For millennia, human beings stared up at the night sky and were held in awe by the Moon. To many ancient cultures, it represented a deity, and its cycles were accorded divine significance. By the time of Classical Antiquity and the Middle Ages, the Moon was considered to be a heavenly body that orbited Earth, much like the other known planets of the day (Mercury, Venus, Mars, Jupiter, and Saturn).
However, our understanding of moons was revolutionized when in 1610, astronomer Galileo Galilei pointed his telescope to Jupiter and noticed ” four wandering stars” around Jupiter. From this point onward, astronomers have come to understand that planets other than Earth can have their own moons – in some cases, several dozen or more. So just how many moons are there in the Solar System?
In truth, answering that question requires a bit of clarification first. If we are talking about confirmed moons that orbit any of the planets of the Solar System (i.e. those that are consistent with the definition adopted by the IAU in 2006), then we can say that there are currently 207 known moons. If however, we open the floor to “dwarf planets” that have confirmed satellites, the number reached 220.
However, 479 minor-planet moons have also been observed in the Solar System (as of Dec. 2022). This includes the 229 known objects in the asteroid belt with satellites, six Jupiter Trojans, 91 near-Earth objects (two with two satellites each), 31 Mars-crossers, and 84 natural satellites of Trans-Neptunian Objects. And some 150 additional small bodies have been observed within the rings of Saturn. If we include all these, then we can say that the Solar System has 849 known satellites.
Inner Solar System:
The planets of the Inner Solar system – Mercury, Venus, Earth, and Mars – are all terrestrial planets, which means that they are composed of silicate rock and minerals that are differentiated between a metallic core and a silicate mantle and crust. For a number of reasons, few satellites exist within this region of the Solar System.
All told, only three natural satellites exist orbiting planetary bodies in the Inner Solar System – Earth and Mars. While scientists theorize that there were moons around Mercury and Venus in the past, it is believed that these moons impacted the surface a long time ago. The reason for this sparseness of satellites has a lot to do with the gravitational influence of the Sun.
Both Mercury and Venus are too close to the Sun to have grabbed onto a passing object or held onto rings of debris in orbit that could have coalesced to form a satellite over time. In Mercury’s case, it is also too weak in terms of its own gravitational pull to grab a satellite in its orbit. Earth and Mars were able to retain satellites, but mainly because they are the outermost of the Inner planets.
Earth has only one natural satellite, which we are familiar with – the Moon. With a mean radius of 1737 km (1,080 mi) and a mass of 7.3477 x 10²² kg, the Moon is 0.273 times the size of Earth and 0.0123 as massive, which is quite large for a satellite. It is also the second densest moon in our Solar System (after Io), with a mean density of 3.3464 g/cm³.
Several theories have been proposed for the formation of the Moon. The prevailing hypothesis today is that the Earth-Moon system formed as a result of an impact between the newly-formed proto-Earth and a Mars-sized object (named Theia) roughly 4.5 billion years ago. This impact would have blasted material from both objects into orbit, where it eventually accreted to form the Moon.
Mars, meanwhile, has two moons – Phobos and Deimos. Like our own Moon, both of the Martian moons are tidally locked to Mars, so they always present the same face to the planet. Compared to our Moon, they are rough and asteroid-like in appearance and also much smaller. Hence the prevailing theory is that they were once asteroids that were kicked out of the Main Belt by Jupiter’s gravity and were then acquired by Mars.
The larger moon is Phobos, whose name comes from the Greek word which means “fear” (i.e. phobia). Phobos measures just 22.7 km (14 mi) across and has an orbit that places it closer to Mars than Deimos. Compared to Earth’s own Moon — which orbits at a distance of 384,403 km (238,857 mi) away from our planet — Phobos orbits at an average distance of only 9,377 km (5,826.5 mi) above Mars.
Mars’ second moon is Deimos, which takes its name from the Greek word for panic. It is even smaller, measuring just 12.6 km (7.83 mi) across, and is also less irregular in shape. Its orbit places it much farther away from Mars, at a distance of 23,460 km (14,577 mi), which means that Deimos takes 30.35 hours to complete an orbit around Mars.
These three moons are the sum total of moons to be found within the Inner Solar System (at least, by the conventional definition). But looking further abroad, we see that this is really just the tip of the iceberg. To think we once believed that the Moon was the only one of its kind!
Outer Solar System:
Beyond the Asteroid Belt (and Frost Line), things become quite different. In this region of the Solar System, every planet has a substantial system of Moons; in the case of Jupiter and Saturn, reaching perhaps even into the hundreds. So far, a total of 213 moons have been confirmed orbiting the Outer Planets, while several hundred more orbit minor bodies and asteroids.
Due to its immense size, mass, and gravitational pull, Jupiter has the most satellites of any planet in the Solar System. At present, the Jovian system includes 80 known moons, though it is estimated that it may have over 200 moons and moonlets (the majority of which are yet to be confirmed and classified).
The four largest Jovian moons are known as the Galilean Moons (named after their discoverer, Galileo Galilei). They include Io, the most volcanically active body in our Solar System; Europa, which is suspected of having a massive subsurface ocean; Ganymede, the largest moon in our Solar System; and Callisto, which is also thought to have a subsurface ocean and features some of the oldest surface material in the Solar System.
Then there’s the Inner Group (or Amalthea group), which is made up of four small moons that have diameters of less than 200 km (124 mi), orbit at radii less than 200,000 km (124,275 mi), and have orbital inclinations of less than half a degree. This group includes the moons of Metis, Adrastea, Amalthea, and Thebe. Along with a number of as-yet-unseen inner moonlets, these moons replenish and maintain Jupiter’s faint ring system.
Jupiter also has an array of Irregular Satellites, which are substantially smaller and have more distant and eccentric orbits than the others. These moons are broken down into families that have similarities in orbit and composition and are believed to be largely the result of collisions from large objects that were captured by Jupiter’s gravity.
Similar to Jupiter, it is estimated that Saturn has at least 150 moons and moonlets, but only 83 of these moons have been given official names or designations. Of these, 57 are less than 10 km (6.2 mi) in diameter, and another 13 are between 10 and 50 km (6.2 to 31 mi) in diameter. However, some of its inner and outer moons are rather large, ranging from 250 to over 5000 km (155 to 3100 mi)
Traditionally, most of Saturn’s moons have been named after the Titans of Greek mythology and are grouped based on their size, orbits, and proximity to Saturn. The innermost moons and regular moons all have small orbital inclinations and eccentricities and prograde orbits. Meanwhile, the irregular moons in the outermost regions have orbital radii of millions of kilometers, orbital periods lasting several years, and move in retrograde orbits.
The Inner Large Moons, which orbit within the E Ring, include the larger satellites MimasEnceladus, Tethys, and Dione. These moons are all composed primarily of water ice and are believed to be differentiated into a rocky core and an icy mantle and crust. The Large Outer Moons, which orbit outside of Saturn’s E Ring, are similar in composition to the Inner Moons – i.e. composed primarily of water ice, and rock.
At 5,150 km (3,200 mi) in diameter and 1,350×1020 kg in mass, Titan is Saturn’s largest moon and comprises more than 96% of the mass in orbit around the planet. Titan is also the only large moon to have its own atmosphere, which is cold, dense, and composed primarily of nitrogen with a small fraction of methane. Scientists have also noted the presence of polycyclic aromatic hydrocarbons in the upper atmosphere, as well as methane ice crystals.
The surface of Titan, which is difficult to observe due to persistent atmospheric haze, shows only a few impact craters, evidence of cryo-volcanoes, and longitudinal dune fields that were apparently shaped by tidal winds. Titan is also the only body in the Solar System aside from Earth to have bodies of liquid on its surface. These take the form of methane–ethane lakes in Titan’s north and south polar regions.
Uranus has 27 known satellites, which are divided into the categories of larger moons, inner moons, and irregular moons (similar to other gas giants). The largest moons of Uranus are, in order of size, Miranda, Ariel, Umbriel, Oberon, and Titania. These moons range in diameter and mass from 472 km (293 mi) and 6.7×1019 kg for Miranda to 1578 km (980.5 mi) and 3.5×1021 kg for Titania. Each of these moons is particularly dark, with low bond and geometric albedos. Ariel is the brightest, while Umbriel is the darkest.
All of the large moons of Uranus are believed to have formed in the accretion disc, which existed around Uranus for some time after its formation or resulted from the large impact suffered by Uranus early in its history. Each one is comprised of roughly equal amounts of rock and ice, except for Miranda, which is made primarily of ice.
The ice component may include ammonia and carbon dioxide, while the rocky material is believed to be composed of carbonaceous material, including organic compounds (similar to asteroids and comets). Their compositions are believed to be differentiated, with an icy mantle surrounding a rocky core.
Neptune has 14 known satellites, all but one of which are named after Greek and Roman deities of the sea (except for S/2004 N 1, which is currently unnamed). These moons are divided into two groups – the regular and irregular moons – based on their orbit and proximity to Neptune. Neptune’s Regular Moons – Naiad, Thalassa, Despina, Galatea, Larissa, S/2004 N 1, and Proteus – are those that are closest to the planet and which follow circular, prograde orbits that lie in the planet’s equatorial plane.
Neptune’s irregular moons consist of the planet’s remaining satellites (including Triton). They generally follow inclined eccentric and often retrograde orbits far from Neptune. The only exception is Triton, which orbits close to the planet, following a circular orbit, though retrograde and inclined.
In order of their distance from the planet, the irregular moons are Triton, Nereid, Halimede, Sao, Laomedeia, Neso, and Psamathe – a group that includes both prograde and retrograde objects. With the exception of Triton and Nereid, Neptune’s irregular moons are similar to those of other giant planets and are believed to have been gravitationally captured by Neptune.
With a mean diameter of around 2,700 km (1,678 mi) and a mass of 21,4080 ± 520×1017 kg, Triton is the largest of Neptune’s moons and the only one large enough to achieve hydrostatic equilibrium (i.e. is spherical in shape). At a distance of 354,759 km (220,437 mi) from Neptune, it also sits between the planet’s inner and outer moons.
These moons make up the lion’s share of natural satellites found in the Solar System. However, thanks to ongoing exploration and improvements made in our instrumentation, satellites are being discovered in orbit around minor bodies as well.
Dwarf Planets and Other Bodies:
As already noted, there are several dwarf planets, TNOs, and other bodies in the Solar System that also have their own moons. These consist mainly of the natural satellites that have been confirmed orbiting Pluto, Eris, Haumea, and Makemake. With five orbiting satellites, Pluto has the most confirmed moons (though that may change with further observation).
The largest and closest in orbit to Pluto is Charon. This moon was first identified in 1978 by astronomer James Christy using photographic plates from the United States Naval Observatory (USNO) in Washington, D.C. Beyond Charon lies the four other circumbinary moons – Styx, Nix, Kerberos, and Hydra, respectively.
Nix and Hydra were discovered simultaneously in 2005 by the Pluto Companion Search Team using the Hubble Space Telescope. The same team discovered Kerberos in 2011. The fifth and final satellite, Styx, was discovered by the New Horizons spacecraft in 2012 while capturing images of Pluto and Charon.
Charon, Styx, and Kerberos are all massive enough to have collapsed into a spheroid shape under their own gravity. Nix and Hydra, meanwhile, are oblong in shape. The Pluto-Charon system is unusual since it is one of the few systems in the Solar System whose barycenter lies above the primary’s surface. In short, Pluto and Charon orbit each other, causing some scientists to claim that it is a “double-dwarf system” instead of a dwarf planet and an orbiting moon.
In addition, it is unusual in that each body is tidally locked to the other. Charon and Pluto always present the same face to each other, and from any position on either body, the other is always at the same position in the sky or always obscured. This also means that the rotation period of each is equal to the time it takes the entire system to rotate around its common center of gravity.
In 2007, observations by the Gemini Observatory of patches of ammonia hydrates and water crystals on the surface of Charon suggested the presence of active cryo-geysers. This would seem to indicate that Pluto has a warm subsurface ocean and that the core is geologically active. Pluto’s moons are believed to have been formed by a collision between Pluto and a similar-sized body early in the history of the Solar System. The collision released material that consolidated into the moons around Pluto.
Coming in second is Haumea, which has two known moons – Hi’iaka and Namaka – which are named after the daughters of the Hawaiian goddess. Both were discovered in 2005 by Brown’s team while conducting observations of Haumea at the W.M. Keck Observatory. Hi’iaka, which was initially nicknamed “Rudolph” by the Caltech team, was discovered on January 26th, 2005.
It is the outer, the larger (at roughly 310 km (mi) in diameter), and brighter of the two, and orbits Haumea in a nearly circular path every 49 days. Infrared observations indicate that its surface is almost entirely covered by pure crystalline water ice. Because of this, Brown and his team have speculated that the moon is a fragment of Haumea that broke off during a collision.
Namaka, the smaller and innermost of the two, was discovered on June 30th, 2005, and nicknamed “Blitzen”. It is a tenth the mass of Hi‘iaka and orbits Haumea in 18 days in a highly elliptical orbit. Both moons circle Haumea is highly eccentric orbits. No estimates have been made yet as to their mass.
Eris has one moon called Dysnomia, named after the daughter of Eris in Greek mythology, and was first observed on September 10th, 2005 – a few months after the discovery of Eris. The moon was spotted by a team using the Keck telescopes in Hawaii, who were busy carrying out observations of the four brightest TNOs (Pluto, Makemake, Haumea, and Eris) at the time.
In April 2016, observations using the Hubble Space Telescope‘s Wide Field Camera 3 revealed that Makemake had a natural satellite – which was designated S/2015 (136472) 1 (nicknamed MK 2 by the discovery team). It is estimated to be 175 km (110 mi) km in diameter and has a semi-major axis at least 21,000 km (13,000 mi) from Makemake.
Largest and Smallest Moons:
The title of “largest moon in the Solar System” goes to Ganymede, which measures 5,262.4 kilometers (3,270 mi) in diameter. This not only makes it larger than Earth’s Moon but larger even than the planet Mercury – though it has only half of Mercury’s mass. As for the smallest satellite, that is a tie between S/2003 J 9 and S/2003 J 12. These two satellites, both of which orbit Jupiter, measure about 1 km (0.6 mi) in diameter.
An important thing to note when discussing the number of known moons in the Solar System is that the key word here is “known”. With every passing year, more satellites are being confirmed, and the vast majority of those we now know about were only discovered in the past few decades. As our exploration efforts continue and our instruments improve, we may find that there are hundreds more lurking around out there!
In 1610, Italian astronomer Galileo Galilei looked up at the heavens using a telescope of his making. And what he saw would forever revolutionize the field of astronomy, our understanding of the Universe, and our place in it. Centuries later, Galileo’s is still held in such high esteem; not only for the groundbreaking research he conducted, but because of his immense ingenuity in developing his own research tools.
And at the center of it all is Galileo’s famous telescope, which still inspires curiosity centuries later. How exactly did he invent it. How exactly was it an improvement on then-current designs? What exactly did he see with it when he looked up at the night sky? And what has become of it today? Luckily, all of these are questions we are able to answer.
Description:
Galileo’s telescope was the prototype of the modern day refractor telescope. As you can see from this diagram below, which is taken from Galileo’s own work – Sidereus Nuncius (“The Starry Messenger”) – it was a simple arrangement of lenses that first began with optician’s glass fixed to either end of a hollow cylinder.
Galileo had no diagrams to work from, and instead relied on his own system of trial and error to achieve the proper placement of the lenses. In Galileo’s telescope the objective lens was convex and the eye lens was concave (today’s telescopes make use of two convex lenses). Galileo knew that light from an object placed at a distance from a convex lens created an identical image on the opposite side of the lens.
He also knew that if he used a concave lens, the object would appear on the same side of the lens where the object was located. If moved at a distance, it appeared larger than the object. It took a lot of work and different arrangements to get the lens the proper sizes and distances apart, but Galileo’s telescope remained the most powerful and accurately built for a great many years.
History of Galileo’s Telescope:
Naturally, Galileo’s telescope had some historical antecedents. In the late summer of 1608, a new invention was all the rage in Europe – the spyglass. These low power telescopes were likely made by almost all advanced opticians, but the very first was credited to Hans Lippershey of Holland. These primitive telescopes only magnified the view a few times over.
Much like our modern times, the manufacturers were quickly trying to corner the market with their invention. But Galileo Galilei’s friends convinced his own government to wait – sure that he could improve the design. When Galileo heard of this new optical instrument he set about engineering and making improved versions, with higher magnification.
Galileo’s telescope was similar to how a pair of opera glasses work – a simple arrangement of glass lenses to magnify objects. His first versions only improved the view to the eighth power, but Galileo’s telescope steadily improved. Within a few years, he began grinding his own lenses and changing his arrays. Galileo’s telescope was now capable of magnifying normal vision by a factor of 10, but it had a very narrow field of view.
However, this limited ability didn’t stop Galileo from using his telescope to make some amazing observations of the heavens. And what he saw, and recorded for posterity, was nothing short of game-changing.
What Galileo Observed:
One fine Fall evening, Galileo pointed his telescope towards the one thing that people thought was perfectly smooth and as polished as a gemstone – the Moon. Imagine his surprise when found that it, in his own words, was “uneven, rough, full of cavities and prominences.” Galileo’s telescope had its flaws, such as a narrow field of view that could only show about one quarter of the lunar disk without repositioning.
Nevertheless, a revolution in astronomy had begun! Months passed, and Galileo’s telescope improved. On January 7th, 1610, he turned his new 30 power telescope towards Jupiter, and found three small, bright “stars” near the planet. One was off to the west, the other two were to the east, and all three were in a straight line. The following evening, Galileo once again took a look at Jupiter, and found that all three of the “stars” were now west of the planet – still in a straight line!
And there were more discoveries awaiting Galileo’s telescope: the appearance of bumps next to the planet Saturn (the edges of Saturn’s rings), spots on the Sun’s surface (aka. Sunspots), and seeing Venus change from a full disk to a slender crescent. Galileo Galilei published all of these findings in a small book titled Sidereus Nuncius (“The Starry Messenger”) in 1610.
While Galileo was not the first astronomer to point a telescope towards the heavens, he was the first to do so scientifically and methodically. Not only that, but the comprehensive notes he took on his observations, and the publication of his discoveries, would have a revolutionary impact on astronomy and many other fields of science.
Galileo’s Telescope Today:
Today, over 400 years later, Galileo’s Telescope still survives under the constant care of the Istituto e Museo di Storia della Scienza (renamed the Museo Galileo in 2010) in Italy. The Museum holds exhibitions on Galileo’s telescope and the observations he made with it. The displays consist of these rare and precious instruments – including the objective lens created by the master and the only two existing telescopes built by Galileo himself.
Thanks to Galileo’s careful record keeping, craftsmen around the world have recreated Galileo’s telescope for museums and replicas are now sold for amateurs and collectors as well. Despite the fact that astronomers now have telescopes of immense power at their disposal, many still prefer to go the DIY route, just like Galileo!
Few scientists and astronomers have had the same impact Galileo had. Even fewer are regarded as pioneers in the sciences, or revolutionary thinkers who forever changed humanity’s perception of the heavens and their place within it. Little wonder then why his most prized instrument is kept so well preserved, and is still the subject of study over four centuries later.
We have written many interesting articles on Galileo here at Universe Today. Here’s
Planet Earth. That shiny blue marble that has fascinated humanity since they first began to walk across its surface. And why shouldn’t it fascinate us? In addition to being our home and the place where life as we know it originated, it remains the only planet we know of where life thrives. And over the course of the past few centuries, we have learned much about Earth, which has only deepened our fascination with it.
But how much does the average person really know about the planet Earth? You’ve lived on Planet Earth all of your life, but how much do you really know about the ground underneath your feet? You probably have lots of interesting facts rattling around in your brain, but here are 10 more interesting facts about Earth that you may, or may not know.
1. Plate Tectonics Keep the Planet Comfortable:
Earth is the only planet in the Solar System with plate tectonics. Basically, the outer crust of the Earth is broken up into regions known as tectonic plates. These are floating on top of the magma interior of the Earth and can move against one another. When two plates collide, one plate will subduct (go underneath another), and where they pull apart, they will allow fresh crust to form.
This process is very important, and for a number of reasons. Not only does it lead to tectonic resurfacing and geological activity (i.e. earthquakes, volcanic eruptions, mountain-building, and oceanic trench formation), it is also intrinsic to the carbon cycle. When microscopic plants in the ocean die, they fall to the bottom of the ocean.
Over long periods of time, the remnants of this life, rich in carbon, are carried back into the interior of the Earth and recycled. This pulls carbon out of the atmosphere, which makes sure we don’t suffer a runaway greenhouse effect, which is what happened on Venus. Without the action of plate tectonics, there would be no way to recycle this carbon, and the Earth would become an overheated, hellish place.
2. Earth is Almost a Sphere:
Many people tend to think that the Earth is a sphere. In fact, between the 6th cenury BCE and the modern era, this remained the scientific consensus. But thanks to modern astronomy and space travel, scientists have since come to understand that the Earth is actually shaped like a flattened sphere (aka. an oblate spheroid).
This shape is similar to a sphere, but where the poles are flattened and the equator bulges. In the case of the Earth, this bulge is due to our planet’s rotation. This means that the measurement from pole to pole is about 43 km less than the diameter of Earth across the equator. Even though the tallest mountain on Earth is Mount Everest, the feature that’s furthest from the center of the Earth is actually Mount Chimborazo in Ecuador.
3. Earth is Mostly Iron, Oxygen and Silicon:
If you could separate the Earth out into piles of material, you’d get 32.1 % iron, 30.1% oxygen, 15.1% silicon, and 13.9% magnesium. Of course, most of this iron is actually located at the core of the Earth. If you could actually get down and sample the core, it would be 88% iron. And if you sampled the Earth’s crust, you’d find that 47% of it is oxygen.
When astronauts first went into the space, they looked back at the Earth with human eyes for the first time. Based on their observations, the Earth acquired the nickname the “Blue Planet:. And it’s no surprise, seeing as how 70% of our planet is covered with oceans. The remaining 30% is the solid crust that is located above sea level, hence why it is called the “continental crust”.
5. The Earth’s Atmosphere Extends to a Distance of 10,000 km:
Earth’s atmosphere is thickest within the first 50 km from the surface or so, but it actually reaches out to about 10,000 km into space. It is made up of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. As a rule, air pressure and density decrease the higher one goes into the atmosphere and the farther one is from the surface.
The bulk of the Earth’s atmosphere is down near the Earth itself. In fact, 75% of the Earth’s atmosphere is contained within the first 11 km above the planet’s surface. However, the outermost layer (the Exosphere) is the largest, extending from the exobase – located at the top of the thermosphere at an altitude of about 700 km above sea level – to about 10,000 km (6,200 mi). The exosphere merges with the emptiness of outer space, where there is no atmosphere.
The exosphere is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules – including nitrogen, oxygen and carbon dioxide. The atoms and molecules are so far apart that the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or with the solar wind.
Want more planet Earth facts? We’re halfway through. Here come 5 more!
6. The Earth’s Molten Iron Core Creates a Magnetic Field:
The Earth is like a great big magnet, with poles at the top and bottom near to the actual geographic poles. The magnetic field it creates extends thousands of kilometers out from the surface of the Earth – forming a region called the “magnetosphere“. Scientists think that this magnetic field is generated by the molten outer core of the Earth, where heat creates convection motions of conducting materials to generate electric currents.
Be grateful for the magnetosphere. Without it, particles from the Sun’s solar wind would hit the Earth directly, exposing the surface of the planet to significant amounts of radiation. Instead, the magnetosphere channels the solar wind around the Earth, protecting us from harm. Scientists have also theorized that Mars’ thin atmosphere is due to it having a weak magnetosphere compared to Earth’s, which allowed solar wind to slowly strip it away.
7. Earth Doesn’t Take 24 Hours to Rotate on its Axis:
It actually takes 23 hours, 56 minutes and 4 seconds for the Earth to rotate once completely on its axis, which astronomers refer to as a Sidereal Day. Now wait a second, doesn’t that mean that a day is 4 minutes shorter than we think it is? You’d think that this time would add up, day by day, and within a few months, day would be night, and night would be day.
But remember that the Earth orbits around the Sun. Every day, the Sun moves compared to the background stars by about 1° – about the size of the Moon in the sky. And so, if you add up that little motion from the Sun that we see because the Earth is orbiting around it, as well as the rotation on its axis, you get a total of 24 hours.
This is what is known as a Solar Day, which – contrary to a Sidereal Day – is the amount of time it takes the Sun to return to the same place in the sky. Knowing the difference between the two is to know the difference between how long it takes the stars to show up in the same spot in the sky, and the it takes for the sun to rise and set once.
8. A year on Earth isn’t 365 days:
It’s actually 365.2564 days. It’s this extra .2564 days that creates the need for a Leap Year once ever four years. That’s why we tack on an extra day in February every four years – 2004, 2008, 2012, etc. The exceptions to this rule is if the year in question is divisible by 100 (1900, 2100, etc), unless it divisible by 400 (1600, 2000, etc).
9. Earth has 1 Moon and 2 Co-Orbital Satellites:
As you’re probably aware, Earth has 1 moon (aka. The Moon). Plenty is known about this body and we have written many articles about it, so we won’t go into much detail there. But did you know there are 2 additional asteroids locked into a co-orbital orbits with Earth? They’re called 3753 Cruithne and 2002 AA29, which are part of a larger population of asteroids known as Near-Earth Objects (NEOs).
The asteroid known as 3753 Cruithne measures 5 km across, and is sometimes called “Earth’s second moon”. It doesn’t actually orbit the Earth, but has a synchronized orbit with our home planet. It also has an orbit that makes it look like it’s following the Earth in orbit, but it’s actually following its own, distinct path around the Sun.
Meanwhile, 2002 AA29 is only 60 meters across and makes a horseshoe orbit around the Earth that brings it close to the planet every 95 years. In about 600 years, it will appear to circle Earth in a quasi-satellite orbit. Scientists have suggested that it might make a good target for a space exploration mission.
10. Earth is the Only Planet Known to Have Life:
We’ve discovered past evidence of water and organic molecules on Mars, and the building blocks of life on Saturn’s moon Titan. We can see amino acids in nebulae in deep space. And scientists have speculated about the possible existence of life beneath the icy crust of Jupiter’s moon Europa and Saturn’s moon Titan. But Earth is the only place life has actually been discovered.
But if there is life on other planets, scientists are building the experiments that will help find it. For instance, NASA just announced the creation of the Nexus for Exoplanet System Science (NExSS), which will spend the coming years going through the data sent back by the Kepler space telescope (and other missions that have yet to be launched) for signs of life on extra-solar planets.
Giant radio dishes are currently scan distant stars, listening for the characteristic signals of intelligent life reaching out across interstellar space. And newer space telescopes, such as NASA’s James Webb Telescope, the Transiting Exoplanet Survey Satellite (TESS), and the European Space Agency’s Darwin mission might just be powerful enough to sense the presence of life on other worlds.
But for now, Earth remains the only place we know of where there’s life. Now that is an interesting fact!
Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present to our guide to terraforming Jupiter’s Moons. Much like terraforming the inner Solar System, it might be feasible someday. But should we?
Fans of Arthur C. Clarke may recall how in his novel, 2010: Odyssey Two (or the movie adaptation called 2010: The Year We Make Contact), an alien species turned Jupiter into a new star. In so doing, Jupiter’s moon Europa was permanently terraformed, as its icy surface melted, an atmosphere formed, and all the life living in the moon’s oceans began to emerge and thrive on the surface.
As we explained in a previous video (“Could Jupiter Become a Star“) turning Jupiter into a star is not exactly doable (not yet, anyway). However, there are several proposals on how we could go about transforming some of Jupiter’s moons in order to make them habitable by human beings. In short, it is possible that humans could terraform one of more of the Jovians to make it suitable for full-scale human settlement someday.
Terraforming. Chances are you’ve heard that word uttered before, most likely in the context of some science fiction story. However, in recent years, thanks to renewed interest in space exploration, this word is being used in an increasingly serious manner. And rather than being talked about like a far-off prospect, the issue of terraforming other worlds is being addressed as a near-future possibility.
In recent years, we’ve heard luminaries like Elon Musk and Stephen Hawking claiming that humanity needs a “backup location” to ensure our survival, private ventures like Mars One enlisting thousands of volunteers to colonize the Red Planet, and space agencies like NASA, the ESA, and China discussing the prospect of long-term habitability on Mars or the Moon. From all indications, it looks like terraforming is yet another science-fiction concept that is migrating into the realm of science fact.
But just what does terraforming entail? Where exactly could we go about using this process? What kind of technology would we need? Does such technology already exist, or do we have to wait? How much in the way of resources would it take? And above all, what are the odds of it succeeding? Answering any or all of these questions requires a bit of digging. Not only is terraforming a time-honored concept, but as it turns out, humanity already has quite a bit of experience in this area!
Origin Of The Term:
To break it down, terraforming is the process whereby a hostile environment (i.e., a planet that is too cold, too hot, and/or has an unbreathable atmosphere) is altered to make it suitable for human life. This could involve modifying the temperature, atmosphere, surface topography, ecology, or all of the above to make a planet or moon more “Earth-like.”
The term was coined by Jack Williamson, an American science fiction writer who has also been called “the Dean of science fiction” (after the death of Robert Heinlein in 1988). The term appeared as part of a science-fiction story, titled “Collision Orbit,” published in the 1942 edition of the magazineAstounding Science Fiction. This is the first known mention of the concept, though there are examples of it appearing in fiction beforehand.
Terraforming in Fiction:
Science fiction is filled with examples of altering planetary environments to be more suitable to human life, many of which predate scientific studies by many decades. For example, in H.G. Wells’ War of the Worlds, he mentions at one point how the Martian invaders begin transforming Earth’s ecology for the sake of long-term habitation.
In Olaf Stapleton’s Last And First Men(1930), two chapters are dedicated to describing how humanity’s descendants terraform Venus after Earth becomes uninhabitable. In the process, they commit genocide against the native aquatic life. By the 1950s and 60s, due to the beginning of the Space Age, terraforming appeared in works of science fiction with increasing frequency.
One such example is Farmer in the Sky (1950) by Robert A. Heinlein. In this novel, Heinlein offers a vision of Jupiter’s moon Ganymede that is being transformed into an agricultural settlement. This was a very significant work, in that it was the first where the concept of terraforming is presented as a serious and scientific matter, rather than the subject of mere fantasy.
In 1951, Arthur C. Clarke wrote the first novel in which the terraforming of Mars was presented in fiction. Titled The Sands of Mars, the story involves Martian settlers heating up the planet by converting Mars’ moon Phobos into a second sun and growing plants that break down the Martian sands in order to release oxygen. In his seminal book 2001: A Space Odyssey – and its sequel,2010: Odyssey Two – Clarke presents a race of ancient beings (“Firstborn”) turning Jupiter into a second sun so that Europa will become a life-bearing planet.
Poul Anderson also wrote extensively about terraforming in the 1950s. In his 1954 novel, The Big Rain, Venus is altered through planetary engineering techniques over a very long period of time. The book was so influential that the term term “Big Rain” has since come to be synonymous with the terraforming of Venus. This was followed in 1958 by the Snows of Ganymede, where the Jovian moon’s ecology is made habitable through a similar process.
In Issac Asimov’s Robot series, colonization and terraforming are performed by a powerful race of humans known as “Spacers,” who conduct this process on fifty planets in the known universe. In his Foundation series, humanity has effectively colonized every habitable planet in the galaxy and terraformed them to become part of the Galactic Empire.
In 1984, James Lovelock and Michael Allaby wrote what is considered by many to be one of the most influential books on terraforming. Titled The Greening of Mars, the novel explores the formation and evolution of planets, the origin of life, and Earth’s biosphere. The terraforming models presented in the book actually foreshadowed future debates regarding the goals of terraforming.
In the 1990s, Kim Stanley Robinson released his famous trilogy that deals with the terraforming of Mars. Known as the Mars Trilogy – Red Mars, Green Mars, Blue Mars – this series centers on the transformation of Mars over the course of many generations into a thriving human civilization. This was followed up in 2012 with the release of 2312, which deals with the colonization of the Solar System – including the terraforming of Venus and other planets.
Countless other examples can be found in popular culture, ranging from television and print to films and video games.
Study of Terraforming:
In an article published by the journal Science in 1961, famed astronomer Carl Sagan proposed using planetary engineering techniques to transform Venus. This involved seeding the atmosphere of Venus with algae, which would convert the atmosphere’s ample supplies of water, nitrogen, and carbon dioxide into organic compounds and reduce Venus’ runaway greenhouse effect.
In 1973, he published an article in the journal Icarus titled “Planetary Engineering on Mars,” where he proposed two scenarios for transforming Mars. These included transporting low albedo material and/or planting dark plants on the polar ice caps to ensure it absorbed more heat, melted, and converted the planet to more “Earth-like conditions.”
In 1976, NASA addressed the issue of planetary engineering officially in a study titled “On the Habitability of Mars: An Approach to Planetary Ecosynthesis.” The study concluded that photosynthetic organisms, the melting of the polar ice caps, and the introduction of greenhouse gases could all be used to create a warmer, oxygen, and ozone-rich atmosphere. The first conference session on terraforming – referred to as “Planetary Modeling” at the time- was organized that same year.
And then in March of 1979, NASA engineer and author James Oberg organized the First Terraforming Colloquium – a special session at the Tenth Lunar and Planetary Science Conference, which is held annually in Houston, Texas. In 1981, Oberg popularized the concepts that were discussed at the colloquium in his book New Earths: Restructuring Earth and Other Planets.
In 1982, Planetologist Christopher McKay wrote “Terraforming Mars”, a paper for the Journal of the British Interplanetary Society. In it, McKay discussed the prospects of a self-regulating Martian biosphere, which included both the required methods for doing so and the ethics of it. This was the first time that the word terraforming was used in the title of a published article, and would henceforth become the preferred term.
This was followed by James Lovelock and Michael Allaby’s The Greening of Mars in 1984. This book was one of the first to describe a novel method of warming Mars, where chlorofluorocarbons (CFCs) are added to the atmosphere in order to trigger global warming. This book motivated biophysicist Robert Haynes to begin promoting terraforming as part of a larger concept known as Ecopoiesis.
Derived from the Greek words oikos (“house”) and poiesis (“production”), this word refers to the origin of an ecosystem. In the context of space exploration, it involves a form of planetary engineering where a sustainable ecosystem is fabricated from an otherwise sterile planet. As described by Haynes, this begins with the seeding of a planet with microbial life, which leads to conditions approaching that of a primordial Earth. This is then followed by the importation of plant life, which accelerates the production of oxygen, and culminates in the introduction of animal life.
There is also the concept where a usable part of a planet is enclosed in a dome in order to transform its environment, which is known as “paraterraforming”. This concept, originally coined by British mathematician Richard L.S. Talyor in his 1992 publication Paraterraforming – The worldhouse concept, could be used to terraform sections of several planets that are otherwise inhospitable, or cannot be altered in whole.
Potential Sites:
Within the Solar System, several possible locations exist that could be well-suited to terraforming. Consider the fact that besides Earth, Venus and Mars also lie within the Sun’s Habitable Zone (aka. “Goldilocks Zone”). However, owing to Venus’ runaway greenhouse effect, and Mars’ lack of a magnetosphere, their atmospheres are either too thick and hot or too thin and cold, to sustain life as we know it. However, this could theoretically be altered through the right kind of ecological engineering.
Other potential sites in the Solar System include some of the moons that orbit the gas giants. Several Jovian (i.e. in orbit of Jupiter) and Cronian (in orbit of Saturn) moons have an abundance of water ice, and scientists have speculated that if the surface temperatures were increased, viable atmospheres could be created through electrolysis and the introduction of buffer gases.
There is even speculation that Mercury and the Moon (or at least parts thereof) could be terraformed in order to be suitable for human settlement. In these cases, terraforming would require not only altering the surface but perhaps also adjusting their rotation. In the end, each case presents its own share of advantages, challenges, and likelihoods for success. Let’s consider them in order of distance from the Sun.
Inner Solar System:
The terrestrial planets of our Solar System present the best possibilities for terraforming. Not only are they located closer to our Sun, and thus in a better position to absorb its energy, but they are also rich in silicates and minerals – which any future colonies will need to grow food and build settlements. And as already mentioned, two of these planets (Venus and Mars) skirt the inner and outer edge of the Sun’s habitable zone.
Mercury: The vast majority of Mercury’s surface is hostile to life, where temperatures gravitate between extremely hot and cold – i.e. 700 K (427 °C; 800 °F) 100 K (-173 °C; -280 °F). This is due to its proximity to the Sun, the almost total lack of an atmosphere, and its very slow rotation. However, at the poles, temperatures are consistently low -93 °C (-135 °F) due to it being permanently shadowed.
The presence of water ice and organic molecules in the northern polar region has also been confirmed thanks to data obtained by the MESSENGER mission. Colonies could therefore be constructed in the regions, and limited terraforming (aka. paraterraforming) could take place. For example, if domes (or a single dome) of sufficient size could be built over the Kandinsky, Prokofiev, Tolkien, and Tryggvadottir craters, the northern region could be altered for human habitation.
Theoretically, this could be done by using mirrors to redirect sunlight into the domes which would gradually raise the temperature. The water ice would then melt, and when combined with organic molecules and finely ground sand, soil could be made. Plants could then be grown to produce oxygen, which combined with nitrogen gas, would produce a breathable atmosphere.
Venus: As “Earth’s Twin“, there are many possibilities and advantages to terraforming Venus. The first to propose this was Sagan with his 1961 article in Science. However, subsequent discoveries – such as the high concentrations of sulfuric acid in Venus’ clouds – made this idea unfeasible. Even if algae could survive in such an atmosphere, converting the extremely dense clouds of CO² into oxygen would result in an over-dense oxygen environment.
In addition, graphite would become a by-product of the chemical reactions, which would likely form into a thick powder on the surface. This would become CO² again through combustion, thus restarting the entire greenhouse effect. However, more recent proposals have been made that advocate using carbon sequestration techniques, which are arguably much more practical.
In these scenarios, chemical reactions would be relied on to convert Venus’ atmosphere to something breathable while also reducing its density. In one scenario, hydrogen and iron aerosol would be introduced to convert the CO² in the atmosphere into graphite and water. This water would then fall to the surface, where it will cover roughly 80% of the planet – due to Venus having little variation in elevation.
Another scenario calls for the introduction of vast amounts of calcium and magnesium into the atmosphere. This would sequester carbon in the form of calcium and magnesium carbonates. An advantage to this plan is that Venus already has deposits of both minerals in its mantle, which could then be exposed to the atmosphere through drilling. However, most of the minerals would have to come from off-world in order to reduce the temperature and pressure to sustainable levels.
Yet another proposal is to freeze the atmospheric carbon dioxide down to the point of liquefaction – where it forms dry ice – and letting it accumulate on the surface. Once there, it could be buried and would remain in a solid state due to pressure, and even mined for local and off-world use. And then there is the possibility of bombarding the surface with icy comets (which could be mined from one of Jupiter’s or Saturn’s moons) to create a liquid ocean on the surface, which would sequester carbon and aid in any other of the above processes.
Last, there is the scenario in which Venus’ dense atmosphere could be removed. This could be characterized as the most direct approach to thinning an atmosphere that is far too dense for human occupation. By colliding large comets or asteroids into the surface, some of the dense CO² clouds could be blasted into space, thus leaving less atmosphere to be converted.
A slower method could be achieved using mass drivers (aka. electromagnetic catapults) or space elevators, which would gradually scoop up the atmosphere and either lift it into space or fire it away from the surface. And beyond altering or removing the atmosphere, there are also concepts that call for reducing the heat and pressure by either limiting sunlight (i.e. with solar shades) or altering the planet’s rotational velocity.
The concept of solar shades involves using either a series of small spacecraft or a single large lens to divert sunlight from a planet’s surface, thus reducing global temperatures. For Venus, which absorbs twice as much sunlight as Earth, solar radiation is believed to have played a major role in the runaway greenhouse effect that has made it what it is today.
Such a shade could be space-based, located in the Sun-Venus L1 Lagrangian Point, where it would not only prevent some sunlight from reaching Venus but also serve to reduce the amount of radiation Venus is exposed to. Alternately, solar shades or reflectors could be placed in the atmosphere or on the surface. This could consist of large reflective balloons, sheets of carbon nanotubes or graphene, or low-albedo material.
Placing shades or reflectors in the atmosphere offers two advantages: for one, atmospheric reflectors could be built in-situ, using locally-sourced carbon. Second, Venus’ atmosphere is dense enough that such structures could easily float atop the clouds. However, the amount of material would have to be large and would have to remain in place long after the atmosphere had been modified. Also, since Venus already has highly reflective clouds, any approach would have to significantly surpass its current albedo (0.65) to make a difference.
Also, the idea of speeding up Venus’ rotation has been floating around as a possible means of terraforming. If Venus could be spun-up to the point where its diurnal (day-night) cycle is similar to Earth’s, the planet might just begin to generate a stronger magnetic field. This would have the effect of reducing the amount of solar wind (and hence radiation) from reaching the surface, thus making it safer for terrestrial organisms.
The Moon: As Earth’s closest celestial body, colonizing the Moon would be comparatively easy compared to other bodies. But when it comes to terraforming the Moon, the possibilities and challenges closely resemble those of Mercury. For starters, the Moon has an atmosphere that is so thin that it can only be referred to as an exosphere. What’s more, the volatile elements that are necessary for life are in short supply (i.e. hydrogen, nitrogen, and carbon).
These problems could be addressed by capturing comets that contain water ices and volatiles and crashing them into the surface. The comets would sublimate, dispersing these gases and water vapor to create an atmosphere. These impacts would also liberate water that is contained in the lunar regolith, which could eventually accumulate on the surface to form natural bodies of water.
The transfer of momentum from these comets would also get the Moon rotating more rapidly, speeding up its rotation so that it would no longer be tidally locked. A Moon that was sped up to rotate once on its axis every 24 hours would have a steady diurnal cycle, which would make colonization and adapting to life on the Moon easier.
There is also the possibility of paraterraforming parts of the Moon in a way that would be similar to terraforming Mercury’s polar region. In the Moon’s case, this would take place in the Shackleton Crater, where scientists have already found evidence of water ice. Using solar mirrors and a dome, this crater could be turned into a micro-climate where plants could be grown and a breathable atmosphere created.
Mars: When it comes to terraforming, Mars is the most popular destination. There are several reasons for this, ranging from its proximity to Earth, its similarities to Earth, and the fact that it once had an environment that was very similar to Earth’s – which included a thicker atmosphere and the presence of warm, flowing water on the surface. Lastly, it is currently believed that Mars may have additional sources of water beneath its surface.
In brief, Mars has a diurnal and seasonal cycle that are very close to what we experience here on Earth. In the former case, a single day on Mars lasts 24 hours and 40 minutes. In the latter case, and owing to Mars’ similarly-tilted axis (25.19° compared to Earth’s 23°), Mars experiences seasonal changes that are very similar to Earth’s. Though a single season on Mars lasts roughly twice as long, the temperature variation that results is very similar – ±178 °C (320°F) compared to Earth’s ±160 °C (278°F).
Beyond these, Mars would need to undergo vast transformations in order for human beings to live on its surface. The atmosphere would need to be thickened drastically, and its composition would need to be changed. Currently, Mars’ atmosphere is composed of 96% carbon dioxide, 1.93% argon, and 1.89% nitrogen, and the air pressure is equivalent to only 1% of Earth’s at sea level.
Above all, Mars lacks a magnetosphere, which means that its surface receives significantly more radiation than we are used to here on Earth. In addition, it is believed that Mars once had a magnetosphere and that the disappearance of this magnetic field led to the stripping of Mars’ atmosphere by solar wind. This in turn is what led Mars to become the cold, desiccated place it is today.
Ultimately, this means that in order for the planet to become habitable by human standards, its atmosphere would need to be significantly thickened and the planet significantly warmed. The composition of the atmosphere would need to change as well, from the current CO²-heavy mix to a nitrogen-oxygen balance of about 70/30. And above all, the atmosphere would need to be replenished every so often to compensate for the loss.
Luckily, the first three requirements are largely complementary, and present a wide range of possible solutions. For starters, Mars’ atmosphere could be thickened and the planet warmed by bombarding its polar regions with meteors. These would cause the poles to melt, releasing their deposits of frozen carbon dioxide and water into the atmosphere and triggering a greenhouse effect.
The introduction of volatile elements, such as ammonia and methane, would also help to thicken the atmosphere and trigger warming. Both could be mined from the icy moons of the outer Solar System, particularly from the moons of Ganymede, Callisto, and Titan. These could also be delivered to the surface via meteoric impacts.
After impacting on the surface, the ammonia ice would sublimate and break down into hydrogen and nitrogen – the hydrogen interacting with the CO² to form water and graphite, while the nitrogen acts as a buffer gas. The methane, meanwhile, would act as a greenhouse gas that would further enhance global warming. In addition, the impacts would throw tons of dust into the air, further fueling the warming trend.
In time, Mars’ ample supplies of water ice – which can be found not only in the poles but in vast subsurface deposits of permafrost – would all sublimate to form warm, flowing water. And with significantly increased air pressure and a warmer atmosphere, humans might be able to venture out onto the surface without the need for pressure suits.
However, the atmosphere will still need to be converted into something breathable. This will be far more time-consuming, as the process of converting the atmospheric CO² into oxygen gas will likely take centuries. In any case, several possibilities have been suggested, which include converting the atmosphere through photosynthesis – either with cyanobacteria or Earth plants and lichens.
Other suggestions include building orbital mirrors, which would be placed near the poles and direct sunlight onto the surface to trigger a cycle of warming by causing the polar ice caps to melt and release their CO² gas. Using dark dust from Phobos and Deimos to reduce the surface’s albedo, thus allowing it to absorb more sunlight, has also been suggested.
In short, there are plenty of options for terraforming Mars. And many of them, if not being readily available, are at least on the table…
Outer Solar System:
Beyond the Inner Solar System, there are several sites that would make for good terraforming targets as well. Particularly around Jupiter and Saturn, there are several sizable moons – some of which are larger than Mercury – that have an abundance of water in the form of ice (and in some cases, maybe even interior oceans).
At the same time, many of these same moons contain other necessary ingredients for functioning ecosystems, such as frozen volatiles – like ammonia and methane. Because of this, and as part of our ongoing desire to explore farther out into our Solar System, many proposals have been made to seed these moons with bases and research stations. Some plans even include possible terraforming to make them suitable for long-term habitation.
The Jovian Moons: Jupiter’s largest moons, Io, Europa, Ganymede, and Callisto – known as the Galileans, after their founder (Galileo Galilei) – have long been the subject of scientific interest. For decades, scientists have speculated about the possible existence of a subsurface ocean on Europa, based on theories about the planet’s tidal heating (a consequence of its eccentric orbit and orbital resonance with the other moons).
Analysis of images provided by the Voyager 1and Galileo probes added weight to this theory, showing regions where it appeared that the subsurface ocean had melted through. What’s more, the presence of this warm water ocean has also led to speculation about the existence of life beneath Europa’s icy crust – possibly around hydrothermal vents at the core-mantle boundary.
Because of this potential for habitability, Europa has also been suggested as a possible site for terraforming. As the argument goes, if the surface temperature could be increased, and the surface ice melted, the entire planet could become an ocean world. Sublimation of the ice, which would release water vapor and gaseous volatiles, would then be subject to electrolysis (which already produces a thin oxygen atmosphere).
However, Europa has no magnetosphere of its own and lies within Jupiter’s powerful magnetic field. As a result, its surface is exposed to significant amounts of radiation – 540 rem of radiation per day compared to about 0.0030 rem per year here on Earth – and any atmosphere we create would begin to be stripped away by Jupiter. Ergo, radiation shielding would need to be put in place that could deflect the majority of this radiation.
And then there is Ganymede, the third most-distant of Jupiter’s Galilean moons. Much like Europa, it is a potential site of terraforming and presents numerous advantages. For one, it is the largest moon in our Solar System, larger than our own moon and even larger than the planet Mercury. In addition, it also has ample supplies of water ice, is believed to have an interior ocean, and even has its own magnetosphere.
Hence, if the surface temperature were increased and the ice sublimated, Ganymede’s atmosphere could be thickened. Like Europa, it would also become an ocean planet, and its own magnetosphere would allow for it to hold on to more of its atmosphere. However, Jupiter’s magnetic field still exerts a powerful influence over the planet, which means radiation shields would still be needed.
Lastly, there is Callisto, the fourth-most distant of the Galileans. Here too, abundant supplies of water ice, volatiles, and the possibility of an interior ocean all point towards the potential for habitability. But in Callisto’s case, there is the added bonus of it being beyond Jupiter’s magnetic field, which reduces the threat of radiation and atmospheric loss.
The process would begin with surface heating, which would sublimate the water ice and Callisto’s supplies of frozen ammonia. From these oceans, electrolysis would lead to the formation of an oxygen-rich atmosphere, and the ammonia could be converted into nitrogen to act as a buffer gas. However, since the majority of Callisto is ice, it would mean that the planet would lose considerable mass and have no continents. Again, an ocean planet would result, necessitating floating cities or massive colony ships.
The Cronians Moons: Much like the Jovian Moons, Saturn’s Moons (also known as the Cronian) present opportunities for terraforming. Again, this is due to the presence of water ice, interior oceans, and volatile elements. Titan, Saturn’s largest moon, also has an abundance of methane that comes in liquid form (the methane lakes around its northern polar region) and in gaseous form in its atmosphere. Large caches of ammonia are also believed to exist beneath the surface ice.
Titan is also the only natural satellite to have a dense atmosphere (one and half times the pressure of Earth’s) and the only planet outside of Earth where the atmosphere is nitrogen-rich. Such a thick atmosphere would mean that it would be far easier to equalize pressure for habitats on the planet. What’s more, scientists believe this atmosphere is a prebiotic environment rich in organic chemistry – i.e. similar to Earth’s early atmosphere (only much colder).
As such, converting it to something Earth-like would be feasible. First, the surface temperature would need to be increased. Since Titan is very distant from the Sun and already has an abundance of greenhouse gases, this could only be accomplished through orbital mirrors. This would sublimate the surface ice, releasing ammonia beneath, which would lead to more heating.
The next step would involve converting the atmosphere to something breathable. As already noted, Titan’s atmosphere is nitrogen-rich, which would remove the need for introducing a buffer gas. And with the availability of water, oxygen could be introduced by generating it through electrolysis. At the same time, the methane and other hydrocarbons would have to be sequestered, in order to prevent an explosive mixture with the oxygen.
But given the thickness and multi-layered nature of Titan’s ice, which is estimated to account for half of its mass, the moon would be very much an ocean planet- i.e. with no continents or landmasses to build on. So once again, any habitats would have to take the form of either floating platforms or large ships.
Enceladus is another possibility, thanks to the recent discovery of a subsurface ocean. Analysis by the Cassini space probe of the water plumes erupting from its southern polar region also indicated the presence of organic molecules. As such, terraforming it would be similar to terraforming Jupiter’s moon of Europa, and would yield a similar ocean moon.
Again, this would likely have to involve orbital mirrors, given Enceladus’ distance from our Sun. Once the ice began to sublimate, electrolysis would generate oxygen gas. The presence of ammonia in the subsurface ocean would also be released, helping to raise the temperature and serving as a source of nitrogen gas, with which to buffer the atmosphere.
Exoplanets: In addition to the Solar System, extra-solar planets (aka. exoplanets) are also potential sites for terraforming. Of the 1,941 confirmed exoplanets discovered so far, these planets are those that have been designated “Earth-like. In other words, they are terrestrial planets that have atmospheres and, like Earth, occupy the region around a star where the average surface temperature allows for liquid water (aka. habitable zone).
The first planet confirmed by Kepler to have an average orbital distance that placed it within its star’s habitable zone was Kepler-22b. This planet is located about 600 light-years from Earth in the constellation of Cygnus, was first observed on May 12th, 2009, and then confirmed on Dec 5th, 2011. Based on all the data obtained, scientists believe that this world is roughly 2.4 times the radius of Earth, and is likely covered in oceans or has a liquid or gaseous outer shell.
In addition, there are star systems with multiple “Earth-like” planets occupying their habitable zones. Gliese 581 is a good example, a red dwarf star that is located 20.22 light-years away from Earth in the Libra constellation. Here, three confirmed and two possible planets exist, two of which are believed to orbit within the star’s habitable zone. These include the confirmed planet Gliese 581 d and the hypothetical Gliese 581 g.
Tau Ceti is another example. This G-class star, which is located roughly 12 light-years from Earth in the constellation Cetus, has five possible planets orbiting it. Two of these are Super-Earths that are believed to orbit the star’s habitable zone – Tau Ceti e and Tau Ceti f. However, Tau Ceti e is believed to be too close for anything other than Venus-like conditions to exist on its surface.
In all cases, terraforming the atmospheres of these planets would most likely involve the same techniques used to terraform Venus and Mars, though to varying degrees. For those located on the outer edge of their habitable zones, terraforming could be accomplished by introducing greenhouse gases or covering the surface with low albedo material to trigger global warming. On the other end, solar shades and carbon sequestering techniques could reduce temperatures to the point where the planet is considered hospitable.
Potential Benefits:
When addressing the issue of terraforming, there is the inevitable question – “why should we?” Given the expenditure in resources, the time involved, and other challenges that naturally arise (see below), what reasons are there to engage in terraforming? As already mentioned, there are the reasons cited by Musk, about the need to have a “backup location” to prevent any particular cataclysm from claiming all of humanity.
Putting aside for the moment the prospect of a nuclear holocaust, there is also the likelihood that life will become untenable on certain parts of our planet in the coming century. As the NOAA reported in March of 2015, carbon dioxide levels in the atmosphere have now surpassed 400 ppm, a level not seen since the Pliocene Era – when global temperatures and sea levels were significantly higher.
And as a series of scenarios computed by NASA show, this trend is likely to continue until 2100, and with serious consequences. In one scenario, carbon dioxide emissions will level off at about 550 ppm toward the end of the century, resulting in an average temperature increase of 2.5 °C (4.5 °F). In the second scenario, carbon dioxide emissions rise to about 800 ppm, resulting in an average increase of about 4.5 °C (8 °F). Whereas the increases predicted in the first scenario are sustainable, in the latter scenario, life will become untenable on many parts of the planet.
As a result of this, creating a long-term home for humanity on Mars, the Moon, Venus, or elsewhere in the Solar System may be necessary. In addition to offering us other locations from which to extract resources, cultivate food, and as a possible outlet for population pressures, having colonies on other worlds could mean the difference between long-term survival and extinction.
There is also the argument that humanity is already well-versed in altering planetary environments. For centuries, humanity’s reliance on industrial machinery, coal, and fossil fuels has had a measurable effect on Earth’s environment. And whereas the Greenhouse Effect that we have triggered here was not deliberate, our experience and knowledge in creating it here on Earth could be put to good use on planets where surface temperatures need to be raised artificially.
In addition, it has also been argued that working with environments where there is a runaway Greenhouse Effect – i.e. Venus – could yield valuable knowledge that could in turn be used here on Earth. Whether it is the use of extreme bacteria, introducing new gases, or mineral elements to sequester carbon, testing these methods out on Venus could help us to combat Climate Change here at home.
It has also been argued that Mars’ similarities to Earth are a good reason to terraform it. Essentially, Mars once resembled Earth, until its atmosphere was stripped away, causing it to lose virtually all the liquid water on its surface. Ergo, terraforming it would be tantamount to returning it to its once-warm and watery glory. The same argument could be made of Venus, where efforts to alter it would restore it to what it was before a runaway Greenhouse Effect turned it into the harsh, extremely hot world it is today.
Last, but not least, there is the argument that colonizing the Solar System could usher in an age of “post-scarcity”. If humanity were to build outposts and based on other worlds, mine the asteroid belt, and harvest the resources of the Outer Solar System, we would effectively have enough minerals, gases, energy, and water resources to last us indefinitely. It could also help trigger a massive acceleration in human development, defined by leaps and bounds in technological and social progress.
Potential Challenges:
When it comes right down to it, all of the scenarios listed above suffer from one or more of the following problems:
They are not possible with existing technology
They require a massive commitment of resources
They solve one problem, only to create another
They do not offer a significant return on the investment
They would take a really, REALLY long time
Case in point, all of the potential ideas for terraforming Venus and Mars involve infrastructure that does not yet exist and would be very expensive to create. For instance, the orbital shade concept that would cool Venus calls for a structure that would need to be four times the diameter of Venus itself (if it were positioned at L1). It would therefore require megatons of material, all of which would have to be assembled on site.
In contrast, increasing the speed of Venus’s rotation would require energy many orders of magnitude greater than the construction of orbiting solar mirrors. As with removing Venus’ atmosphere, the process would also require a significant number of impactors that would have to be harnessed from the outer solar System – mainly from the Kuiper Belt.
In order to do this, a large fleet of spaceships would be needed to haul them, and they would need to be equipped with advanced drive systems that could make the trip in a reasonable amount of time. Currently, no such drive systems exist, and conventional methods – ranging from ion engines to chemical propellants – are neither fast or economical enough.
To illustrate, NASA’s New Horizons mission took more than 11 years to get make its historic rendezvous with Pluto in the Kuiper Belt, using conventional rockets and the gravity-assist method. Meanwhile, the Dawn mission, which relied on ionic propulsion, took almost four years to reach Vesta in the Asteroid Belt. Neither method is practical for making repeated trips to the Kuiper Belt and hauling back icy comets and asteroids, and humanity has nowhere near the number of ships we would need to do this.
The Moon’s proximity makes it an attractive option for terraforming. But again, the resources needed – which would likely include several hundred comets – would again need to be imported from the outer Solar System. And while Mercury’s resources could be harvested in-situ or brought from Earth to paraterraform its northern polar region, the concept still calls for a large fleet of ships and robot builders which do not yet exist.
The outer Solar System presents a similar problem. In order to begin terraforming these moons, we would need infrastructure between here and there, which would mean bases on the Moon, Mars, and within the Asteroid Belt. Here, ships could refuel as they transport materials to the Jovian sand Cronian systems, and resources could be harvested from all three of these locations as well as within the systems themselves.
But of course, it would take many, many generations (or even centuries) to build all of that, and at considerable cost. Ergo, any attempts at terraforming the outer Solar System would have to wait until humanity had effectively colonized the inner Solar System. And terraforming the Inner Solar System will not be possible until humanity has plenty of space hauler on hand, not to mention fast ones!
The necessity for radiation shields also presents a problem. The size and cost of manufacturing shields that could deflect Jupiter’s magnetic field would be astronomical. And while the resources could be harvested from the nearby Asteroid Belt, transporting and assembling them in space around the Jovian Moons would again require many ships and robotic workers. And again, there would have to be extensive infrastructure between Earth and the Jovian system before any of this could proceed.
As for item three, there are plenty of problems that could result from terraforming. For instance, transforming Jupiter’s and Saturn’s moons into ocean worlds could be pointless, as the volume of liquid water would constitute a major portion of the moon’s overall radius. Combined with their low surface gravities, high orbital velocities, and the tidal effects of their parent planets, this could lead to severely high waves on their surfaces. In fact, these moons could become totally unstable as a result of being altered.
There are also several questions about the ethics of terraforming. Basically, altering other planets in order to make them more suitable to human needs raises the natural question of what would happen to any lifeforms already living there. If in fact Mars and other Solar System bodies have indigenous microbial (or more complex) life, which many scientists suspect, then altering their ecology could impact or even wipe out these lifeforms. In short, future colonists and terrestrial engineers would effectively be committing genocide.
Another argument that is often made against terraforming is that any effort to alter the ecology of another planet does not present any immediate benefits. Given the cost involved, what possible incentive is there to commit so much time, resources, and energy to such a project? While the idea of utilizing the resources of the Solar System makes sense in the long run, the short-term gains are far less tangible.
Basically, harvested resources from other worlds is not economically viable when you can extract them here at home for much less. And real-estate is only the basis of an economic model if the real estate itself is desirable. While MarsOne has certainly shown us that there are plenty of human beings who are willing to make a one-way trip to Mars, turning the Red Planet, Venus, or elsewhere into a “new frontier” where people can buy up land will first require some serious advances in technology, some serious terraforming, or both.
As it stands, the environments of Mars, Venus, the Moon, and the outer Solar System are all hostile to life as we know it. Even with the requisite commitment of resources and people willing to be the “first wave”, life would be very difficult for those living out there. And this situation would not change for centuries or even millennia. Like it not, transforming a planet’s ecology is very slow, laborious work.
Conclusion:
So… after considering all of the places where humanity could colonize and terraform, what it would take to make that happen, and the difficulties in doing so, we are once again left with one important question. Why should we? Assuming that our very survival is not at stake, what possible incentives are there for humanity to become an interplanetary (or interstellar) species?
Perhaps there is no good reason. Much like sending astronauts to the Moon, taking to the skies, and climbing the highest mountain on Earth, colonizing other planets may be nothing more than something we feel we need to do. Why? Because we can! Such a reason has been good enough in the past, and it will likely be sufficient again in the not-too-distant future.
This should is no way deter us from considering the ethical implications, the sheer cost involved, or the cost-to-benefit ratio. But in time, we might find that we have no choice but to get out there, simply because Earth is just becoming too stuffy and crowded for us!
Saturn’s Rings are amazing to behold. Since they were first observed by Galileo in 1610, they have been the subject of endless scientific interest and popular fascination. Composed of billions of particles of dust and ice, these rings span a distance of about 282,000 km (175,000 miles) – which is three quarters of the distance between the Earth and its Moon – and hold roughly 30 quintillion kilograms (that’s 3.0. x 1018 kg) worth of matter.
All of the Solar System’s gas giants, from Jupiter to Neptune, have their own ring system – albeit less visible and picturesque ones. Sadly, none of the terrestrial planets (i.e. Mercury, Venus, Earth and Mars) have such a system. But just what would it look like if Earth did? Putting aside the physical requirements that it would take for a ring system to exist, what would it be like to look up from Earth and see beautiful rings reaching overhead?
During the many thousand years that human beings have been looking up at the stars, our concept of what the Universe looks like has changed dramatically. At one time, the magi and sages of the world believed that the Universe consisted of a flat Earth (or a square one, a zigarrut, etc.) surrounded by the Sun, the Moon, and the stars. Over time, ancient astronomers became aware that some stars did not move like the rest, and began to understand that these too were planets.
In time, we also began to understand that the Earth was indeed round, and came up with rationalized explanations for the behavior of other celestial bodies. And by classical antiquity, scientists had formulated ideas on how the motion of the planets occurred, and how all the heavenly orbs fit together. This gave rise to the Geocentric model of the universe, a now-defunct model that explained how the Sun, Moon, and firmament circled around our planet.
Virtually every planet in the Solar System has moons. Earth has The Moon, Mars has Phobos and Deimos, and Jupiter and Saturn have 67 and 62 officially named moons, respectively. Heck, even the recently-demoted dwarf planet Pluto has five confirmed moons – Charon, Nix, Hydra, Kerberos and Styx. And even asteroids like 243 Ida may have satellites orbiting them (in this case, Dactyl). But what about Mercury?
If moons are such a common feature in the Solar System, why is it that Mercury has none? Yes, if one were to ask how many satellites the planet closest to our Sun has, that would be the short answer. But answering it more thoroughly requires that we examine the process through which other planets acquired their moons, and seeing how these apply (or fail to apply) to Mercury.
Many of the planets in our Solar System have a system of moons. But among the rocky planets that make up the inner Solar System, having moons is a privilege enjoyed only by two planets: Earth and Mars. And for these two planets, it is a rather limited privilege compared to gas giants like Jupiter and Saturn which each have several dozen moons.
Whereas Earth has only one satellite (aka. the Moon), Mars has two small moons in orbit around it: Phobos and Deimos. And whereas the vast majority of moons in our Solar System are large enough to become round spheres similar to our own Moon, Phobos and Deimos are asteroid-sized and misshapen in appearance.
First the quick facts: Our Solar System has eight “official” planets which orbit the Sun. Here are the planets listed in order of their distance from the Sun:
If you add in the dwarf planets, Ceres is located in the asteroid belt between Mars and Jupiter, while the remaining dwarf planets are in the outer Solar System and in order from the Sun are Pluto, Haumea, Makemake, and Eris. There is, as yet, a bit of indecision about the Trans-Neptunian Objects known as Orcus, Quaoar, 2007 O10, and Sedna and their inclusion in the dwarf planet category.
A mnemonic for this list would be “My Very Educated Mother Could Just Serve Us Noodles, Pie, Ham, Muffins, and Eggs” (and Steak, if Sedna is included.) You can find more tricks for remembering the order of the planets at our detailed article here.
Now, let’s look at a few details including the definition of a planet and a dwarf planet, as well as details about each of the planets in our Solar System.
What is a Planet?
In 2006, the International Astronomical Union (IAU) decided on the definition of a planet. The definition states that in our Solar System, a planet is a celestial body which:
is in orbit around the Sun,
has sufficient mass to assume hydrostatic equilibrium (a nearly round shape),
has “cleared the neighborhood” around its orbit.
is not a moon.
This means that Pluto, which was considered to be the farthest planet since its discovery in 1930, now is classified as a dwarf planet. The change in the definition came after the discovery three bodies that were all similar to Pluto in terms of size and orbit, (Quaoar in 2002, Sedna in 2003, and Eris in 2005).
With advances in equipment and techniques, astronomers knew that more objects like Pluto would very likely be discovered, and so the number of planets in our Solar System would start growing quickly. It soon became clear that either they all had to be called planets or Pluto and bodies like it would have to be reclassified.
With much controversy then and since, Pluto was reclassified as a dwarf planet in 2006. This also reclassified the asteroid Ceres as a dwarf planet, too, and so the first five recognized dwarf planets are Ceres, Pluto, Eris, Makemake and Haumea. Scientists believe there may be dozens more dwarf planets awaiting discovery.
Later, in 2008, the IAU announced the subcategory of dwarf planets with trans-Neptunian orbits would be known as “plutoids.” Said the IAU, “Plutoids are celestial bodies in orbit around the Sun at a distance greater than that of Neptune that have sufficient mass for their self-gravity to overcome rigid body forces so that they assume a hydrostatic equilibrium (near-spherical) shape, and that have not cleared the neighborhood around their orbit.”
This subcategory includes Ceres, Pluto, Haumea, Makemake, and Eris.
The Planets in our Solar System:
Having covered the basics of definition and classification, let’s get talking about those celestial bodies in our Solar System that are still classified as planets (sorry Pluto!). Here is a brief look at the eight planets in our Solar System. Included are quick facts and links so you can find out more about each planet.
Mercury: Mercury is the closest planet to our Sun, at just 58 million km (36 million miles) or 0.39 Astronomical Unit (AU) out. But despite its reputation for being sun-baked and molten, it is not the hottest planet in our Solar System (scroll down to find out who that dubious honor goes go!)
Mercury is also the smallest planet in our Solar System, and is also smaller than its largest moon (Ganymede, which orbits Jupiter). And being equivalent in size to 0.38 Earths, it is just slightly larger than the Earth’s own Moon. But this may have something to do with its incredible density, being composed primarily of rock and iron ore. Here are the planetary facts:
Diameter: 4,879 km (3,032 miles)
Mass: 3.3011 x 1023 kg (0.055 Earths)
Length of Year (Orbit): 87.97 Earth days
Length of Day: 59 Earth days.
Mercury is a rocky planet, one of the four “terrestrial planets” in our Solar System. Mercury has a solid, cratered surface, and looks much like Earth’s moon.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 17 kg (38 pounds) on Mercury.
Mercury does not have any moons.
Temperatures on Mercury range between -173 to 427 degrees Celcius (-279 to 801 degrees Fahrenheit)
Just two spacecraft have visited Mercury: Mariner 10 in 1974-75 and MESSENGER, which flew past Mercury three times before going into orbit around Mercury in 2011 and ended its mission by impacting the surface of Mercury on April 30, 2015. MESSENGER has changed our understanding of this planet, and scientists are still studying the data.
Venus:
Venus is the second closest planet to our Sun, orbiting at an average distance of 108 million km (67 million miles) or 0.72 AU. Venus is often called Earth’s “sister planet,” as it is just a little smaller than Earth. Venus is 81.5% as massive as Earth, and has 90% of its surface area and 86.6% of its volume. The surface gravity, which is 8.87 m/s², is equivalent to 0.904 g – roughly 90% of the Earth standard.
And due to its thick atmosphere and proximity to the Sun, it is the Solar Systems hottest planet, with temperatures reaching up to a scorching 735 K (462 °C). To put that in perspective, that’s over four and a half times the amount of heat needed to evaporate water, and about twice as much needed to turn tin into molten metal (231.9 °C)!
Diameter: 7,521 miles (12,104 km)
Mass: 4.867 x 1024 kg (0.815 Earth mass)
Length of Year (Orbit): 225 days
Length of day: 243 Earth days
Surface temperature: 462 degrees C (864 degrees F)
Venus’ thick and toxic atmosphere is made up mostly of carbon dioxide (CO2) and nitrogen (N2), with clouds of sulfuric acid (H2SO4) droplets.
Venus has no moons.
Venus spins backwards (retrograde rotation), compared to the other planets. This means that the sun rises in the west and sets in the east on Venus.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 41 kg (91 pounds) on Venus.
Venus is also known and the “morning star” or “evening star” because it is often brighter than any other object in the sky and is usually seen either at dawn or at dusk. Since it is so bright, it has often been mistaken for a UFO!
More than 40 spacecraft have explored Venus. The Magellan mission in the early 1990s mapped 98 percent of the planet’s surface. Find out more about all the missions here.
Earth: Our home, and the only planet in our Solar System (that we know of) that actively supports life. Our planet is the third from the our Sun, orbiting it at an average distance of 150 million km (93 million miles) from the Sun, or one AU. Given the fact that Earth is where we originated, and has all the necessary prerequisites for supporting life, it should come as no surprise that it is the metric on which all others planets are judged.
Whether it is gravity (g), distance (measured in AUs), diameter, mass, density or volume, the units are either expressed in terms of Earth’s own values (with Earth having a value of 1) or in terms of equivalencies – i.e. 0.89 times the size of Earth. Here’s a rundown of the kinds of
Diameter: 12,760 km (7,926 miles)
Mass: 5.97 x 1024 kg
Length of Year (Orbit): 365 days
Length of day: 24 hours (more precisely, 23 hours, 56 minutes and 4 seconds.)
Surface temperature: Average is about 14 C, (57 F), with ranges from -88 to 58 (min/max) C (-126 to 136 F).
Earth is another terrestrial planet with an ever-changing surface, and 70 percent of the Earth’s surface is covered in oceans.
Earth has one moon.
Earth’s atmosphere is 78% nitrogen, 21% oxygen, and 1% various other gases.
Mars: Mars is the fourth planet from the sun at a distance of about 228 million km (142 million miles) or 1.52 AU. It is also known as “the Red Planet” because of its reddish hue, which is due to the prevalence of iron oxide on its surface. In many ways, Mars is similar to Earth, which can be seen from its similar rotational period and tilt, which in turn produce seasonal cycles that are comparable to our own.
The same holds true for surface features. Like Earth, Mars has many familiar surface features, which include volcanoes, valleys, deserts, and polar ice caps. But beyond these, Mars and Earth have little in common. The Martian atmosphere is too thin and the planet too far from our Sun to sustain warm temperatures, which average 210 K (-63 ºC) and fluctuate considerably.
Diameter: 6,787 km, (4,217 miles)
Mass: 6.4171 x 1023 kg (0.107 Earths)
Length of Year (Orbit): 687 Earth days.
Length of day: 24 hours 37 minutes.
Surface temperature: Average is about -55 C (-67 F), with ranges of -153 to +20 °C (-225 to +70 °F)
Mars is the fourth terrestrial planet in our Solar System. Its rocky surface has been altered by volcanoes, impacts, and atmospheric effects such as dust storms.
Mars has a thin atmosphere made up mostly of carbon dioxide (CO2), nitrogen (N2) and argon (Ar).If you weigh 45 kg (100 pounds) on Earth, you would weigh 17 kg (38 pounds) on Mars.
Mars has two small moons, Phobos and Deimos.
Mars is known as the Red Planet because iron minerals in the Martian soil oxidize, or rust, causing the soil to look red.
Jupiter: Jupiter is the fifth planet from the Sun, at a distance of about 778 million km (484 million miles) or 5.2 AU. Jupiter is also the most massive planet in our Solar System, being 317 times the mass of Earth, and two and half times larger than all the other planets combined. It is a gas giant, meaning that it is primarily composed of hydrogen and helium, with swirling clouds and other trace gases.
Jupiter’s atmosphere is the most intense in the Solar System. In fact, the combination of incredibly high pressure and coriolis forces produces the most violent storms ever witnessed. Wind speeds of 100 m/s (360 km/h) are common and can reach as high as 620 km/h (385 mph). In addition, Jupiter experiences auroras that are both more intense than Earth’s, and which never stop.
Diameter: 428,400 km (88,730 miles)
Mass: 1.8986 × 1027 kg (317.8 Earths)
Length of Year (Orbit): 11.9 Earth years
Length of day: 9.8 Earth hours
Temperature: -148 C, (-234 F)
Jupiter has 67 known moons, with an additional 17 moons awaiting confirmation of their discovery – for a total of 67 moons. Jupiter is almost like a mini solar system!
Jupiter has a faint ring system, discovered in 1979 by the Voyager 1 mission.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 115 kg (253) pounds on Jupiter.
Jupiter’s Great Red Spot is a gigantic storm (bigger than Earth) that has been raging for hundreds of years. However, it appears to be shrinking in recent years.
Many missions have visited Jupiter and its system of moons, with the latest being the Juno mission will arrive at Jupiter in 2016. You can find out more about missions to Jupiter here.
Saturn: Saturn is the sixth planet from the Sun at a distance of about 1.4 billion km (886 million miles) or 9.5 AU. Like Jupiter, it is a gas giant, with layers of gaseous material surrounding a solid core. Saturn is most famous and most easily recognized for its spectacular ring system, which is made of seven rings with several gaps and divisions between them.
Diameter: 120,500 km (74,900 miles)
Mass: 5.6836 x 1026 kg (95.159 Earths)
Length of Year (Orbit): 29.5 Earth years
Length of day: 10.7 Earth hours
Temperature: -178 C (-288 F)
Saturn’s atmosphere is made up mostly of hydrogen (H2) and helium (He).
If you weigh 45 kg (100 pounds) on Earth, you would weigh about 48 kg (107 pounds) on Saturn
Saturn has 53 known moons with an additional 9 moons awaiting confirmation.
Five missions have gone to Saturn. Since 2004, Cassini has been exploring Saturn, its moons and rings. You can out more about missions to Saturn here.
Uranus: Uranus is the seventh planet from the sun at a distance of about 2.9 billion km (1.8 billion miles) or 19.19 AU. Though it is classified as a “gas giant”, it is often referred to as an “ice giant” as well, owing to the presence of ammonia, methane, water and hydrocarbons in ice form. The presence of methane ice is also what gives it its bluish appearance.
Uranus is also the coldest planet in our Solar System, making the term “ice” seem very appropriate! What’s more, its system of moons experience a very odd seasonal cycle, owing to the fact that they orbit Neptune’s equator, and Neptune orbits with its north pole facing directly towards the Sun. This causes all of its moons to experience 42 year periods of day and night.
Diameter: 51,120 km (31,763 miles)
Mass:
Length of Year (Orbit): 84 Earth years
Length of day: 18 Earth hours
Temperature: -216 C (-357 F)
Most of the planet’s mass is made up of a hot dense fluid of “icy” materials – water (H2O), methane (CH4). and ammonia (NH3) – above a small rocky core.
Uranus has an atmosphere which is mostly made up of hydrogen (H2) and helium (He), with a small amount of methane (CH4). The methane gives Uranus a blue-green tint.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 41 kg (91 pounds) on Uranus.
Uranus has 27 moons.
Uranus has faint rings; the inner rings are narrow and dark and the outer rings are brightly colored.
Voyager 2 is the only spacecraft to have visited Uranus. Find out more about this mission here.
Neptune: Neptune is the eighth and farthest planet from the Sun, at a distance of about 4.5 billion km (2.8 billion miles) or 30.07 AU. Like Jupiter, Saturn and Uranus, it is technically a gas giant, though it is more properly classified as an “ice giant” with Uranus.
Due to its extreme distance from our Sun, Neptune cannot be seen with the naked eye, and only one mission has ever flown close enough to get detailed images of it. Nevertheless, what we know about it indicates that it is similar in many respects to Uranus, consisting of gases, ices, methane ice (which gives its color), and has a series of moons and faint rings.
Diameter: 49,530 km (30,775 miles)
Mass: 1.0243 x 1026 kg (17 Earths)
Length of Year (Orbit): 165 Earth years
Length of day: 16 Earth hours
Temperature: -214 C (-353 F)
Neptune is mostly made of a very thick, very hot combination of water (H2O), ammonia (NH3), and methane (CH4) over a possible heavier, approximately Earth-sized, solid core.
Neptune’s atmosphere is made up mostly of hydrogen (H2), helium (He) and methane (CH4).
Neptune has 13 confirmed moons and 1 more awaiting official confirmation.
Neptune has six rings.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 52 kg (114 pounds) on Neptune.
Neptune was the first planet to be predicted to exist by using math.
Voyager 2 is the only spacecraft to have visited Neptune. You can find out more about this mission here.
Find out more about Neptune at this series of articles on Universe Today and this NASA webpage. We have written many articles about the planets for Universe Today. Here are some facts about planets, and here’s an article about the names of the planets.If you’d like more info on the Solar System planets, dwarf planets, asteroids and more, check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.We’ve also recorded a series of episodes of Astronomy Cast about every planet in the Solar System. Start here, Episode 49: Mercury.Venus is the second planet from the Sun, and it is the hottest planet in the Solar System due to its thick, toxic atmosphere which has been described as having a “runaway greenhouse effect” on the planet.
Now you know! And if you find yourself unable to remember all the planets in their proper order, just repeat the words, “My Very Educated Mother Just Served Us Noodles.” Of course, the Pie, Ham, Muffins and Eggs are optional, as are any additional courses that might be added in the coming years!