It’s been over forty years since the Apollo Program wrapped up and the last crewed mission to the Moon took place. But in the coming years and decades, multiple space agencies plan to conduct crewed missions to the lunar surface. These includes NASA’s desire to return to the Moon, the ESA’s proposal to create an international Moon village, and the Chinese and Russian plans to send their first astronauts to the Moon.
For this reason, a great deal of research has been dedicated to what the health effects of long-duration missions to the Moon may be – particularly the effects a lower gravity environment would have on the human body. But in a recent study, a team of pharmacologists, geneticists and geoscientists consider how being exposed to lunar dust could have a serious effect on future astronauts’ lungs.
Because it has no atmosphere, the Moon’s surface has been pounded by meteors and micrometeroes for billions of years, which have created a fine layer of surface dust known as regolith. In addition, the Moon’s surface is constantly being bombarded by charged particles from the Sun, which cause the lunar soil to become electrostatically charged and stick to clothing.
Indications that lunar dust could cause health problems first emerged during the Apollo missions. After visiting the Moon, astronauts brought lunar soil back with them into the command module as it clung to their spacesuits. After inhaling the dust, Apollo 17 astronaut Harrison Schmitt described having symptoms akin to hay fever, which including sneezing, watery eyes and a sore throat.
While the symptoms were short-lived, researchers wanted to know what the long-term effects of lunar dust could be. There have also been indications that exposure to lunar dust could be harmful based on research that has shown how breathing dust from volcanic eruptions, dust storms and coal mines can cause bronchitis, wheezing, eye irritation and scarring of lung tissue.
Previous research has also shown that dust can cause damage to cells’ DNA, which can cause mutations and eventually lead to cancer. For these reasons, Caston and her colleagues were well-motivated to see what harmful effects lunar soil could have on the human body. For the sake of their study, the team exposed human lung cells and mouse brain cells to samples of simulated lunar soil.
These simulants were created by using dust samples from Earth that resemble soil found on the Moon’s lunar highlands and volcanic plains, which were then ground to a fine powder. What they found was that up to 90% of human lung cells and mouse neurons died when exposed to the dust samples. The simulants also caused significant DNA damage to mouse neurons, and the human lung cells were so effectively damaged that it was impossible to measure any damage to the cells’ DNA.
The results show that breathing lunar dust (even in minute quantities) could pose a serious health hazard to astronauts traveling to any airless bodies in the future. This includes not only the Moon, but also Mars and other terrestrial bodies like Mercury. Until now, this health hazard has been largely overlooked by space agencies seeking to understand the long-term health risks of space travel.
“There are risks to extraterrestrial exploration, both lunar and beyond, more than just the immediate risks of space itself,” said Rachel Caston. According to Bruce Demple, a biochemist at Stony Brook University School of Medicine and senior author of the new study, their results (coupled with the experience of the Apollo astronauts) indicate that prolonged exposure to lunar dust could impair airway and lung function.
What’s worse, he also indicated that if the dust induces inflammation in the lungs, it could increase the risk of more serious diseases like cancer. “If there are trips back to the Moon that involve stays of weeks, months or even longer, it probably won’t be possible to eliminate that risk completely,” he said.
Ergo, any attempts to mitigate the risks of mounting crewed missions to the Moon, Mars, and beyond will have to take into account exposure to not only low-gravity and radiation, but also electrostatically charged soil. Aside from limiting the duration of missions and the number of EVAs, certain protective counter-measures may need to be incorporated into any plans for long-duration missions.
One possibility is to have astronauts cycle through an airlock that would also spray their suits with water or a compound designed to neutralize the charge, thus washing them clean of dust before they enter the main habitat. Otherwise, astronauts working in the International Lunar Village (or any other off-world habitat for that matter) may have to wear breathing masks the entire time they are not in a spacesuit.
For some time, scientists have known that the Moon and Mars have some fascinating similarities to Earth. In addition to being similar in composition, there is ample evidence that both bodies had active geological pasts. This includes stable lava tubes which are very similar to those that exist here on Earth. And in the future, these tubes could be an ideal location for outposts and colonies.
However, before we can begin choosing where to settle, these locations need to be mapped out to determining which would be suitable for human habitation. Luckily, a team of speleologists (cave specialists), geologists and ESA astronauts recently created the largest 3D image of a lava tube ever created. As part of the ESA’s PANGAEA program, this technology could one day help scientists map out cave systems on the Moon and Mars.
The lava tube in question was the La Cueva de Los Verdes, a famous tourist destination in Lanzarote, Spain. In addition to ESA astronaut Matthias Mauer, the team consisted of Tommaso Santagata (a speleologist from the University of Padova and the co-founder of the Virtual Geographic Agency), Umberto Del Vecchio and Marta Lazzaroni – a geologists and a masters student from the University of Padova, respectively.
For five days in November 2017, this campaign mobilized 50 people, four space agencies and 18 organizations in five different locations. The La Cueva de los Verdes lava tube was of particular importance since it is one of the world’s largest volcanic cave complexes, measuring roughly 8 km in length. Some of these caves are even large enough to accommodate residential streets and houses.
During the campaign, Mauer, Santagata, Vecchio and Lazzaroni relied on two instruments to map the lava tube in detail. These included the Pegasus Backpack, a wearable mapping solution that collects geometric data without a satellite ad synchronizes images collected by five cameras and two 3D imaging laser profilers, and the Leica BLK360 – the smallest and lightest imaging scanner on the market.
In less than three hours, the team managed to map all the contours of the lava tube. And while the results of the campaign continue to be analyzed, the team chose to use the data they obtained to produce a 3D visual of all the twists and turns of the lava tube. The scan that resulted covers a 1.3 km section of the cave system with an unprecedented resolution of a few centimeters.
Santagata and the Virtual Geography Agency also turned their 3D visual into a lovely video titled “Lave tube fly-through”, which beautifully illustrates the winding and organic nature of the lava tube system. This video was posted to the ESA’s twitter feed on Tuesday, March 13th (shown above). This video, like the scans that preceded it, represent a breakthrough in geological mapping and astronaut training.
While lava tubes have been mapped since the 1970s, a clear view of this subterranean passage has remained elusive until now. Beyond being the first, the scans the team conducted could also help scientists to study the origins of the cave system, its peculiar formations, and assist local institutions in protecting the subterranean environment. As intended, the scans could also assist future space exploration and colonization efforts.
For instance, the 8 km lava tube has both dry and water-filled sections. In the six-kilometer dry section, the lava tube has natural openings (jameos), that are aligned along the top of the cave pathway. These formations are very similar to “skylights” that have been observed on the Moon and Mars, which are holes in the surface that open into stable lava tubes.
Such structures are considered to be a good place for building outposts and colonies since they are naturally shielded from radiation and micrometeorites. Lava tubes also have a constant temperature, therefore offering protection against environmental extremes, and could provide access to underground sources of water ice. Some sections could also be sealed off and pressurized to create a colony.
As such, exploring such environments here on Earth is a good way to train astronauts to explore them on other bodies. As all astronauts know, mapping an environment is the first step in exploration, especially when you are looking for a place to establish a base camp. And in time, this information can be used to establish more permanent settlements, giving rise to eventual colonization.
On September 8th, 2016, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission was launched into space. In the coming months, this space probe will approach and then rendezvous with the asteroid 101955 Bennu – a Near-Earth Object (NEO) – for the sake of studying it. The mission will also acquire samples of the asteroid, which will be returned to Earth by 2023.
The OSIRIS-REx mission is an historic one, since it will be the first US spacecraft to conduct a sample-return mission with an asteroid. In the meantime, as the probe has makes its way further into space, it has been providing some truly breathtaking images of the journey. Consider the recently-released composite image of the Earth-Moon system, which NASA created using images that were taken by the probe on October 2nd, 2017.
The images were all taken by the probe’s MapCam instrument, a medium-range camera designed to capture images of outgassing around Bennu and help map its surface in color. On this occasion, it snapped three beautiful pictures of Earth and the Moon. These images were all taken when the spacecraft was at a distance of approximately 5 million km (3 million mi) from Earth – about 13 times the distance between the Earth and the Moon.
As part of the OSIRIS-REx Camera Suite (OCAMS), which is operated by researchers at the University of Arizona, the CapCam has four color filters. To produce the image, three of them (b, v and w) were used as a blue, green and red filters and then stacked on top of each other. The Earth and Moon were each color-corrected, and the Moon was brightened to make it more easily visible.
A second image of planet Earth (shown above), was taken on September 22nd, 2017, by one of the probe’s navigational cameras (NavCam 1). As the name suggests, this instrument is intended to help OSIRIS-REx orient itself while making its journey to Bennu and while it studies the asteroid. This is done by tracking starfields in space (while in transit) and landmarks on Bennu’s surface once it has arrived.
The image was taken when OSIRIS-REx was at a distance of 110,000 km (69,000 mi) from Earth. This was just after the probe had completed an Earth gravity-assist maneuver, where it used Earth’s gravitational force to slingshot around its equator and pick up more speed. The original image (shown below) was rotated so that the North Pole would be pointed up and the entire image was enlarged to provide more detail.
As you can see in the altered image, North America is visible on the upper right portion, while Hurricane Maria and the remnants of Hurricane Jose are visible in the far upper-right. The acquisition of these images was the result of painstaking calculations and planning, which were performed in advance by engineers and navigation specialists on the mission team using software called Systems Tool Kit (STK).
These plans were developed to ensure that the probe would be able to snap pictures with precise timing, which were then uploaded to the spacecraft’s computer weeks ahead of time. Within hours of the probe executing its gravity-assist maneuver, crews on the ground were treated to the first images from the spacecraft’s navigational cameras, which confirmed that the probe was following the right path.
The probe is scheduled to reach Bennu in December of 2018, with approach operations commencing this coming August. Bennu is also expected to make a close pass with Earth several centuries from now, and could even collide with us by then. But for the time being, it represents a major opportunity to study the history and evolution of the Solar System, since it is essentially a remnant left over from its formation.
By studying this asteroid up close, and bringing samples back to Earth for further study, the OSRIS-REx mission could help us understand how life began on Earth and where the Solar System as a whole is headed. But in the meantime, the probe has been able to provide us with some beautiful snapshots of Earth, which serve to remind us all of certain things.
Much like Voyager 1‘s “Pale Blue Dot” photo, seeing Earth from space helps to drive home the fact that life is rare and precious. It also reminds us that we, as a species, are all in this together and completely and utterly dependent on our planet and its ecosystems. Once in awhile, we need to be reminded of these things. Otherwise, we might do some stupid – like ruin it!
Finding planets beyond our Solar System is already tough, laborious work. But when it comes to confirmed exoplanets, an even more challenging task is determining whether or not these worlds have their own satellites – aka. “exomoons”. Nevertheless, much like the study of exoplanets themselves, the study of exomoons presents some incredible opportunities to learn more about our Universe.
Of all possible candidates, the most recent (and arguably, most likely) one was announced back in July 2017. This moon, known as Kepler-1625 b-i, orbits a gas giant roughly 4,000 light years from Earth. But according to a new study, this exomoon may actually be a Neptune-sized gas giant itself. If true, this will constitute the first instance where a gas giant has been found orbiting another gas giant.
Within the Solar System, moons tell us much about their host planet’s formation and evolution. In the same way, the study of exomoons is likely to provide insight into extra-solar planetary systems. As Dr. Heller explained to Universe Today via email, these studies could also shed light on whether or not these systems have habitable planets:
“Moons have proven to be extremely helpful to study the formation and evolution of the planets in the solar system. The Earth’s Moon, for example, was key to set the initial astrophysical conditions, such as the total mass of the Earth and the Earth’s primordial spin state, for what has become our habitable environment. As another example, the Galilean moons around Jupiter have been used to study the conditions of the primordial accretion disk around Jupiter from which the planet pulled its mass 4.5 billion years ago. This accretion disk has long gone, but the moons that formed within the disk are still there. And so we can use the moons, in particular their contemporary composition and water contents, to study planet formation in the far past.”
When it comes to the Kepler-1625 star system, previous studies were able to produce estimates of the radii of both Kepler-1625 b and its possible moon, based on three observed transits it made in front of its star. The light curves produced by these three observed transits are what led to the theory that Kepler-1625 had a Neptune-size exomoon orbiting it, and at a distance of about 20 times the planet’s radius.
But as Dr. Heller indicated in his study, radial velocity measurements of the host star (Kepler-1625) were not considered, which would have produced mass estimates for both bodies. To address this, Dr. Heller considered various mass regimes in addition to the planet and moon’s apparent sizes based on their observed signatures. Beyond that, he also attempted to place the planet and moon into the context of moon formation in the Solar System.
The first step, accroding to Dr. Heller, was to conduct estimates of the possible mass of the exomoon candidate and its host planet based on the properties that were shown in the transit lightcurves observed by Kepler.
“A dynamical interpretation of the data suggests that the host planet is a roughly Jupiter-sized (“size” in terms of radius) brown dwarf with a mass of almost 18 Jupiter masses,” he said. “The uncertainties, however, are very large mostly due to the noisiness of the Kepler data and due to the low number of transits (three). In fact, the host object could be a Jupiter-like planet or even be a moderate-sized brown dwarf of up to 37 Jupiter masses. The mass of the moon candidate ranges somewhere between a super-Earth of a few Earth masses and Neptune’s mass.”
Next, Dr. Heller compared the relative mass of the exomoon candidate and Kepler-1625 b and compared this value to various planets and moons of the Solar System. This step was necessary because the moons of the Solar System show two distinct populations, based the mass of the planets compared to their moon-to-planet mass ratios. These comparisons indicate that a moon’s mass is closely related to how it formed.
For instance, moons that formed through impacts – such as Earth’s Moon, and Pluto’s moon Charon – are relatively heavy, whereas moons that formed from a planet’s accretion disk are relatively light. While Jupiter’s moon Ganymede is the most massive moon in the Solar System, it is rather diminutive and tiny compared to Jupiter itself – the largest and most massive body in the Solar System.
In the end, the results Dr. Heller obtained proved to be rather interesting. Basically, they indicated that Kepler-1625 b-i cannot be definitively placed in either of these families (heavy, impact moons vs. lighter, accretion moons). As Dr. Heller explained:
“[T]]he most reasonable scenarios suggest that the moon candidate is more of the heavy kind, which suggests it should have formed through an impact. However, this exomoon, if real, is most likely gaseous. The solar system moons are all rocky/icy bodies without a significant gas envelope (Titan has a thick atmosphere but its mass is negligible). So how would a gas giant moon have formed through an impact? I don’t know. I don’t know if anybody knows.
“Alternatively, in a third scenario, Kepler-1625 b-i could have formed through capture, but this implies a very unlikely progenitor planetary binary system, from which it was pulled into a bound orbit around Kepler-1625 b, while its former planetary companion was ejected from the system.”
What was equally interesting were the mass estimates for Keple-1625 b, which Dr. Heller averaged to be 19 Jupiter masses, but could be as high as 112 Jupiter Masses. This means that the host planet could be anything from a gas giant that is just slightly larger than Saturn to a Brown Dwarf or even a Very-Low-Mass-Star (VLMS). So rather than a gas giant moon orbiting a gas giant, we could be dealing with a gas giant moon orbiting a small star, which together orbit a larger star!
It’s the stuff science fiction is made of! And while this study cannot provide exact mass constraints on Keplder-1625 b and its possible moon, its significance cannot be denied. Beyond providing astrophysicists with the first possible example of a gas giant moon, this study is of immense significance as far as the study of exoplanet systems is concerned. If and when Kepler-1625 b-i is confirmed, it will tell us much about the conditions under which its host formed.
In the meantime, more observations are needed to confirm or rule out the existence of this moon. Fortunately, these observations will be taking place in the very near future. When Kepler-1625 b makes it next transit – on October 29th, 2017 – the Hubble Space Telescope will be watching! Based on the light curves it observes coming from the star, scientist should be able to get a better idea of whether or not this mysterious moon is real and what it looks like.
“If the moon turns out to be a ghost in the data, then most of this study would not be applicable to the Kepler-1625 system,” said Dr. Heller. “The paper would nevertheless present an example study of how to classify future exomoons and how to put them into the context of the solar system. Alternatively, if Kepler-1625 b-i turns out to be a genuine exomoon, then my study suggests that we have found a new kind of moon that has a very different formation history than the moons we know as of today. Certainly an exquisite riddle for astrophysicists to solve.”
The study of exoplanet systems is like pealing an onion, albeit in a dark room with the lights turned off. With every successive layer scientists peel back, the more mysteries they find. And with the deployment of next-generation telescopes in the near future, we are bound to learn a great deal more!
Long before the Apollo missions reached the Moon, Earth’s only satellites has been the focal point of intense interest and research. But thanks to the samples of lunar rock that were returned to Earth by the Apollo astronauts, scientists have been able to conduct numerous studies to learn more about the Moon’s formation and history. A key research goal has been determining how much volatile elements the Moon possesses.
Intrinsic to this is determining how much water the Moon possesses, and whether it has a “wet” interior. If the Moon does have abundant sources of water, it will make establishing outposts there someday much more feasible. However, according to a new study by an international team of researchers, the interior of the Moon is likely very dry, which they concluded after studying a series of “rusty” lunar rock samples collected by the Apollo 16 mission.
Determining how rich the Moon is in terms of volatile elements and compounds – such as zinc, potassium, chlorine, and water – is important because it provides insight into how the Moon and Earth formed and evolved. The most-widely accepted theory is that Moon is the result of “catastrophic formation”, where a Mars-sized object (named Theia) collided with Earth about 4.5 billion years ago.
The debris kicked up by this impact eventually coalesced to form the Moon, which then moved away from Earth to assume its current orbit. In accordance with this theory, the Moon’s surface would have been an ocean of magma during its early history. As a result, volatile elements and compounds within the Moon’s mantle would have been depleted, much in the same way that the Earth’s upper mantle is depleted of these elements.
As Dr. Day explained in a Scripps Institution press statement:
“It’s been a big question whether the moon is wet or dry. It might seem like a trivial thing, but this is actually quite important. If the moon is dry – like we’ve thought for about the last 45 years, since the Apollo missions – it would be consistent with the formation of the Moon in some sort of cataclysmic impact event that formed it.”
For the sake of their study, the team examined a lunar rock named “Rusty Rock 66095” to determine the volatile content of the Moon’s interior. These rocks have mystified scientists since they were first brought back by the Apollo 16 mission in 1972. Water is an essential ingredient to rust, which led scientists to conclude that the Moon must have an indigenous source of water – something which seemed unlikely, given the Moon’s extremely tenuous atmosphere.
Using a new chemical analysis, Day and his colleagues determined the levels of istopically light zinc (Zn66) and heavy chlorine (Cl37), as well as the levels of heavy metals (uranium and lead) in the rock. Zinc was the key element here, since it is a volatile element that would have behaved somewhat like water under the extremely hot conditions that were present during the Moon’s formation.
Ultimately, the supply of volatiles and heavy metals in the sample support the theory that volatile enrichment of the lunar surface occurred as a result of vapor condensation. In other words, when the Moon’s surface was still an ocean of hot magma, its volatiles evaporated and escaped from the interior. Some of these then condensed and were deposited back on the surface as it cooled and solidified.
This would explain the volatile-rich nature of some rocks on the lunar surface, as well as the levels of light zinc in both the Rusty Rock samples and the previously-studied volcanic glass beads. Basically, both were enriched by water and other volatiles thanks to extreme outgassing from the Moon’s interior. However, these same conditions meant that most of the water in the Moon’s mantle would have evaporated and been lost to space.
This represents something of a paradox, in that it shows how rocks that contain water were formed in a very dry, interior part of the Moon. However, as Day indicated, it offers a sound explanation for an enduring lunar mystery:
“I think the Rusty Rock was seen for a long time as kind of this weird curiosity, but in reality, it’s telling us something very important about the interior of the moon. These rocks are the gifts that keep on giving because every time you use a new technique, these old rocks that were collected by Buzz Aldrin, Neil Armstrong, Charlie Duke, John Young, and the Apollo astronaut pioneers, you get these wonderful insights.”
These results contradict other studies that suggest the Moon’s interior is wet, one of which was recently conducted by researchers at Brown University. By combining data provided by Chandrayaan-1 and the Lunar Reconnaissance Orbiter (LRO) with new thermal profiles, the Brown research team concluded that lots of water exists within volcanic deposits on the Moon’s surface, which could also mean there are vast quantities of water in the Moon’s interior.
To these, Day emphasized that while these studies present evidence that water exists on the lunar surface, they have yet to offer a solid explanation for what mechanisms deposited it on the surface. Day and his colleague’s study also flies in the face of other recent studies, which claim that the Moon’s water came from an external source – either by comets which deposited it, or from Earth during the formation of the Earth-Moon system.
Those who believe that lunar water was deposited by comets cite the similarities between the ratios of hydrogen to deuterium (aka. “heavy hydrogen”) in both the Apollo lunar rock samples and known comets. Those who believe the Moon’s water came from Earth, on the other hand, point to the similarity between water isotopes on both the Moon and Earth.
In the end, future research is needed to confirm where all of the Moon’s water came from, and whether or not it exists within the Moon’s interior. Towards this end, one of Day’s PhD students – Carrie McIntosh – is conducting her own research into the lunar glass beads and the composition of the deposits. These and other research studies ought to settle the debate soon enough!
And not a moment too soon, considering that multiple space agencies hope to build a lunar outpost in the upcoming decades. If they hope to have a steady supply of water for creating hydrazene (rocket fuel) and growing plants, they’ll need to know if and where it can be found!
When it comes to the study of planets, moons, and stars, magnetic fields are kind of a big deal. Believed to be the result of convection in a planet, these fields can be the difference between a planet giving rise to life or becoming a lifeless ball of rock. For some time, scientists have known that has a Earth’s magnetic field, which is powered by a dynamo effect created by convection in its liquid, outer core.
Scientists have also long held that the Moon once had a magnetic field, which was also powered by convection in its core. Previously, it was believed that this field disappeared roughly 1 billion years after the Moon formed (ca. 3 to 3.5 billion years ago). But according to a new study from the Massachusetts Institute of Technology (MIT), it now appears that the Moon’s magnetic field continued to exist for another billion years.
The study, titled “A two-billion-year history for the lunar dynamo“, recently appeared in the journal Science Advances. Led by Dr. Sonia Tikoo, an Assistant Professor at Rutger’s University and a former researcher at MIT, the team analyzed ancient lunar rocks collected by NASA’s Apollo 15 mission. What they found was that the rock showed signs of a being in magnetic field when it was formed between 1 and 2.5 billion years ago.
The age of this rock sample means that it is significantly younger than others returned by the Apollo missions. Using a technique they developed, the team examined the sample’s glassy composition with a magnometer to determine its magnetic properties. They then exposed the sample to a lab-generated magnetic field and other conditions that were similar to those that existed on the Moon when the rock would have formed.
This was done by placing the rocks into a specially-designed oxygen-deprived oven, which was built with the help of Clement Suavet and Timothy Grove – two researchers from MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) and co-authors on the study. The team then exposed the rocks to a tenuous, oxygen-free environment and heated them to extreme temperatures.
As Benjamin Weiss – a professor of planetary sciences at EAPS – explained:
“You see how magnetized it gets from getting heated in that known magnetic field, then you compare that field to the natural magnetic field you measured beforehand, and from that you can figure out what the ancient field strength was… In this way, we finally have gotten an accurate measurement of the lunar field.”
From this, they determined the lunar rock became magnetized in a field with a strength of about 5 microtesla. That’s many times weaker than Earth’s magnetic field when measured from the surface (25 – 65 microteslas), and two orders of magnitude weaker than what it was 3 to 4 billion years ago. These findings were quite significant, since they may help to resolve an enduring mystery about the Moon.
Previously, scientists suspected that the Moon’s magnetic field died out 1.5 billion years after the Moon formed (ca. 3 billion years ago). However, they were unsure if this process happened rapidly, or if the Moon’s magnetic field endured, but in a weakened state. The results of this study indicate that the magnetic field did in fact linger for an additional billion years, dissipating about 2.5 billion years ago.
As Weiss indicated, this study raises new questions about the Moon’s geological history:
“The concept of a planetary magnetic field produced by moving liquid metal is an idea that is really only a few decades old. What powers this motion on Earth and other bodies, particularly on the moon, is not well-understood. We can figure this out by knowing the lifetime of the lunar dynamo.”
In other words, this new timeline of the Moon casts some doubt on the theory that a lunar dynamo alone is what powered its magnetic field in the past. Basically, it is now seen as a distinct possibility that the Moon’s magnetic field was powered by two mechanisms. Whereas one allowed for a dynamo in the core that powered its magnetic field for a good billion years after the Moon’s formation, a second one kept it going afterwards.
In the past, scientists have proposed that the Moon’s dynamo was powered by Earth’s gravitational pull, which would have caused tidal flexing in the Moon’s interior (much in the same way that Jupiter and Saturn’s powerful gravity drives geological activity in their moons interiors). In addition, the Moon once orbited much closer to Earth, which may have been enough to power its once-stronger magnetic field.
However, the Moon gradually moved away from Earth, eventually reaching its current orbit about 3 billion years ago. This coincides with the timeline of the Moon’s magnetic field, which began to dissipate at about the same time. This could mean that by about 3 billion years ago, without the gravitational pull of the Earth, the core slowly cooled. One billion years later, the core had solidified to the point that it arrested the Moon;s magnetic field. As Weiss explained:
“As the moon cools, its core acts like a lava lamp – low-density stuff rises because it’s hot or because its composition is different from that of the surrounding fluid. That’s how we think the Earth’s dynamo works, and that’s what we suggest the late lunar dynamo was doing as well… Today the moon’s field is essentially zero. And we now know it turned off somewhere between the formation of this rock and today.”
These findings were made possible thanks in part by the availability of younger lunar rocks. In the future, the researchers are planning on analyzing even younger samples to precisely determine where the Moon’s dynamo died out completely. This will not only serve to validate the findings of this study, but could also lead to a more comprehensive timeline of the Moon’s geological history.
The results of these and other studies that seek to understand how the Moon formed and changed over time will also go a long way towards improving our understanding of how Earth, the Solar System, and extra-solar systems came to be.
Since the Apollo program wrapped up in the early 1970s, people all around the world have dreamed of the day when we might return to the Moon, and stay there. And in recent years, however, that actual proposals for a lunar settlement have begun to take shape. As a result, a great deal of attention and research has been focused on whether or not the Moon has indigenous sources of water.
Thanks to missions like Chandrayaan-1 and the Lunar Reconnaissance Orbiter (LRO), scientists know that there are vast amounts of surface ice on the Moon. However, according to a new study, researchers from Brown University have found evidence of widespread water within volcanic deposits on the lunar surface. These findings could indicate that there are also vast sources of water within the Moon’s interior.
For their study – titled “Remote Detection of Widespread Indigenous Water in Lunar Pyroclastic Deposits” – Brown researchers Ralph E. Milliken and Shuai Li combined satellite data with new thermal profiles to search for signs of water away from the polar regions. In so doing, they addressed a long-standing theory about the likelihood of water in the Moon’s interior, as well as the predominant theory of how the Moon formed.
As noted, scientists have known for years that there are large amounts of frozen water in the Moon’s polar regions. At the same time, however, scientists have held that the Moon’s interior must have depleted of water and other volatile compounds billions of years ago. This was based on the widely-accepted hypothesis that the Moon formed after a Mars-sized object (named Theia) collided with Earth and threw up a considerable amount of debris.
Essentially, scientists believed that it was unlikely that any hydrogen – necessary to form water – could have survived the heat of this impact. However, as of a decade ago, new scientific findings began to emerge that cast doubt on this. The first was a 2008 study, where a team of researches (led by Alberto Saal of Brown University) detected trace amounts of water in samples of volcanic glass that were bought back by the Apollo 15 and Apollo 17 missions.
This was followed by a 2011 study (also from Brown University) that indicated how crystalline structures within those beads contained as much water as some basalt mineral deposits here on Earth. These findings were particularly significant, in that they suggested that parts of the Moon’s mantle could contain as much water as Earth’s. The question though was whether these findings represented the norm, or an anomaly.
“The key question is whether those Apollo samples represent the bulk conditions of the lunar interior or instead represent unusual or perhaps anomalous water-rich regions within an otherwise ‘dry’ mantle. By looking at the orbital data, we can examine the large pyroclastic deposits on the Moon that were never sampled by the Apollo or Luna missions. The fact that nearly all of them exhibit signatures of water suggests that the Apollo samples are not anomalous, so it may be that the bulk interior of the Moon is wet.”
To resolve this, Milliken and Li consulted orbital data to examine lunar volcanic deposits for signs of water. Basically, orbiters use spectrometers to bounce light off the surfaces of planets and astronomical bodies to see which wavelengths of light are absorbed and which are reflected. This data is therefore able to determine what compounds and minerals are present based on the absorption lines detected.
Using this technique to look for signs of water in lunar volcanic deposits (aka. pyroclastic deposits), however, was a rather difficult task. During the day, the lunar surface heats up, especially in the latitudes where volcanic deposits are located. As Milliken explained, spectronomers will therefore pick up thermal energy in addition to chemical signatures which this can throw off the readings:
“That thermally emitted radiation happens at the same wavelengths that we need to use to look for water. So in order to say with any confidence that water is present, we first need to account for and remove the thermally emitted component.”
To correct for this, Milliken and Li constructed a detailed temperature profile of the areas of the Moon they were examining. They then examined surface data collected by the Moon Mineralogy Mapper, the spectrographic imager that was part of India’s Chandrayaan-1 mission. They then compared this thermally-corrected surface data to the measurements conducted on the samples returned from the Apollo missions.
What they found was that areas of the Moon’s surface that had been previously mapped showed evidence of water in nearly all the large pyroclastic deposits. This included the deposits that were near the Apollo 15 and 17 landing sites where the lunar samples were obtained. From this, they determined that these samples were not anomalous in nature, and that water is distributed across the lunar surface.
What’s more, these findings could indicate that the Moon’s mantle is water-rich as well. Beyond being good news for future lunar missions, and the construction of a lunar settlement, these results could lead to a rethinking of how the Moon formed. This research was part of Shuai Li’s – a recent graduate of the University of Brown and the lead author on the study – Ph.D thesis. As he said of the study’s findings:
“The growing evidence for water inside the Moon suggest that water did somehow survive, or that it was brought in shortly after the impact by asteroids or comets before the Moon had completely solidified. The exact origin of water in the lunar interior is still a big question.
What’s more, Li indicated that lunar water that is located in volcanic deposits could be a boon for future lunar missions. “Other studies have suggested the presence of water ice in shadowed regions at the lunar poles, but the pyroclastic deposits are at locations that may be easier to access,” he said. “Anything that helps save future lunar explorers from having to bring lots of water from home is a big step forward, and our results suggest a new alternative.”
Between NASA, the ESA, Roscosmos, the ISRO and the China National Space Administration (CNSA), there are no shortage of plans to explore the Moon in the future, not to mention establishing a permanent base there. Knowing there’s abundant surface water (and maybe more in the interior as well) is therefore very good news. This water could be used to create hydrazine fuel, which would significantly reduce the costs of individual missions to the Moon.
It also makes the idea of a stopover base on the Moon, where ships traveling deeper into space could refuel and resupply – a move which would shave billions off of deep-space missions. An abundant source of local water could also ensure a ready supply of drinking and irrigation water for future lunar outposts. This would also reduce costs by ensuring that not all supplies would need to be shipped from Earth.
On top of all that, the ability to conduct experiments into how plants grow in reduced gravity would yield valuable information that could be used for long-term missions to Mars and other Solar bodies. It could therefore be said, without a trace of exaggeration, that water on the Moon is the key to future space missions.
The Moon has been around since the earliest days of the Solar System. To human beings, there has never been a time when we couldn’t look up in the night sky and either see the Moon hanging there, or know that it would be back the very next night (i.e. a New Moon). And thanks to the development of modern astronomy and space exploration, our understanding of the Moon has grown immensely.
For instance, we know that the Moon formed early in Earth’s history, and that it may have played an important role in the development of life here on Earth. We’ve also learned that Moon is tidally-locked with Earth, which means that one side is constantly facing towards it. But how long is a day on the Moon? With one side facing the Earth and the other side facing out, what constitutes a single day on the lunar surface?
To break it down simply, a day on the Moon lasts as long as 29.5 Earth days. In other words, if you were standing on the surface of the Moon, it would take 29.5 days for the Sun to move all the way across the sky and return to its original position again. However, as with all bodies in the Solar System, distinguishing between different types of days (based on different types of periods) is necessary.
Orbit and Rotation:
Since ancient times, lunar calendars have been based on thirteen months of 28 days each, reflecting the lunar cycle. But as astronomers have discovered from centuries of studying the Moon’s behavior, the Moon’s orbital period (i.e. the time it takes for the Moon to complete a single orbit around the Earth) is actually the equivalent of about 27.3 Earth days – or 27 days 7 hours 43 minutes and 11.5 seconds, to be precise.
And while the Moon rotates on its own axis, the speed at which it rotates (aka. it’s sidereal rotation) is very slow. In fact, it takes the Moon the equivalent of 27.3 Earth days to complete a single rotation on its axis, the same amount of time it takes to complete a single orbit around Earth. What this means is that the Moon is tidally-locked with Earth.
In other words, the Moon always points the same face towards the Earth, which is why human beings are so familiar with the “face” of the Moon, and refer to the side that faces away from us as the “the dark side”. Therefore, if you were standing on the surface of the Moon, you would always see the Earth in exactly the same position, while the stars and the Sun would continue to move around in the sky.
Sidereal vs. Synodic Day:
However, the Moon’s sidereal rotation is not where we get a the value of a single lunar day from. While it takes 27.3 days for it to orbit the Earth, we have to keep in mind that the Earth is also orbiting the Sun. The Earth returns to its same position in orbit every 365 days. So in order for the Sun to catch up to its same position in the sky from the perspective of the Moon, it has to turn a little more.
The extra 2.2 days is the time for the Moon to catch up in its rotation. And while the amount of time the Moon takes to complete one turn on its axis with respect to the stars is 27.3 days (a sidereal day), the amount of time it takes for the Sun to return to the same position in the sky is called a synodic day, and that’s what takes 29.5 days.
Ergo, a single day on the Moon, with respect to the Sun returning to the same position in the sky, is actually about as long as an average month here on Earth. So if people are planning on living there someday, and aren’t living in the permanently shadowed craters that exist in the southern and norther polar regions, that’s something they might have to get used to.
As with all the bodies of the Solar System, it all comes down to a matter of perspective. And if you’re living on the Moon, your perspective on what constitutes a day will be vastly different from that of a person who was born on Earth.
Looking to the future of space exploration, there really is no question that it will involve a growing human presence in Low Earth Orbit (LEO). This will include not only successors to the International Space Station, but most likely commercial habitats and facilities. These will not only allow for ventures like space tourism, but will also facilitate missions that take us back to the Moon, to Mars, and even beyond.
With this purpose in mind, an interdisciplinary team of MIT graduate students designed a space habitat known as the Managed, Reconfigurable, In-space Nodal Assembly (MARINA). This module would serve as an privately-owned space station that would be occupied by two anchor-tenants for a period of ten years; a luxury hotel that would provide orbital accommodations, and NASA.
For their invention, the team won first prize in the graduate division of the Revolutionary Aerospace Systems Concepts-Academic Linkage Design Competition Forum (RASC-AL), a yearlong graduate-level competition hosted by NASA. This challenge involved designing a commercial module for use in low Earth orbit that could also serve as a Mars transit vehicle in the future.
Since 2002, RASC-AL competitions have sought to engage university students and advisors for the purpose of coming up with ideas that could enhancing future NASA missions. For this year’s competition, NASA asked teams to develop human spaceflight concepts that focused on operations in cislunar space – i.e. in, around, and beyond the Moon – that could also facilitate their proposed “Journey to Mars” by the 2030s.
Specifically, they were tasked with finding ways to leverage innovations and new technologies to improve humanity’s ability to work more effectively in microgravity. With this in mind, the themes for this year’s competition ranged from from the design of more efficient subsystems to the development of architectures that support NASA’s goal of extending humanity’s reach into space.
These included new designs for a Lightweight Exercise Suite, Airlock Design, concepts for a Commercially Enabled LEO/Mars Habitable Module, and concepts for a new Logistics Delivery System. As Pat Troutman, the Human Exploration Strategic Analysis lead at NASA’s Langley Research Center, said in a NASA press statement:
“We are carefully examining what it will take to establish a presence beyond low-Earth orbit, where astronauts will build and begin testing the systems needed for challenging missions to distant destinations, including Mars. The 2017 RASC-AL university teams have developed exciting concepts with supporting engineering analysis that may influence how future deep space infrastructure will look and operate.”
Led by Matthew Moraguez, a graduate student at MIT’s Department of Aeronautics and Astronautics (AeroAstro) and a member of the Strategic Engineering Research Group (SERG), the MIT team focused on the theme of creating a Commercially Enabled LEO Habitat Module. Their concept, which incorporates lessons that have been learned from the ISS, was designed with the needs of both the private and public space sectors in mind.
“Just like a yacht marina, MARINA can provide all essential services, including safe harbor, reliable power, clean water and air, and efficient logistics and maintenance. This will facilitate design simplicity and savings in construction and operating costs of customer-owned modules. It will also incent customers to lease space inside and outside MARINA’s node modules and make MARINA a self-funded entity that is attractive to investors.”
To meet their goals for the competition , the team came up with a modular design for MARINA that featured several key innovations. These included extensions to the International Docking System Standard (IDSS) interface (used aboard the ISS), modular architecture, and a distribution of subsystem functions throughout these modules. As Moraguez explained, their design will allow for some wide-ranging opportunities.
“Modularized service racks connect any point on MARINA to any other point via the extended IDSS interface,” he said. “This enables companies of all sizes to provide products and services in space to other companies, based on terms determined by the open market. Together these decisions provide scalability, reliability, and efficient technology development benefits to MARINA and NASA.”
Another important benefit comes in the form of cost-savings. According to NASA estimates, the recurring cost of MARINA will be about $360 million per year, which represents a significant reduction over the current costs of maintaining and operating the ISS. In total, it would offer NASA a savings of about $3 billion per year, which is approximately 16% of the agency’s annual budget.
But what is perhaps most interesting about the MARINA concept is the fact that it could serve as the world’s first space hotel. According to Valentina Suminia, a postdoc at MIT who contributed to the architectural concept, the space hotel will be “a luxury Earth-facing eight-room space hotel complete with bar, restaurant, and gym, will make orbital space holidays a reality.”
Other commercial features include serviced berths that would be rented out to accommodate customer-owned modules. This goes for the station’s interior modularized rack space as well, where smaller companies that provide contract services to on-board occupants would be able to rent out space. Would it be too much to ask that it also has robot butlers?
The RASCAL competition began in August of 2016 in Cocoa Beach, Florida, and concluded on June 2nd, 2017. The top overall honors were awarded to the teams from Virginia Tech and the University of Maryland for their space habitat concepts, known as Project Theseus and Ultima Thule, respectively.
Mercury was appropriately named after the Roman messenger of the Gods. This is owed to the fact that its apparent motion in the night sky was faster than that of any of the other planets. As astronomers learned more about this “messenger planet”, they came to understand that its motion was due to its close orbit to the Sun, which causes it to complete a single orbit every 88 days.
Mercury’s proximity to the Sun is merely one of its defining characteristics. Compared to the other planets of the Solar System, it experiences severe temperature variations, going from very hot to very cold. It’s also very rocky, and has no atmosphere to speak of. But to truly get a sense of how Mercury stacks up compared to the other planets of the Solar System, we need to a look at how Mercury compares to Earth.
Size, Mass and Orbit:
The diameter of Mercury is 4,879 km, which is approximately 38% the diameter of Earth. In other words, if you put three Mercurys side by side, they would be a little larger than the Earth from end to end. While this makes Mercury smaller than the largest natural satellites in our system – such as Ganymede and Titan – it is more massive and far more dense than they are.
In fact, Mercury’s mass is approximately 3.3 x 1023 kg (5.5% the mass of Earth) which means that its density – at 5.427 g/cm3 – is the second highest of any planet in the Solar System, only slightly less than Earth’s (5.515 g/cm3). This also means that Mercury’s surface gravity is 3.7 m/s2, which is the equivalent of 38% of Earth’s gravity (0.38 g). This means that if you weighed 100 kg (220 lbs) on Earth, you would weigh 38 kg (84 lbs) on Mercury.
Meanwhile, the surface area of Mercury is 75 million square kilometers, which is approximately 10% the surface area of Earth. If you could unwrap Mercury, it would be almost twice the area of Asia (44 million square km). And the volume of Mercury is 6.1 x 1010 km3, which works out to 5.4% the volume of Earth. In other words, you could fit Mercury inside Earth 18 times over and still have a bit of room to spare.
In terms of orbit, Mercury and Earth probably could not be more different. For one, Mercury has the most eccentric orbit of any planet in the Solar System (0.205), compared to Earth’s 0.0167. Because of this, its distance from the Sun varies between 46 million km (29 million mi) at its closest (perihelion) to 70 million km (43 million mi) at its farthest (aphelion).
This puts Mercury much closer to the Sun than Earth, which orbits at an average distance of 149,598,023 km (92,955,902 mi), or 1 AU. This distance ranges from 147,095,000 km (91,401,000 mi) to 152,100,000 km (94,500,000 mi) – 0.98 to 1.017 AU. And with an average orbital velocity of 47.362 km/s (29.429 mi/s), it takes Mercury a total 87.969 Earth days to complete a single orbit – compared to Earth’s 365.25 days.
However, since Mercury also takes 58.646 days to complete a single rotation, it takes 176 Earth days for the Sun to return to the same place in the sky (aka. a solar day). So on Mercury, a single day is twice as long as a single year. Meanwhile on Earth, a single solar day is 24 hours long, owing to its rapid rotation of 1674.4 km/h. Mercury also has the lowest axial tilt of any planet in the Solar System – approximately 0.027°, compared to Earth’s 23.439°.
Structure and Composition:
Much like Earth, Mercury is a terrestrial planet, which means it is composed of silicate minerals and metals that are differentiated between a solid metal core and a silicate crust and mantle. For Mercury, the breakdown of these elements is higher than Earth. Whereas Earth is primarily composed of silicate minerals, Mercury is composed of 70% metallic and 30% of silicate materials.
Also like Earth, Mercury’s interior is believed to be composed of a molten iron that is surrounded by a mantle of silicate material. Mercury’s core, mantle and crust measure 1,800 km, 600 km, and 100-300 km thick, respectively; while Earth’s core, mantle and crust measure 3478 km, 2800 km, and up to 100 km thick, respectively.
What’s more, geologists estimate that Mercury’s core occupies about 42% of its volume (compared to Earth’s 17%) and the core has a higher iron content than that of any other major planet in the Solar System. Several theories have been proposed to explain this, the most widely accepted being that Mercury was once a larger planet that was struck by a planetesimal that stripped away much of the original crust and mantle.
Surface Features:
In terms of its surface, Mercury is much more like the Moon than Earth. It has a dry landscape pockmarked by asteroid impact craters and ancient lava flows. Combined with extensive plains, these indicate that the planet has been geologically inactive for billions of years.
Names for these features come from a variety of sources. Craters are named for artists, musicians, painters, and authors; ridges are named for scientists; depressions are named after works of architecture; mountains are named for the word “hot” in different languages; planes are named for Mercury in various languages; escarpments are named for ships of scientific expeditions, and valleys are named after radio telescope facilities.
During and following its formation 4.6 billion years ago, Mercury was heavily bombarded by comets and asteroids, and perhaps again during the Late Heavy Bombardment period. Due to its lack of an atmosphere and precipitation, these craters remain intact billions of years later. Craters on Mercury range in diameter from small bowl-shaped cavities to multi-ringed impact basins hundreds of kilometers across.
The largest known crater is Caloris Basin, which measures 1,550 km (963 mi) in diameter. The impact that created it was so powerful that it caused lava eruptions on the other side of the planet and left a concentric ring over 2 km (1.24 mi) tall surrounding the impact crater. Overall, about 15 impact basins have been identified on those parts of Mercury that have been surveyed.
Earth’s surface, meanwhile, is significantly different. For starters, 70% of the surface is covered in oceans while the areas where the Earth’s crust rises above sea level forms the continents. Both above and below sea level, there are mountainous features, volcanoes, scarps (trenches), canyons, plateaus, and abyssal plains. The remaining portions of the surface are covered by mountains, deserts, plains, plateaus, and other landforms.
Mercury’s surface shows many signs of being geologically active in the past, mainly in the form of narrow ridges that extend up to hundreds of kilometers in length. It is believed that these were formed as Mercury’s core and mantle cooled and contracted at a time when the crust had already solidified. However, geological activity ceased billions of years ago and its crust has been solid ever since.
Meanwhile, Earth is still geologically active, owning to convection of the mantle. The lithosphere (the crust and upper layer of the mantle) is broken into pieces called tectonic plates. These plates move in relation to one another and interactions between them is what causes earthquakes, volcanic activity (such as the “Pacific Ring of Fire“), mountain-building, and oceanic trench formation.
Atmosphere and Temperature:
When it comes to their atmospheres, Earth and Mercury could not be more different. Earth has a dense atmosphere composed of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. Earth’s atmosphere is also primarily composed of nitrogen (78%) and oxygen (21%) with trace concentrations of water vapor, carbon dioxide, and other gaseous molecules.
Because of this, the average surface temperature on Earth is approximately 14°C, with plenty of variation due to geographical region, elevation, and time of year. The hottest temperature ever recorded on Earth was 70.7°C (159°F) in the Lut Desert of Iran, while the coldest temperature was -89.2°C (-129°F) at the Soviet Vostok Station on the Antarctic Plateau.
Mercury, meanwhile, has a tenuous and variable exosphere that is made up of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor, with a combined pressure level of about 10-14 bar (one-quadrillionth of Earth’s atmospheric pressure). It is believed this exosphere was formed from particles captured from the Sun, volcanic outgassing and debris kicked into orbit by micrometeorite impacts.
Because it lacks a viable atmosphere, Mercury has no way to retain the heat from the Sun. As a result of this and its high eccentricity, the planet experiences far more extreme variations in temperature than Earth does. Whereas the side that faces the Sun can reach temperatures of up to 700 K (427° C), the side that is in darkness can reach temperatures as low as 100 K (-173° C).
Despite these highs in temperature, the existence of water ice and even organic molecules has been confirmed on Mercury’s surface. The floors of deep craters at the poles are never exposed to direct sunlight, and temperatures there remain below the planetary average. In this respect, Mercury and Earth have something else in common, which is the presence of water ice in its polar regions.
Magnetic Fields:
Much like Earth, Mercury has a significant, and apparently global, magnetic field, one which is about 1.1% the strength of Earth’s. It is likely that this magnetic field is generated by a dynamo effect, in a manner similar to the magnetic field of Earth. This dynamo effect would result from the circulation of the planet’s iron-rich liquid core.
Mercury’s magnetic field is strong enough to deflect the solar wind around the planet, thus creating a magnetosphere. The planet’s magnetosphere, though small enough to fit within Earth, is strong enough to trap solar wind plasma, which contributes to the space weathering of the planet’s surface.
All told, Mercury and Earth are in stark contrast. While both are terrestrial in nature, Mercury is significantly smaller and less massive than Earth, though it has a similar density. Mercury’s composition is also much more metallic than that of Earth, and its 3:2 orbital resonance results in a single day being twice as long as a year.
But perhaps most stark of all are the extremes in temperature variations that Mercury goes through compared to Earth. Naturally, this is due to the fact that Mercury orbits much closer to the Sun than the Earth does and has no atmosphere to speak of. And its long days and long nights also mean that one side is constantly being baked by the Sun, or in freezing darkness.