Specialized Materials Could Passively Control the Internal Temperature of Space Habitats

Chris Hadfield recently explained how humanity should create a Moon base before attempting to colonize Mars. Credit: Foster + Partners is part of a consortium set up by the European Space Agency to explore the possibilities of 3D printing to construct lunar habitations. Credit: ESA/Foster + Partners

Areas of space have wildly different temperatures depending on whether they are directly in sunlight or not. For example, temperatures on the Moon can range from 121 °C during the lunar “day” (which lasts for two weeks), then drop down to -133 °C at night, encompassing a 250 °C swing. Stabilizing the temperature inside a habitat in those environments would require heating and cooling on a scale never before conducted on Earth. But what if there was a way to ease the burden of those temperature swings? Phase change materials (PCMs) might be the answer, according to a new paper from researchers at the Universidad Politecnica de Madrid. 

Continue reading “Specialized Materials Could Passively Control the Internal Temperature of Space Habitats”

Can a Venus Lander Survive Longer Than a Few Minutes?

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. The Venera 13 probe lasted only 127 minutes before succumbing to Venus's extreme surface environment. Part of building a longer-lasting Venus lander is figuring out how to power it. Credit: NASA

Sending a lander to Venus presents several huge engineering problems. Granted, we’d get a break from the nail-biting entry, descent and landing, since Venus’ atmosphere is so thick, a lander would settle gently to the surface like a stone settles in water — no sky cranes or retrorockets required.

But the rest of the endeavor is fraught with challenges. The average temperature at the surface is 455 degrees C (850 F), hot enough to melt lead. The mix of chemicals that make up the atmosphere, such as sulfuric acid, is corrosive to most metals. And the crushing atmospheric pressure is roughly equivalent to being 1,500 meters (5,000 ft) under water. These extreme environmental conditions are where metals and electronics go to die; therefore, the few Venus lander missions that have made it to the surface — like the Soviet Venera missions — only lasted two hours or less. Any future landers or rovers will need to have nearly super-hero-type characteristics to endure on the surface of Earth’s evil twin.

But there’s one additional challenge that might be close to being solved: creating batteries that can operate long enough in Venus’ hellish conditions to make a lander mission worth the effort.

Continue reading “Can a Venus Lander Survive Longer Than a Few Minutes?”