Is There Life on Mars?

Is There Life on Mars?
Is There Life on Mars?


Perhaps the most important question we can possible ask is, “are we alone in the Universe?”.

And so far, the answer has been, “I don’t know”. I mean, it’s a huge Universe, with hundreds of billions of stars in the Milky Way, and now we learn there are trillions of galaxies in the Universe.

Is there life closer to home? What about in the Solar System? There are a few existing places we could look for life close to home. Really any place in the Solar System where there’s liquid water. Wherever we find water on Earth, we find life, so it make sense to search for places with liquid water in the Solar System.

I know, I know, life could take all kinds of wonderful forms. Enlightened beings of pure energy, living among us right now. Or maybe space whales on Titan that swim through lakes of ammonia. Beep boop silicon robot lifeforms that calculate the wasted potential of our lives.

Sure, we could search for those things, and we will. Later. We haven’t even got this basic problem done yet. Earth water life? Check! Other water life? No idea.

It turns out, water’s everywhere in the Solar System. In comets and asteroids, on the icy moons of Jupiter and Saturn, especially Europa or Enceladus. Or you could look for life on Mars.

Sloping buttes and layered outcrops within the "Murray formation" layer of lower Mount Sharp. Credit: NASA
Sloping buttes and layered outcrops within the “Murray formation” layer of lower Mount Sharp. Credit: NASA

Mars is similar to Earth in many ways, however, it’s smaller, has less gravity, a thinner atmosphere. And unfortunately, it’s bone dry. There are vast polar caps of water ice, but they’re frozen solid. There appears to be briny liquid water underneath the surface, and it occasionally spurts out onto the surface. Because it’s close and relatively easy to explore, it’s been the place scientists have gone looking for past or current life.

Researchers tried to answer the question with NASA’s twin Viking Landers, which touched down in 1976. The landers were both equipped with three biology experiments. The researchers weren’t kidding around, they were going to nail this question: is there life on Mars?

In the first experiment, they took soil samples from Mars, mixed in a liquid solution with organic and inorganic compounds, and then measured what chemicals were released. In a second experiment, they put Earth organic compounds into Martian soil, and saw carbon dioxide released. In the third experiment, they heated Martian soil and saw organic material come out of the soil.

The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL
The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL

Three experiments, and stuff happened in all three. Stuff! Pretty exciting, right? Unfortunately, there were equally plausible non-biological explanations for each of the results. The astrobiology community wasn’t convinced, and they still fight in brutal cage matches to this day. It was ambitious, but inconclusive. The worst kind of conclusive.

Researchers found more inconclusive evidence in 1994. Ugh, there’s that word again. They were studying a meteorite that fell in Antarctica, but came from Mars, based on gas samples taken from inside the rock.

They thought they found evidence of fossilized bacterial life inside the meteorite. But again, there were too many explanations for how the life could have gotten in there from here on Earth. Life found a way… to burrow into a rock from Mars.

NASA learned a powerful lesson from this experience. If they were going to prove life on Mars, they had to go about it carefully and conclusively, building up evidence that had no controversy.

Greetings from Mars! I’m Spirit and I was the first of two twin robots to land on Mars. Unlike my twin, Opportunity, I’m known as the hill-climbing robot. Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech
Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech

The Spirit and Opportunity Rovers were an example of building up this case cautiously. They were sent to Mars in 2004 to find evidence of water. Not water today, but water in the ancient past. Old water Over the course of several years of exploration, both rovers turned up multiple lines of evidence there was water on the surface of Mars in the ancient past.

They found concretions, tiny pebbles containing iron-rich hematite that forms on Earth in water. They found the mineral gypsum; again, something that’s deposited by water on Earth.

Opportunity's Approach to 'Homestake'. This view from the front hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows the rover's arm's shadow falling near a bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Opportunity took this image on Sol 2763 on Mars (Nov. 7, 2011). Credit: NASA/JPL-Caltech
A bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 (Sol 2763) and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Credit: NASA/JPL-Caltech

NASA’s Curiosity Rover took this analysis to the next level, arriving in 2012 and searching for evidence that water was on Mars for vast periods of time; long enough for Martian life to evolve.

Once again, Curiosity found multiple lines of evidence that water acted on the surface of Mars. It found an ancient streambed near its landing site, and drilled into rock that showed the region was habitable for long periods of time.

In 2014, NASA turned the focus of its rovers from looking for evidence of water to searching for past evidence of life.

Curiosity found one of the most interesting targets: a strange strange rock formations while it was passing through an ancient riverbed on Mars. While it was examining the Gillespie Lake outcrop in Yellowknife Bay, it photographed sedimentary rock that looks very similar to deposits we see here on Earth. They’re caused by the fossilized mats of bacteria colonies that lived billions of years ago.

A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called "Gillespie Lake," which was imaged by Curiosity's Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity's mission on Mars. Credit: NASA / JPL-Caltech / MSSS.
A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called “Gillespie Lake,” which was imaged by Curiosity’s Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity’s mission on Mars. Credit: NASA / JPL-Caltech / MSSS.

Not life today, but life when Mars was warmer and wetter. Still, fossilized life on Mars is better than no life at all. But there might still be life on Mars, right now, today. The best evidence is not on its surface, but in its atmosphere. Several spacecraft have detected trace amounts of methane in the Martian atmosphere.

Methane is a chemical that breaks down quickly in sunlight. If you farted on Mars, the methane from your farts would dissipate in a few hundred years. If spacecraft have detected this methane in the atmosphere, that means there’s some source replenishing those sneaky squeakers. It could be volcanic activity, but it might also be life. There could be microbes hanging on, in the last few places with liquid water, producing methane as a byproduct.

The European ExoMars orbiter just arrived at Mars, and its main job is sniff the Martian atmosphere and get to the bottom of this question.

Are there trace elements mixed in with the methane that means its volcanic in origin? Or did life create it? And if there’s life, where is it located? ExoMars should help us target a location for future study.

The European/Russian ExoMars Trace Gas Orbiter (TGO) will launch in 2016 and sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA
The European/Russian ExoMars Trace Gas Orbiter (TGO) will sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA

NASA is following up Curiosity with a twin rover designed to search for life. The Mars 2020 Rover will be a mobile astrobiology laboratory, capable of scooping up material from the surface of Mars and digesting it, scientifically speaking. It’ll search for the chemicals and structures produced by past life on Mars. It’ll also collect samples for a future sample return mission.

Even if we do discover if there’s life on Mars, it’s entirely possible that we and Martian life are actually related by a common ancestor, that split off billions of years ago. In fact, some astrobiologists think that Mars is a better place for life to have gotten started.

Not the dry husk of a Red Planet that we know today, but a much wetter, warmer version that we now know existed billions of years ago. When the surface of Mars was warm enough for liquid water to form oceans, lakes and rivers. And we now know it was like this for millions of years.

A conception of an ancient and/or future Mars, flush with oceans, clouds and life. Credit: Kevin Gill.
A conception of an ancient Mars, flush with oceans, clouds and life. Credit: Kevin Gill.

While Earth was still reeling from an early impact by the massive planet that crashed into it, forming the Moon, life on Mars could have gotten started early.

But how could we actually be related? The idea of Panspermia says that life could travel naturally from world to world in the Solar System, purely through the asteroid strikes that were regularly pounding everything in the early days.

Imagine an asteroid smashing into a world like Mars. In the lower gravity of Mars, debris from the impact could be launched into an escape trajectory, free to travel through the Solar System.

We know that bacteria can survive almost indefinitely, freeze dried, and protected from radiation within chunks of space rock. So it’s possible they could make the journey from Mars to Earth, crossing the orbit of our planet.

Even more amazingly, the meteorites that enter the Earth’s atmosphere would protect some of the bacterial inhabitants inside. As the Earth’s atmosphere is thick enough to slow down the descent of the space rocks, the tiny bacterialnauts could survive the entire journey from Mars, through space, to Earth.

In February 2013, asteroid DA 2014 safely passed by the Earth. There are several proposals abounding about bringing asteroids closer to our planet to better examine their structure. Credit: NASA/JPL-Caltech
Credit: NASA/JPL-Caltech

If we do find life on Mars, how will we know it’s actually related to us? If Martian life has the similar DNA structure to Earth life, it’s probably related. In fact, we could probably trace the life back to determine the common ancestor, and even figure out when the tiny lifeforms make the journey.

If we do find life on Mars, which is related to us, that just means that life got around the Solar System. It doesn’t help us answer the bigger question about whether there’s life in the larger Universe. In fact, until we actually get a probe out to nearby stars, or receive signals from them, we might never know.

An even more amazing possibility is that it’s not related. That life on Mars arose completely independently. One clue that scientists will be looking for is the way the Martian life’s instructions are encoded. Here on Earth, all life follows “left-handed chirality” for the amino acid building blocks that make up DNA and RNA. But if right-handed amino acids are being used by Martian life, that would mean a completely independent origin of life.

Of course, if the life doesn’t use amino acids or DNA at all, then all bets are off. It’ll be truly alien, using a chemistry that we don’t understand at all.

There are many who believe that Mars isn’t the best place in the Solar System to search for life, that there are other places, like Europa or Enceladus, where there’s a vast amount of liquid water to be explored.

But Mars is close, it’s got a surface you can land on. We know there’s liquid water beneath the surface, and there was water there for a long time in the past. We’ve got the rovers, orbiters and landers on the planet and in the works to get to the bottom of this question. It’s an exciting time to be part of this search.

When Was the First Light in the Universe?

When Was the First Light in the Universe?
When Was the First Light in the Universe?


The speed of light gives us an amazing tool for studying the Universe. Because light only travels a mere 300,000 kilometers per second, when we see distant objects, we’re looking back in time.

You’re not seeing the Sun as it is today, you’re seeing an 8 minute old Sun. You’re seeing 642 year-old Betelgeuse. 2.5 million year-old Andromeda. In fact, you can keep doing this, looking further out, and deeper into time. Since the Universe is expanding today, it was closer in the past.

Run the Universe clock backwards, right to the beginning, and you get to a place that was hotter and denser than it is today.  So dense that the entire Universe shortly after the Big Bang was just a soup of protons, neutrons and electrons, with nothing holding them together.

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

In fact, once it expanded and cooled down a bit, the entire Universe was merely as hot and as dense as the core of a star like our Sun. It was cool enough for ionized atoms of hydrogen to form.

Because the Universe has the conditions of the core of a star, it had the temperature and pressure to actually fuse hydrogen into helium and other heavier elements. Based on the ratio of those elements we see in the Universe today: 74% hydrogen, 25% helium and 1% miscellaneous, we know how long the Universe was in this “whole Universe is a star” condition.

It lasted about 17 minutes. From 3 minutes after the Big Bang until about 20 minutes after the Big Bang.  In those few, short moments, clowns gathered all the helium they would ever need to haunt us with a lifetime of balloon animals.

The fusion process generates photons of gamma radiation. In the core of our Sun, these photons bounce from atom to atom, eventually making their way out of the core, through the Sun’s radiative zone, and eventually out into space. This process can take tens of thousands of years. But in the early Universe, there was nowhere for these primordial photons of gamma radiation to go. Everywhere was more hot, dense Universe.

The Universe was continuing to expand, and finally, just a few hundred thousand years after the Big Bang, the Universe was finally cool enough for these atoms of hydrogen and helium to attract free electrons, turning them into neutral atoms.

Artist's impression of how huge cosmic structures deflect photons in the cosmic microwave background (CMB). Credit: ESA and the Planck Collaboration
Artist’s impression of how huge cosmic structures deflect photons in the cosmic microwave background (CMB). Credit: ESA and the Planck Collaboration

This was the moment of first light in the Universe, between 240,000 and 300,000 years after the Big Bang, known as the Era of Recombination. The first time that photons could rest for a second, attached as electrons to atoms. It was at this point that the Universe went from being totally opaque, to transparent.

And this is the earliest possible light that astronomers can see. Go ahead, say it with me: the Cosmic Microwave Background Radiation. Because the Universe has been expanding over the 13.8 billion years from then until now, the those earliest photons were stretched out, or red-shifted, from ultraviolet and visible light into the microwave end of the spectrum.

If you could see the Universe with microwave eyes, you’d see that first blast of radiation in all directions. The Universe celebrating its existence.

After that first blast of light, everything was dark, there were no stars or galaxies, just enormous amounts of these primordial elements. At the beginning of these dark ages, the temperature of the entire Universe was about 4000 kelvin. Compare that with the 2.7 kelvin we see today. By the end of the dark ages, 150 million years later, the temperature was a more reasonable 60 kelvin.

Artist's concept of the first stars in the Universe turning on some 200 million years after the Big Bang. These first suns were made of almost pure hydrogen and helium. They and later generations of stars cooked up the heavier elements from these simple ones. Credit: NASA/WMAP Science Team
Artist’s concept of the first stars in the Universe turning on some 200 million years after the Big Bang. These first suns were made of almost pure hydrogen and helium. They and later generations of stars cooked up the heavier elements from these simple ones. Credit: NASA/WMAP Science Team

For the next 850 million years or so, these elements came together into monster stars of pure hydrogen and helium. Without heavier elements, they were free to form stars with dozens or even hundreds of times the mass of our own Sun. These are the Population III stars, or the first stars, and we don’t have telescopes powerful enough to see them yet. Astronomers indirectly estimate that those first stars formed about 560 million years after the Big Bang.

Then, those first stars exploded as supernovae, more massive stars formed and they detonated as well. It’s seriously difficult to imagine what that time must have looked like, with stars going off like fireworks. But we know it was so common and so violent that it lit up the whole Universe in an era called reionization. Most of the Universe was hot plasma.

Scientists have used ESO’s Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history — known as reionisation — occurred around 13 billion years ago. By carefully studying some of the most distant galaxies ever detected, the team has been able to establish a timeline for reionisation for the first time. They have also demonstrated that this phase must have happened quicker than astronomers previously thought.
Scientists have used ESO’s Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history — known as reionisation — occurred around 13 billion years ago.

The early Universe was hot and awful, and there weren’t a lot of the heavier elements that life as we know it depends on. Just think about it. You can’t get oxygen without fusion in a star, even multiple generations. Our own Solar System is the result of several generations of supernovae that exploded, seeding our region with heavier and heavier elements.

As I mentioned earlier in the article, the Universe cooled from 4000 kelvin down to 60 kelvin. About 10 million years after the Big Bang, the temperature of the Universe was 100 C, the boiling point of water. And then 7 million years later, it was down to 0 C, the freezing point of water.

This has led astronomers to theorize that for about 7 million years, liquid water was present across the Universe… everywhere. And wherever we find liquid water on Earth, we find life.

An artists illustration of the early Universe. Image Credit: NASA
An artists illustration of the early Universe. Image Credit: NASA

So it’s possible, possible that primitive life could have formed with the Universe was just 10 million years old. The physicist Avi Loeb calls this the habitable Epoch of the Universe. No evidence, but it’s a pretty cool idea to think about.

I always find it absolutely mind bending to think that all around us in every direction is the first light from the Universe. It’s taken 13.8 billion years to reach us, and although we need microwave eyes to actually see it, it’s there, everywhere.

How Far is Mars from the Sun?

The eccentricity in Mars' orbit means that it is . Credit: NASA

With the Scientific Revolution, astronomers became aware of the fact that the Earth and the other planets orbit the Sun. And thanks to Copernicus, Galileo, Kepler, and Newton, the study of their orbits was refined to the point of mathematical precision. And with the subsequent discoveries of Uranus, Neptune, Pluto and the Kuiper Belt Objects, we have come to understand just how varied the orbits of the Solar Planets are.

Consider Mars, Earth’s second-closest neighbor, and a planet that is often referred to as “Earth’s Twin”. While it has many things in common with Earth, one area in which they differ greatly is in terms of their orbits. In addition to being farther from the Sun, Mars also has a much more elliptical orbit, which results in some rather interesting variations in temperature and weather patterns.

Perihelion and Aphelion:

Mars orbits the Sun at an average distance (semi-major axis) of 228 million km (141.67 million mi), or 1.524 astronomical units (over one and a half times the distance between Earth and the Sun). However, Mars also has the second most eccentric orbit of all the planets in the Solar System (0.0934), which makes it a distant second to crazy Mercury (at 0.20563).

This means that Mars’ distance from the Sun varies between perihelion (its closest point) and aphelion (its farthest point). In short, the distance between Mars and the Sun ranges during the course of a Martian year from 206,700,000 km (128.437 million mi) at perihelion and 249,200,000 km (154.8457 million mi) at aphelion – or 1.38 AU and 1.666 AU.

Speaking of a Martian year, with an average orbital speed of 24 km/s, Mars takes the equivalent of 687 Earth days to complete a single orbit around the Sun. This means that a year on Mars is equivalent to 1.88 Earth years. Adjusted for Martian days (aka. sols) – which last 24 hours, 39 minutes, and 35 seconds – that works out to a year being 668.5991 sols long (still almost twice as long).

Mars in also the midst of a long-term increase in eccentricity. Roughly 19,000 years ago, it reached a minimum of 0.079, and will peak again at an eccentricity of 0.105 (with a perihelion distance of 1.3621 AU) in about 24,000 years. In addition, the orbit was nearly circular about 1.35 million years ago, and will be again one million years from now.

Axial Tilt:

Much like Earth, Mars also has a significantly tilted axis. In fact, with an inclination of 25.19° to its orbital plane, it is very close to Earth’s own tilt of 23.439°. This means that like Earth, Mars also experiences seasonal variations in terms of temperature.  On average, the surface temperature of Mars is much colder than what we experience here on Earth, but the variation is largely the same.

. Credit and copyright: Encyclopedia Britannica
Mars eccentric orbit and axial tilt result in considerable seasonal variations. Credit and Copyright: Encyclopedia Britannica

All told, the average surface temperature on Mars is -46 °C (-51 °F). This ranges from a low of -143 °C (-225.4 °F), which takes place during winter at the poles; and a high of 35 °C (95 °F), which occurs during summer and midday at the equator. This means that at certain times of the year, Mars is actually warmer than certain parts of Earth.

Orbit and Seasonal Changes:

Mars’ variations in temperature and its seasonal changes are also related to changes in the planet’s orbit. Essentially, Mars’ eccentric orbit means that it travels more slowly around the Sun when it is further from it, and more quickly when it is closer (as stated in Kepler’s Three Laws of Planetary Motion).

Mars’ aphelion coincides with Spring in its northern hemisphere, which makes it the longest season on the planet – lasting roughly 7 Earth months. Summer is second longest, lasting six months, while Fall and Winter last 5.3 and just over 4 months, respectively. In the south, the length of the seasons is only slightly different.

Mars is near perihelion when it is summer in the southern hemisphere and winter in the north, and near aphelion when it is winter in the southern hemisphere and summer in the north. As a result, the seasons in the southern hemisphere are more extreme and the seasons in the northern are milder. The summer temperatures in the south can be up to 30 K (30 °C; 54 °F) warmer than the equivalent summer temperatures in the north.

Mars' south polar ice cap, seen in April 2000 by Mars Odyssey. NASA/JPL/MSSS
Mars’ south polar ice cap, seen in April 2000 by the Mars Odyssey probe. Credit: NASA/JPL/MSSS

It also snows on Mars. In 2008, NASA’s Phoenix Lander found water ice in the polar regions of the planet. This was an expected finding, but scientists were not prepared to observe snow falling from clouds. The snow, combined with soil chemistry experiments, led scientists to believe that the landing site had a wetter and warmer climate in the past.

And then in 2012, data obtained by the Mars Reconnaissance Orbiter revealed that carbon-dioxide snowfalls occur in the southern polar region of Mars. For decades, scientists have known that carbon-dioxide ice is a permanent part of Mars’ seasonal cycle and exists in the southern polar caps. But this was the first time that such a phenomena was detected, and it remains the only known example of carbon-dioxide snow falling anywhere in our solar system.

In addition, recent surveys conducted by the Mars Reconnaissance Orbiter, the Mars Science Laboratory, the Mars Orbiter Mission (MOM), the Mars Atmosphere and Volatile Evolution (MAVEN) and the Opportunity and Curiosity Rovers have revealed some startling things about Mars’ deep past.

For starters, soil samples and orbital observation have demonstrated conclusively that roughly 3.7 billion years ago, the planet had more water on its surface than is currently in the Atlantic Ocean. Similarly, atmospheric studies conducted on the surface and from space have proven that Mars also had a viable atmosphere at that time, one which was slowly stripped away by solar wind.

Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill
Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill

Weather Patterns:

These seasonal variations allow Mars to experience some extremes in weather. Most notably, Mars has the largest dust storms in the Solar System. These can vary from a storm over a small area to gigantic storms (thousands of km in diameter) that cover the entire planet and obscure the surface from view. They tend to occur when Mars is closest to the Sun, and have been shown to increase the global temperature.

The first mission to notice this was the Mariner 9 orbiter, which was the first spacecraft to orbit Mars in 1971, it sent pictures back to Earth of a world consumed in haze. The entire planet was covered by a dust storm so massive that only Olympus Mons, the giant Martian volcano that measures 24 km high, could be seen above the clouds. This storm lasted for a full month, and delayed Mariner 9‘s attempts to photograph the planet in detail.

And then on June 9th, 2001, the Hubble Space Telescope spotted a dust storm in the Hellas Basin on Mars. By July, the storm had died down, but then grew again to become the largest storm in 25 years. So big was the storm that amateur astronomers using small telescopes were able to see it from Earth. And the cloud raised the temperature of the frigid Martian atmosphere by a stunning 30° Celsius.

These storms tend to occur when Mars is closest to the Sun, and are the result of temperatures rising and triggering changes in the air and soil. As the soil dries, it becomes more easily picked up by air currents, which are caused by pressure changes due to increased heat. The dust storms cause temperatures to rise even further, leading to Mars’ experiencing its own greenhouse effect.

We have written many interesting articles about the distance of the planets from the Sun here at Universe Today. Here’s How Far Are the Planets from the Sun?, How Far is Mercury from the Sun?, How Far is Venus from the Sun?, How Far is the Earth from the Sun?, How Far is the Moon from the Sun?, How Far is Jupiter from the Sun?, How Far is Saturn from the Sun?, What is Uranus’ Distance from the Sun?, What is the Distance of Neptune from the Sun? and How Far is Pluto from the Sun?

For more information, Astronomy for beginners teaches you how to calculate the distance to Mars.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about the Red Planet at Astronomy Cast. Episode 52: Mars, and Episode 91: The Search for Water on Mars.