centre by alternating the strength or weakness of one of the beams. The only catch with this method is that it requires an atmosphere to work. Ideal then maybe for on the surface of Mars or Titan for example, but not for an asteroid or other airless body.

The second technique uses optical solenoid beams, where the intensity peaks spiral around the axis of propagation. Particles can be pulled backwards along the entire length of the beam, and it can operate in a vacuum, no atmosphere necessary.

Both of those techniques have been tested in the laboratory, but the third method, as of yet, has not. It uses what is known as a Bessel beam, which, when projected onto a wall for example, features rings of light surrounding the central dot of light. The effect is similar to looking at ripples surrounding the spot where a pebble has been dropped into a pool of water. Other types of laser beams do not exhibit that however, appearing only as a single point of light. Such a beam could induce electric and magnetic fields in the path of an object, which could then pull the object backwards.

According to team member Barry Coyle, “We want to make sure we thoroughly understand these methods. We have hope that one of these will work for our purposes.” He added, “We’re at the starting gate on this. This is a new application that no one has claimed yet.”

A more technical overview of the practicality of tractor beams is here.

Do You Have Ideas for Deep Space Travel? NASA Wants to Hear from You

Credit: NASA

[/caption]

You’ve probably heard by now how NASA is going to focus more on deep space exploration, both manned and robotic, leaving the low-Earth orbit and suborbital realms to commercial companies, a major change. There is, however, an opportunity for public input for deep space exploration as well, thanks to a new initiative for competitive ideas from universities, students, companies and government agencies. This means that you may have a chance to forward your proposals to help solve the problems that will need to be resolved in the coming years.

NASA’s new technology offices are getting ready to spend millions of dollars, it was announced at a seminar held last Monday as part of the Von Braun Memorial Symposium in Huntsville, Alabama. NASA is hoping to get between $375 million and $560 million in the fiscal year 2012 budget, which would be enough for competition prizes of $1 million or more.

“We have a space technology program, and there’s some money behind it,” Marshall Chief Technologist Andrew Keys said at the seminar.

The new heavy-lift rocket being designed will initially cost $1 billion or more, and still use proven conventional technology for its first planned launch in 2017. But as those first rockets are then replaced by larger ones, technological challenges will have to be overcome for new, better boosters to be designed, for example, which will ne necessary to take human farther into deep space to places like Mars.

The solar sail is also a good example of new technology, which is much different from conventional rockets, using the pressure of photons emitted from the Sun for propulsion, a very novel idea which is now being proven to be both possible and useful.

As in other facets of business and technology, competition will be a good thing, helping to bring out the best ideas and concepts from a larger knowledge pool, allowing the space industry to move more quickly and efficiently into the solar system and beyond. We may not have Star Trek-style warp speed yet, but the future is looking bright for space exploration, a future that can be better shared by all of us.

Guest Post: NASA’s Sample Return Robot Challenge

Editor’s note: This guest post was written by Andy Tomaswick, an electrical engineer who follows space science and technology.

Imagine a rover on the Moon nimbly gliding around boulders and crevices until it finds something that looks interesting. It stops to pick up a sample and then rushes back to its home platform only to venture out again soon. Now imagine that it was doing all of this without any humans telling it to.

That’s the idea behind NASA’s new Sample Return Robot Challenge, part of its Centennial Challenge program. The space agency announced a potential $1.5 million prize for what it terms “an autonomous robotic system to locate and collect a set of specific sample types from a large planetary analog area and then return the samples to the starting zone.”


NASA recently released a set of rules that requires the participating robots to go big. Like 80,000 square meters big. That’s the amount of area of rough terrain, complete with trees and creeks, the autonomous bots will have to cover in order to find different samples spread randomly throughout.

Teams will collect those samples during two different levels of competition. Level one will require the participants to retrieve a randomly placed sample with a distinct packaging. The second level, and the one that pays the most cash prizes, requires the recovery of different types of samples, including ones specifically designed to test a team’s pattern recognition skills.

The competition is open to everyone and teams have until the end of the year to register. The event is expected to be held next year at Worcester Polytechnic Institute in Massachusetts. If one a team manages to win the prize, NASA’s dream of autonomous rovers won’t be too far off.

Source: NASA

Test Flight of DARPA’s Hypersonic Plane Ends in Crash

Artist rendition of DARPA's Falcon HTV-2 hypersonic aircraft. Credit: DARPA

[/caption]

The potential to fly anywhere in the world in less than an hour took a nosedive today. The test flight of an unmanned, rocket-launched, Mach 20-capable, maneuverable aircraft called the Falcon Hypersonic Technology Vehicle 2 (HTV-2) ended when an anomaly caused loss of signal, and the plane crashed into the Pacific Ocean. Overseen by DARPA, the Defence Advanced Research Projects Agency, this second test flight of the HTV-2 seemingly started out well, as the Minotaur IV launch vehicle successfully inserted the aircraft into the correct trajectory, and the aircraft transitioned to Mach 20 aerodynamic flight. It flew for 9 minutes until it encountered problems and crashed.

Despite the crash, DARPA said the successful transition “represents a critical knowledge and control point in maneuvering atmospheric hypersonic flight.”

“Here’s what we know,” said Air Force Maj. Chris Schulz, DARPA HTV-2 program manager in a statement put out by DARPA. “We know how to boost the aircraft to near space. We know how to insert the aircraft into atmospheric hypersonic flight. We do not yet know how to achieve the desired control during the aerodynamic phase of flight. It’s vexing; I’m confident there is a solution. We have to find it.”
From launch until crash, the flight lasted for about a half an hour.

DARPA’s Falcon is designed to fly anywhere in the world in less than 60 minutes. This capability requires an aircraft that can fly at 13,000 mph, while experiencing temperatures in excess of 3500F.

During the first test flight of HTV-2 on April 23, 2010, telemetry was lost 9 minutes into the flight. A subsequent investigation found that the vehicle encountered unexpected yaw, followed by an uncontrollable roll. The onboard computer then set the vehicle to crash into the ocean.

“In the April 2010 test, we obtained four times the amount of data previously available at these speeds,” said DARPA Director Regina Dugan. “Today more than 20 air, land, sea and space data collection systems were operational. We’ll learn. We’ll try again. That’s what it takes. Filling the gaps in our understanding of hypersonic flight in this demanding regime requires that we be willing to fly.”

The military had hopes of using this type of super-fast plane to reach problem spots around the world quickly.

DARPA said that in the coming weeks, an independent Engineering Review Board will review and analyze the data collected. This data will inform policy, acquisition and operational decisions for future -hypersonic aircraft of this kind. It’s not clear yet whether any development of Falcon HTV-2 will continue.

This is the second major hypersonic setback of 2011. In June, the Boeing X-51 waverider failed when its scramjet encountered a problem on engine startup.

Source: DARPA

NIAC is Back: NASA Funds 30 Innovative Ideas that Just Might Work

Where will new space technology take us? Credit: NASA

[/caption]
What do these three things have in common: space debris elimination using an air gun, a heat shield made from lunar regolith and lightweight space structures made from ultra-light nanomaterials called “Photonic Muscle?”

They are just three of thirty new concepts that NASA has provided funding to move innovative ideas from formulation to implementation under the NASA Innovative Advanced Concepts, or NIAC, program. Some of the concepts are new ways of dealing with persistent problems; others are completely new ideas, with some in the category that sound so crazy, they just might work.

“These advanced concepts selected for study under NIAC were chosen based on their potential to transform or significantly alter our current approaches to launching future space missions, or building and operating space systems,” said Dr. Bobby Braun, NASA’s Chief Technologist, during a teleconference on Aug. 8, 2011.

NIAC—formerly known as the NASA Institute for Advanced Concepts – is back after being cut in 2007 due to budget constraints. The program began in 1998 and the closure of the think-tank-type of program was cause for dismay by those who believed part of NASA’s mission is to spur research and innovation.

“This was previously an outstanding program at NASA and I am excited to be part of the team that is bringing NIAC back,” said Braun. “This is really part of a small change going on within NASA to take it back to its roots with a focus on advanced technology and innovation.”

Braun added that technology and innovation goes hand in hand with space exploration. “Visionary thinking is important for maintaining our leadership in space,” he said.

Each proposal will receive approximately $100,000 for one year to advance the innovative space technology concept and help NASA meet operational and future mission requirements.

NASA received over 150 different proposals for funding, and the 30 were chosen based on their technical merits and their potential to mature into the transformative capabilities NASA is looking for to improve current space mission operations.

“Some of the proposals are risky, somewhat out-of-the-box ideas and very advanced system concepts that have the potential to revolutionize our missions in the future,” said Joe Parrish, director of the Early Stage Innovation division at NASA’s Office of the Chief Technologist in the Space Technology division. “We recognize that in order to make big gains, sometimes we are going to accept some risks. NIAC is the greatest example of an effort to really look at very far-reaching activities and consciously and willingly take risks and look for big rewards to those risks.”

Some of the winning proposals include advanced propulsion and power systems for space, protecting humans from radiation in space, 3-D printing to construct mini spacecraft, and using flywheels to power a spacesuit.

“The most meritorious proposals allow us to look at many ways to address these problems, any of which would be breakthrough technologies,” said Parrish.

These first “new” NIAC projects were chosen based on being technically substantiated, and they could hopefully mature within about 10 years from mission infusion.

NASA anticipates the funding starting dates to be in early September 2011. “We hope to have NIAC studies on an annual basis, and concepts that do well in their first year could receive up $500,000 for up to two years of additional research,” said Jay Falker, NIAC program executive.

The previous NIAC allowed only non-NASA employees to apply, but the new incarnation permits NASA-based personnel to seek funding for their ideas.

In 2008, the National Research Council conducted a review of NIAC’s effectiveness and made concluded that NASA and the US would be well served by maintaining a mechanism to investigate visionary, far-reaching advanced concepts as part of the agency’s mission. Following an October 2009 hearing by the U.S. House of Representatives Subcommittee on Space and Aeronautics, NASA re-established the NIAC program during fiscal year 2011.

Some of the avant-garde and risky ideas funded under the previous NIAC included the space elevator — a cable to ferry equipment from Earth into orbit — and a solar shield to be unfurled in space to deflect sunlight and counter global warming.

The new concepts announced yesterday include both well-known issues and completely new designs. For example, space debris is a well-identified issue that NASA’s been working on, but using an air gun from a high altitude balloon to shoot pulses into the upper atmosphere to slow down debris is “an approach that’s completely novel to a problem we’ve known about,” Falker said.

See the complete list of winning concepts here. Got an idea? More information about NIAC can be found here.

Over the next few weeks, we hope to feature several of these concepts in more detail.

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

New Webb Telescope Technologies Already Helping Human Eyes

Image of the Scanning Shack Hartmann System (SSHS), a pair of large mirror test stations used to measure the mirror segments of the Webb telescope. As part of that SSHS program, several improvements were made to the wavefront sensor technology that now allow eye health instruments to be aligned more precisely. Credit: Abbott Medical Optics Inc.

[/caption]

Editor’s note: This NASA press release provides just one example of how developing technology for space missions often has practical, beneficial and sometimes unintended applications on Earth.

Even while construction of the James Webb Space Telescope is underway on the most advanced infrared vision of any space observatory, its technologies are already proving useful to human eye health here on Earth.

“The Webb telescope program has enabled a number of improvements in measurement technology for astronomy, mirror fabrication, and measurement of human eyes, diagnosis of ocular diseases and potentially improved surgery,” said Dr. Dan Neal, Research Fellow at Abbott Medical Optics Inc. in Albuquerque, N.M.

The Webb telescope will be the most scientifically powerful telescope NASA has ever built — 100 times more powerful than the Hubble Space Telescope. The Webb telescope will find the first galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way Galaxy. It will also peer through dusty clouds to see stars and planets being born, connecting star formation in our own galaxy with the solar system.

“The advanced wavefront sensing technology developed for testing the Webb telescope’s 18 primary mirrors led to the new applications in other areas,” said Tony Hull of L3 Integrated Optical Systems Division-Tinsley Facility in Richmond, Calif., where the Webb’s mirrors were recently polished to accuracies of less than one millionth of an inch.

“Wavefront sensing” is used to measure shape of the mirrors during fabrication and control the optics once the telescope is in orbit.

Ophthalmologists routinely use wavefront technology to measure aberrations of the eye. Those measurements help with diagnosis, research, characterization and planning treatment of eye health issues.

“The technology also provides more accurate eye measurements for people about to undergo Laser Refractive Surgery,” Neal said. “To date 10-12 million eyes have been treated with Lasik procedures in the U.S. alone. As technology improves, so does the quality of these procedures.”

James Webb Space Telescope. Credit: NASA

A new “scanning and stitching” technology developed for the Webb telescope led to a number of innovative instrument concepts for more accurate measurement for contact lenses and intra-ocular lenses. Another benefit to eye health is that this technique can help “map” the topography of the eye more accurately.

Think of the surface of your eye as being as dented as the surface of the moon. Precise measurements of your eye’s surface are helpful when assessing eyes for contact lenses. The scanning and stitching technology improvements have enabled eye doctors to get much more detailed information about the shape and “topography” of your eye, and do it in seconds rather than hours. Four patents have been issued as result of innovations driven by the Webb telescope program. “These tools are now used to align and build the next generation of measuring devices for human eyes,” Neal said.

“The lasting impact of the Webb telescope may go beyond the vision of astronomers seeking to see the distant universe; the impact may be a better national technology base and better vision for people everywhere,” Hull said.

NASA’s Innovative Partnerships Program Office (IPPO) is making available wavefront sensing and adaptive optics technologies, procedures and lab equipment to private industry through its “Can you See it Now?” campaign. All of the technologies associated with the campaign are available for licensing and can be found at http://ipp.gsfc.nasa.gov/wavefront.

Iran Claims They’ve Built a Flying Saucer

The Zohal (lower right). Credit: Fars News Agency

[/caption]

Iran’s Fars News Agency revealed that the country has built an unmanned flying saucer, named “Zohal” (Saturn in Persian) which will be used for various missions including aerial imaging. UPDATE: thanks to reader Robert McCelland, we now have an actual picture of the Zohal instead of the hoaky flying saucer image that was included in the Fars article (see below). It is not really all that big — more like a remote controlled toy helicopter — but reportedly the Zohal is equipped with an auto-pilot system, GPS and two separate imaging systems with full HD 10 mega-pixel picture quality and is able to take and send images simultaneously. It was unveiled in a ceremony attended by Supreme Leader of the Islamic Revolution Ayatollah Seyed Ali Khamenei at an exhibition of strategic technologies.

No detailed specifications were supplied such as exact size and flight capabilities, (except that it can fly vertically) but the report said it could fly both indoors and outside.

The craft was designed and developed jointly by Farnas Aerospace Company and Iranian Aviation and Space Industries Association (IASIA).

The original image on the Fars site:

This image accompanied a news article in Iran about the country's own flying saucer.

New Amazingly Life-like Android Better Than Star Trek’s Data

Henrik Scharfe and his look-alike, the Geminoid DK. Credit: Geminoid DK

Even though the Star Trek character “Data” was played by a human, this new android might be more life-like. Watch the video, and I think you’ll agree that it is hard to tell (at first) that this is a robot. It’s called Geminoid DK, built by the Intelligent Robotics lab at Osaka University and designed by professor Hiroshi Ishiguro. Just like Data was modeled after his creator Doctor Noonian Soong, the Geminoid DK is created in the likeness of professor Henrik Scharfe of Aalborg University in Denmark. Not sure if it can whistle or if it remembers every fact to which it is exposed, but Geminoid DK has a better hairdo (and beard) than Data, and it can smile.


“All of the movements and expressions of Geminoid DK are remote controlled by an operator with a computer, who uses a motion-capture system that tracks facial expressions and head movements. Turn your head and the Geminoid does the same; move your mouth and the android follows suit,” IEEE Spectrum reports.

The Geminoid is going to be used for researching “emotional affordances” in human-robot interaction, the novel notion of “blended presence,” as well as cultural differences (from different continents) in the perception of robots.

This is the third in a series of life-like robots built by Ishiguro – the first was made to look like Ishiguro himself, the second resembled a young Japanese model. Ishiguro and Sharfe are working together on this latest robot project.

[/caption]

For more info see the Geminoid DK website.

Source: IEEE Spectrum via EarthSKy Blog

Navy Railgun Sets a New Record

*Gulp* If you haven’t seen this video yet, its worth a look. On December 10, 2010, the Office of Naval Research Electromagnetic Railgun fired a world-record setting 33 megajoule shot, breaking the previous record of 32 MJ. Railguns accelerate a conductive projectile along a pair of metal rails, and are being researched as weapons. The projectiles do not contain explosives, but with extremely high velocities can do quite a bit of damage. “Velocitas Eradico” indeed. (Speed destroys). Of course the other potential use for a railgun would be to launch payloads off Earth or the Moon. Make sure you watch the high-speed portion of the camera following the projectile along its flight. And you might flinch (I know I did!) in the portion where the projectile basically comes right at you.