Saturn’s Moon Rhea

Saturn's moon Rhea, as imaged by the Cassini-Huygens spaceprobe. Credit: NASA/JPL-Caltech

The Cronian system (i.e. Saturn and its system of rings and moons) is breathtaking to behold and intriguing to study. Besides its vast and beautiful ring system, it also has the second-most satellites of any planet in the Solar System. In fact, Saturn has an estimated 150 moons and moonlets – and only 53 of them have been officially named – which makes it second only to Jupiter.

For the most part, these moons are small, icy bodies that are believed to house interior oceans. And in all cases, particularly Rhea, their interesting appearances and compositions make them a prime target for scientific research. In addition to being able to tell us much about the Cronian system and its formation, moons like Rhea can also tell us much about the history of our Solar System.

Discovery and Naming:

Rhea was discovered by Italian astronomer Giovanni Domenico Cassini on December 23rd, 1672. Together with the moons of Iapetus, Tethys and Dione, which he discovered between 1671 and 1672, he named them all Sidera Lodoicea (“the stars of Louis”) in honor of his patron, King Louis XIV of France. However, these names were not widely recognized outside of France.

In 1847, John Herschel (the son of famed astronomer William Herschel, who discovered Uranus, Enceladus and Mimas) suggested the name Rhea – which first appeared in his treatise Results of Astronomical Observations made at the Cape of Good Hope. Like all the other Cronian satellites, Rhea was named after a Titan from Greek mythology, the “mother of the gods” and one the sisters of Cronos (Saturn, in Roman mythology).

The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Some small moons are also shown. All to scale. Credit: NASA/JPL/Space Science Institute
The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan (background), Iapetus (top), and Hyperion (bottom). Credit: NASA/JPL/Space Science Institute

Size, Mass and Orbit:

With a mean radius of 763.8±1.0 km and a mass of 2.3065 ×1021 kg, Rhea is equivalent in size to 0.1199 Earths (and 0.44 Moons), and about 0.00039 times as massive (or 0.03139 Moons). It orbits Saturn at an average distance (semi-major axis) of 527,108 km, which places it outside the orbits of  Dione and Tethys, and has a nearly circular orbit with a very minor eccentricity (0.001).

With an orbital velocity of about 30,541 km/h, Rhea takes approximately 4.518 days to complete a single orbit of its parent planet. Like many of Saturn’s moons, its rotational period is synchronous with its orbit, meaning that the same face is always pointed towards it.

Composition and Surface Features:

With a mean density of about 1.236 g/cm³, Rhea is estimated to be composed of 75% water ice (with a density of roughly 0.93 g/cm³) and 25% of silicate rock (with a density of around 3.25 g/cm³). This low density means that although Rhea is the ninth-largest moon in the Solar System, it is also the tenth-most massive.

In terms of its interior, Rhea was originally suspected of being differentiated between a rocky core and an icy mantle. However, more recent measurements would seem to indicate that Rhea is either only partly differentiated, or has a homogeneous interior – likely consisting of both silicate rock and ice together (similar to Jupiter’s moon Callisto).

Views of Saturn's moon Rhea. Credit: NASA/JPL/Space Science Institute
Views of Saturn’s moon Rhea, with false-color image showing elevation data at the right. Credit: NASA/JPL/Space Science Institute

Models of Rhea’s interior also suggest that it may have an internal liquid-water ocean, similar to Enceladus and Titan. This liquid-water ocean, should it exist, would likely be located at the core-mantle boundary, and would be sustained by the heating caused by from decay of radioactive elements in its core.

Rhea’s surface features resemble those of Dione, with dissimilar appearances existing between their leading and trailing hemispheres – which suggests that the two moons have similar compositions and histories. Images taken of the surface have led astronomers to divide it into two regions – the heavily cratered and bright terrain, where craters are larger than 40 km (25 miles) in diameter; and the polar and equatorial regions where craters are noticeably smaller.

Another difference between Rhea’s leading and trailing hemisphere is their coloration. The leading hemisphere is heavily cratered and uniformly bright while the trailing hemisphere has networks of bright swaths on a dark background and few visible craters. It had been thought that these bright areas (aka. wispy terrain) might be material ejected from ice volcanoes early in Rhea’s history when its interior was still liquid.

However, observations of Dione, which has an even darker trailing hemisphere and similar but more prominent bright streaks, has cast this into doubt. It is now believed that the wispy terrain are tectonically-formed ice cliffs (chasmata) which resulted from extensive fracturing of the moon’s surface. Rhea also has a very faint “line” of material at its equator which was thought to be deposited by material deorbiting from its rings (see below).

Hemispheric color differences on Saturn's moon Rhea are apparent in this false-color view from NASA's Cassini spacecraft. This image shows the side of the moon that always faces the planet. Image Credit: NASA/JPL/SSI
Hemispheric color differences on Saturn’s moon Rhea are apparent in this false-color view of the anti-Cronian side, from NASA’s Cassini spacecraft. Image Credit: NASA/JPL/SSI

Rhea has two particularly large impact basins, both of which are situated on Rhea’s anti-Cronian side (aka. the side facing away from Saturn). These are known as Tirawa and Mamaldi basins, which measure roughly 360 and 500 km (223.69 and 310.68 mi) across. The more northerly and less degraded basin of Tirawa overlaps Mamaldi – which lies to its southwest – and is roughly comparable to the Odysseus crater on Tethys (which gives it its “Death-Star” appearance).

Atmosphere:

Rhea has a tenuous atmosphere (exosphere) which consists of oxygen and carbon dioxide, which exists in a 5:2 ratio. The surface density of the exosphere is from 105 to 106 molecules per cubic centimeter, depending on local temperature. Surface temperatures on Rhea average 99 K (-174 °C/-281.2 °F) in direct sunlight, and between 73 K (-200 °C/-328 °F) and 53 K (-220 °C/-364 °F) when sunlight is absent.

The oxygen in the atmosphere is created by the interaction of surface water ice and ions supplied from Saturn’s magnetosphere (aka. radiolysis). These ions cause the water ice to break down into oxygen gas (O²) and elemental hydrogen (H), the former of which is retained while the latter escapes into space. The source of the carbon dioxide is less clear, and could be either the result of organics in the surface ice being oxidized, or from outgassing from the moon’s interior.

Saturn's second-largest moon Rhea, in front of the rings and a blurred Epimetheus (or Janus) whizzing behind. Acquired March 29, 2012.
Saturn’s second-largest moon Rhea, pictured by the Cassini probe on March 29, 2012. Credit: NASA/JPL

Rhea may also have a tenuous ring system, which was inferred based on observed changes in the flow of electrons trapped by Saturn’s magnetic field. The existence of a ring system was temporarily bolstered by the discovered presence of a set of small ultraviolet-bright spots distributed along Rhea’s equator (which were interpreted as the impact points of deorbiting ring material).

However, more recent observations made by the Cassini probe have cast doubt on this. After taking images of the planet from multiple angles, no evidence of ring material was found, suggesting that there must be another cause for the observed electron flow and UV bright spots on Rhea’s equator. If such a ring system were to exist, it would be the first instance where a ring system was found orbiting a moon.

Exploration:

The first images of Rhea were obtained by the Voyager 1 and 2 spacecraft while they studied the Cronian system, in 1980 and 1981, respectively. No subsequent missions were made until the arrival of the Cassini orbiter in 2005. After it’s arrival in the Cronian system, the orbiter made five close targeted fly-bys and took many images of Saturn from long to moderate distances. 

The Cronian system is definitely a fascinating place, and we’ve really only begun to scratch its surface in recent years. In time, more orbiters and perhaps landers will be traveling to the system, seeking to learn more about Saturn’s moons and what exists beneath their icy surfaces. One can only hope that any such mission includes a closer look at Rhea, and the other “Death Star Moon”, Dione.

We have many great articles on Rhea and Saturn’s system of moons here at Universe Today. Here is one about its possible ring system, its tectonic activity, it’s impact basins, and images provided by Cassini’s flyby.

Astronomy Cast also has an interesting interview with Dr. Kevin Grazier, who worked on the Cassini mission.

For more information, check out NASA’s Solar System Exploration page on Rhea.

Saturn’s Moon Titan

Titan's dense, hydrocarbon rich atmosphere remains a focal point of scientific research. Credit: NASA
Titan's dense, hydrocarbon rich atmosphere remains a focal point of scientific research. Credit: NASA

In ancient Greek lore, the Titans were giant deities of incredible strength who ruled during the legendary Golden Age and gave birth to the Olympian gods we all know and love. Saturn‘s largest moon, known as Titan, is therefore appropriately named. In addition to being Saturn’s largest moon – and the second-largest moon in the Solar System (after Jupiter’s moon Ganymede) – it is larger by volume than even the smallest planet, Mercury.

Beyond its size, Titan is also fascinating because it is the only natural satellite known to have a dense atmosphere, a fact which has made it very difficult to study until recently. On top of all that, it is the only object other than Earth where clear evidence of stable bodies of surface liquid has been found. All of this makes Titan the focal point of a great deal of curiosity, and a prime location for future scientific missions.

Discovery and Naming:

Titan was discovered on March 25th, 1655, by the Dutch astronomer Christiaan Huygens. Huygens had been inspired by Galileo’s improvements in telescopes and his discovery of moons circling Jupiter in 1610. By 1650, he went about developing a telescope of his own with the help of his brother (Constantijn Huygens, Jr.) and observed the first moon of Saturn.

In 1655, Huygens named it Saturni Luna (Latin for “Saturn’s moon”) in a tract De Saturni Luna Observatio Nova (“A New Observation of Saturn’s Moon”). As Giovanni Domenico Cassini discoveries four more moons around Saturn between 1673 and 1686, astronomers began to refer to them as Saturn I through V (with Titan being in the fourth position as Saturn IV).

A replica of the telescope which William Herschel used to observe Uranus. Credit:
A replica of the telescope which William Herschel used to observe Uranus. Credit: Alun Salt/Wikimedia Commons

After William Herschel’s discovery of Mimas and Enceladus in 1789, which are closer to Saturn than any of the larger moons, Saturn’s moons once again had to be re-designated. Thenceforth, Titan status became fixed as Saturn VI, despite the discovery of several smaller moons that were closer to Saturn since then.

The name Titan, along with the names for all the seven major satellites of Saturn, were suggested by William Herschel’s son, John. In 1847, John Herschel published Results of Astronomical Observations Made at the Cape of Good Hope, in which he suggested that the moons be named after the mythological Titans – the brothers and sisters of Cronus, who is the Greek equivalent to Saturn.

In 1907, Spanish astronomer Josep Comas i Solà observed limb darkening of Titan. This effect, where the center part of a planet or star appears brighter than the edge (or limb), was the first indication that Titan had an atmosphere. In 1944, Gerard P. Kuiper used a spectroscopic technique to determine that Titan had an atmosphere composed of methane.

Size. Mass and Orbit:

With a mean radius of 2576 ± 2 km and a mass of 1.345 × 1023 kg, Titan is 0.404 the size of Earth (or 1.480 Moons) and 0.0225 times as massive (1.829 Moons). Its orbit has a minor eccentricity of 0.0288, and its orbital plane is inclined 0.348 degrees relative to Saturn’s equator. It’s average distance from Saturn (semi-major axis) is 1,221,870 km – ranging from 1,186,680 km at periapsis (closest) to 1,257,060 km at apoapsis (farthest).

Diameter comparison of Titan, Moon, and Earth. Credit: NASA/GJPL/regory H. Revera
Diameter comparison of Titan, the Moon, and Earth. Credit: NASA/JPL/Space Science Institute/Gregory H. Revera

Titan takes 15 days and 22 hours to complete a single orbit of Saturn. Like the Moon and many satellites that orbit the other gas giants, its rotational period is identical to its orbital period. Thus, Titan is tidally-locked and in a synchronous rotation with Saturn, which means one face is permanently pointed towards the planet.

Composition and Surface Features:

Though similar in composition to Dione and Enceladus, Titan is denser due to gravitational compression. In terms of diameter and mass (and hence density) Titan is more similar to the Jovian moons of Ganymede and Callisto. Based on its bulk density of 1.88 g/cm3, Titan’s composition is believed to consist half of water ice and half of rocky material.

It’s internal makeup is likely differentiated into several layers, with a 3,400-kilometre (2,100 mi) rocky center surrounded by layers composed of different forms of crystalized ice. Based on evidence provided by the Cassini-Huygens mission in 2005, it is believed that Titan may also have a subsurface ocean which exists between the crust and several deeper layers of high-pressure ice.

This subsurface ocean is believed to be made up of water and ammonia, which allows the water to remain in a liquid state even at temperatures as low as 176 K (-97 °C). Evidence of a systematic shift of the moon’s surface features (which took place between October 2005 and May 2007) suggests that the crust is decoupled from the interior – possibly by a liquid layer in between – as well as the way the gravity field varies as Titan orbits Saturn.

iagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong
Diagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong

The surface of Titan is relatively young – between 100 million and 1 billion years old – despite having been formed during the early Solar System. In addition, it appears to be relatively smooth, with impact craters having been filled in. Height variation is also low, ranging by little more than 150 meters, but with the occasional mountain reaching between 500 meters and 1 km in height.

This is believed to due to geological processes which have reshaped Titan’s surface over time. For example, a range measuring 150 km (93 mi) long, 30 km (19 mi) wide, and 1.5 km (0.93 mi) tall has been potted in the southern hemisphere, composed of icy material and covered in methane snow. The movement of tectonic plates, perhaps influenced by a nearby impact basin, could have opened a gap through which the mountain’s material upwelled.

Then there is Sotra Patera, a chain of mountains that is 1000 to 1500 m (0.62 and 0.93 mi) in height, has some peaks topped by craters, and what appears to be frozen lava flows at its base. If volcanism on Titan really exists, the hypothesis is that it is driven by energy released from the decay of radioactive elements within the mantle, tidal flexing caused by Saturn’s influence, or possibly the interaction of Titan’s subsurface ice layers.

An alternate theory is that Titan is a geologically dead world and that the surface is shaped by a combination of impact cratering, flowing-liquid and wind-driven erosion, mass wasting and other externally-motivated processes. According to this hypothesis, methane is not emitted by volcanoes but slowly diffuses out of Titan’s cold and stiff interior.

Updated maps of Titan, based on the Cassini imaging science subsystem. Credit: NASA/JPL/Space Science Institute
Updated maps of Titan, based on the Cassini imaging science subsystem. Credit: NASA/JPL/Space Science Institute

The few impact craters discovered on Titan’s surface include a 440 km (270 mi) wide two-ring impact basin named Menrva, which is identifiable from its bright-dark concentric pattern. A smaller, 60 km (37 mi) wide, flat-floored crater named Sinlap and a 30 km (19 mi) crater with a central peak and dark floor named Ksa have also been observed.

Radar and orbital imaging has also revealed a number of “crateriforms” on the surface, circular features that may be impact related. These include a 90 km (56 mi) wide ring of bright, rough material known as Guabonito, which is thought to be an impact crater filled in by dark, windblown sediment. Several other similar features have been observed in the dark Shangri-la and Aaru regions.

The presence of cryovolcanism has also been theorized based on the fact that there is apparently not enough liquid methane on Titan’s surface (see below) to account for the atmospheric methane. However, to date, the only indications of cryovolcanism are particularly bright and dark features on the surface and 200 m (660 ft)  structures resembling lava flows that were spotted in the region called Hotei Arcus.

Titan’s surface is also permeated by streaky features (aka. “sand dunes“), some of which are hundreds of kilometers in length and several meters high. These appear to be caused by powerful, alternating winds that are caused by the interaction of the Sun and Titan’s dense atmosphere. Titan’s surface is also marked by broad regions of bright and dark terrain.

Radar image of rows of dunes on Titan. Credit: NASA/JPL-Caltech
Radar image of rows of dunes on Titan. Credit: NASA/JPL-Caltech

These include Xanadu, a large, reflective equatorial area that was first identified by the Hubble Space Telescope in 1994 and later by the Cassini spacecraft. This region (which is about the same size as Australia) is very diverse, being filled with hills, valleys, chasms and crisscrossed in places by dark lineaments – sinuous topographical features resembling ridges or crevices.

These could be an indication of tectonic activity, which would mean that Xanadu is geologically young. Alternatively, the lineaments may be liquid-formed channels, suggesting old terrain that has been cut through by stream systems. There are dark areas of similar size elsewhere on Titan, which have been revealed to be the patches of water ice and organic compounds that darkened due to exposure to UV radiation.

Methane Lakes:

Titan is also home to its famous “hydrocarbon seas”, lakes of liquid methane and other hydrocarbon compounds. Many of these have been spotted near the polar regions, such as Ontario Lacus. This confirmed methane lake near the south pole has a surface area of 15,000 km² (making it 20% smaller than its namesake, Lake Ontario) and a maximum depth of 7 meters (23 feet).

But the largest body of liquid is Kraken Mare, a methane lake near the north pole. With a surface area of about 400,000 km², it is larger than the Caspian Sea and is estimated to be 160 meters deep. Shallow capillary waves (aka. ripple waves) that are 1.5 centimeters high and moving at speeds of 0.7 meters per second have also been detected.

The seas of Titan
Mosaic of images taken in near infrared light showing Titan’s polar seas (left) and a radar image of Kraken Mare (right), both taken by the Cassini spacecraft. Credit: NASA/JPL

Then there is Ligeia Mare, the second largest known body of liquid on Titan, which is connected to Kraken Mare and also located near the north pole. With a surface area of about 126,000 km² and a shoreline that is over 2000 km (1240 mi) in length, it is larger than Lake Superior. Much like Kraken Mare, it takes its name from Greek mythology; in this case, after one of the sirens.

It was here that NASA first noticed a bright object measuring 260 km² (100 square miles), which they named “Magic Island”. This object was first spotted in July 2013, then disappeared later, only to reappear again (slightly changed) in August 2014 . It is believed to be inked to Titan’s changing seasons, and suggestions as to what it might be range from surface waves and rising bubbles to floating solids suspended beneath the surface.

Although most of the lakes are concentrated near the poles (where low levels of sunlight prevent evaporation), a number of hydrocarbon lakes have also been discovered in the equatorial desert regions. This includes one near the Huygens landing site in the Shangri-la region, which is about half the size of Utah’s Great Salt Lake. Like desert oases on Earth, it is speculated that these equatorial lakes are fed by underground aquifers.

Overall, the Cassini radar observations have shown that lakes cover only a few percent of the surface, making Titan much drier than Earth. However, the probe also provided strong indications that considerable liquid water exists 100 km below the surface. Further analysis of the data suggests that this ocean may be as salty as the Dead Sea.

 During previous flybys, 'Magic Island' was not visible near Ligeia Mare's coastline (left). Then, during Cassini's July 20, 2013, flyby the feature appeared (right) NASA/JPL-Caltech/ASI/Cornell
During previous flybys, ‘Magic Island’ was not visible near Ligeia Mare’s coastline (left). Then, during Cassini’s July 20, 2013, flyby the feature appeared (right). Credit: NASA/JPL-Caltech/ASI/Cornell

Other studies suggest methane rainfall (see below) on Titan may interact with icy materials underground to produce ethane and propane that may eventually feed into rivers and lakes.

Atmosphere:

Titan is the only moon in the Solar System with a significant atmosphere, and the only body other than Earth who’s atmosphere is nitrogen-rich. Recent observations have shown that Titan’s atmosphere is denser than Earth’s, with a surface pressure of about 1.469 KPa – 1.45 times that of Earths. It is also about 1.19 times as massive as Earth’s atmosphere overall, or about 7.3 times more massive on a per-surface-area basis.

The atmosphere is made up of opaque haze layers and other sources that block most visible light from the Sun and obscure its surface features (similar to Venus). Titan’s lower gravity also means that its atmosphere is far more extended than Earth’s. In the stratosphere, the atmospheric composition is 98.4% nitrogen with the remaining 1.6% composed mostly of methane (1.4%) and hydrogen (0.1–0.2%).

There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene and propane; as well as other gases such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, argon and helium. The hydrocarbons are thought to form in Titan’s upper atmosphere in reactions resulting from the breakup of methane by the Sun’s ultraviolet light, producing a thick orange smog.

Energy from the Sun should have converted all traces of methane in Titan’s atmosphere into more complex hydrocarbons within 50 million years—a short time compared to the age of the Solar System. This suggests that methane must be replenished by a reservoir on or within Titan itself. The ultimate origin of the methane in its atmosphere may be its interior, released via eruptions from cryovolcanoes.

False colour image of Titan's atmosphere. Credit: NASA/JPL/Space Science Institute/ESA
False color image of Titan’s atmosphere. Credit: NASA/JPL/Space Science Institute/ESA

Titan’s surface temperature is about 94 K (-179.2 °C), which is due to the fact that Titan receives about 1% as much sunlight as Earth. At this temperature, water ice has an extremely low vapor pressure, so the little water vapor present appears limited to the stratosphere. The moon would be much colder, were it not for the fact that the atmospheric methane creates a greenhouse effect on Titan’s surface.

Conversely, haze in Titan’s atmosphere contributes to an anti-greenhouse effect by reflecting sunlight back into space, cancelling a portion of the greenhouse effect and making its surface significantly colder than its upper atmosphere. In addition, Titan’s atmosphere periodically rains liquid methane and other organic compounds onto its surface.

Based on studies simulating the atmosphere of Titan, NASA scientists have speculated that complex organic molecules could arise on Titan (see below). In addition, propene – aka. propylene, a class of hydrocarbon – has also been detected in Titan’s atmosphere. This is the first time propene has been found on any moon or planet other than Earth, and is thought to be formed from recombined radicals created by the UV photolysis of methane.

Habitability:

Titan is thought to be a prebiotic environment rich in complex organic chemistry with a possible subsurface liquid ocean serving as a biotic environment. Ongoing research of Titan’s atmosphere has led many scientists to theorize that conditions there are similar to what existed on a primordial Earth, with the important exception of a lack of water vapor.

Numerous experiments have shown that an atmosphere similar to that of Titan, with the addition of UV radiation, could give rise to complex molecules and polymer substances like tholins. In addition, independent research conducted by the University of Arizona reported that when energy was applied to a combination of gases like those found in Titan’s atmosphere, many organic compounds were produced. These includes the five nucleotide bases – the building blocks of DNA and RNA – as well as amino acids, which are the building blocks of protein.

Multiple laboratory simulations have been conducted that have led to the suggestion that enough organic material exists on Titan to start a chemical evolution process analogous to what is thought to have started life here on Earth. While this theory assumes the presence of water that would remain in a liquid state for longer periods that have been observed, organic life could theoretically survive in Titan’s hypothetical subsurface ocean.

Much like on Europa and other moons, this life would likely take the form of extremophiles – organisms that thrive in extreme environments. Heat transfer between the interior and upper layers would be critical in sustaining any subsurface oceanic life, most likely through hydrothermal vents located at the ocean-core boundary. That the atmospheric methane and nitrogen might be of biological origin has also been examined.

It has also been suggested that life could exist in Titan’s lakes of liquid methane, just as organisms on Earth live in water. Such organisms would inhale dihydrogen (H²) in place of oxygen gas (O²), metabolize it with acetylene instead of glucose, and then exhale methane instead of carbon dioxide. Although all living things on Earth use liquid water as a solvent, it is speculated that life on Titan could actually live in liquid hydrocarbons.

Several experiments and models have been constructed to test this hypothesis. For instance, atmospheric models have shown that molecular hydrogen is in greater abundance in the upper atmosphere and disappears near the surface – which is consistent with the possibility of methanogenic life-forms. Another study has shown that there are low levels of acetylene on Titan’s surface, which is also in line with the hypothesis of organisms consuming hydrocarbons.

In 2015, a team of chemical engineers at Cornell University went as far as to construct a hypothetical cell membrane that was capable of functioning in liquid methane under conditions similar to that on Titan. Composed of small molecules containing carbon, hydrogen, and nitrogen, this cell was said to have the same stability and flexibility as cell membranes on Earth. This hypothetical cell membrane was termed an “azotosome” (a combination of “azote”, French for nitrogen, and “liposome”).

However, NASA has gone on record as stating that these theories remain entirely hypothetical. Furthermore, it has been emphasized that other theories as to why hydrogen and acetylene levels are lower nearer to the surface are more plausible. These include a as-of-yet unidentified physical or chemical processes – such as a surface catalyst accepting hydrocarbons or hydrogen – or the existence of flaws in the current models of material flow.

Also, life on Titan would face tremendous obstacles compared to life on Earth – thus making any analogy to Earth problematic. For one, Titan is too far from the Sun, and its atmosphere lacks carbon monoxide (CO), which results in it not retaining enough heat or energy to trigger biological processes. Also, water only exists on Titan’s surface in solid form.

So while the prebiotic conditions that are associated with organic chemistry exist on Titan, life itself may not. However, the existence of these conditions remains a subject of fascination among scientists. And since its atmosphere is thought to be analogous to Earth’s in the distant past, researching Titan could help advance our understanding of the early history of the terrestrial biosphere.

Exploration:

Titan cannot be spotted without the help of instrumentation, and is often difficult for amateur astronomers because of interference from Saturn’s brilliant globe and ring system. And even after the development of high-powered telescopes, Titan’s dense, hazy, atmosphere made observations of the surface very difficult. Hence, observations of both Titan and its surface features prior to the space age were limited.

The first probe to visit the Saturnian system was Pioneer 11 in 1979, which took images of Titan and Saturn together and revealed that Titan was probably too cold to support life. Titan was examined in 1980 and 1981 by both the Voyager 1 and 2 space probes, respectively. While Voyager 2 managed to take snapshots of Titan on its way to Uranus and Neptune, only Voyager 1 managed to conduct a flyby and take pictures and readings.

This included readings on Titan’s density, composition, and temperature of the atmosphere, and obtain a precise measurement of Titan’s mass. Atmospheric haze prevented direct imaging of the surface; though in 2004, intensive digital processing of images taken through Voyager 1‘s orange filter did reveal hints of the light and dark features now known as Xanadu and Shangri-la.

 Voyager 2 photograph of Titan, taken Aug. 23, 1981 from a range of 2.3 million kilometers (1.4 million miles), shows some detail in the cloud systems on this Saturnian moon. Credit: NASA/JPL
Voyager 2 photograph of Titan, taken on Aug. 23rd, 1981, which shows some detail in the cloud systems on this Saturnian moon. Credit: NASA/JPL

Even so, much of the mystery surrounding Titan would not begin to be dispelled until the Cassini-Huygens mission – a joint project between NASA and the European Space Agency (ESA) named in honor of the astronomers who made the greatest discoveries involving Saturn’s moons. The spacecraft reached Saturn on July 1st, 2004, and began the process of mapping Titan’s surface by radar.

The Cassini probe flew by Titan on October 26th, 2004, and took the highest-resolution images ever of Titan’s surface, discerning patches of light and dark that were otherwise invisible to the human eye. Over the course of many close flybys of Titan, Cassini managed to detect abundant sources of liquid on the surface in the north polar region, in the form of many lakes and seas.

The Huygens probe landed on Titan on January 14th, 2005, making Titan the most distant body from Earth to have a space probe land on its surface. During the course of its investigations, it would discover that many of the surface features appear to have been formed by fluids at some point in the past.

After landing just off the easternmost tip of the bright region now called Adiri, the probe photographed pale hills with dark “rivers” running down to a dark plain. The current theory is that these hills (aka. “highlands”) are composed mainly of water ice, and that dark organic compounds – created in the upper atmosphere – may come down from Titan’s atmosphere with methane rain and become deposited on the plains over time.

Artist depiction of Huygens landing on Titan. Credit: ESA
Artist depiction of Huygens landing on Titan. Credit: ESA

Huygens also obtained photographs of a dark plain covered in small rocks and pebbles (composed of water ice) that showed evidence of erosion and/or fluvial activity. The surface is darker than originally expected, consisting of a mixture of water and hydrocarbon ice. The “soil” visible in the images is interpreted to be precipitation from the hydrocarbon haze above.

Several proposals for returning a robotic space probe to Titan have been made in recent years. These include the Titan Saturn System Mission (TSSM) – a joint NASA/ESA proposal for the exploration of Saturn’s moons – that envisions a hot-air balloon floating in Titan’s atmosphere and conducting research for a period of six months.

In 2009, it was announced that the TSSM lost out to a competing concept known the Europa Jupiter System Mission (EJSM) – a joint NASA/ESA mission that will consist of sending two probes to Europa and Ganymede to study their potential habitability.

There was also a proposal known as Titan Mare Explorer (TiME), a concept under consideration by NASA in conjunction with Lockheed Martin. This mission would involve a low-cost lander splashing down in a lake in Titan’s northern hemisphere and floating on the surface of the lake for 3 to 6 months. However, NASA announced in 2012 that it favored the lower-cost InSight Mars lander instead, which is scheduled to be sent to Mars in 2016.

Another mission to Titan was proposed in early 2012 by Jason Barnes, a scientist at the University of Idaho. Known as the Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR), this unmanned plane (or drone) would fly through Titan’s atmosphere and take high-definition images of the surface. NASA did not approve the requested $715 million at the time and the future of the project is uncertain.

Another lake lander project known as the Titan Lake In-situ Sampling Propelled Explorer (TALISE) was proposed in late 2012 by the Spanish-based private engineering firm SENER and the Centro de Astrobiología in Madrid. The major difference between this and the TiME probe is that the TALISE concept includes its own propulsion system, and would therefore not be limited to simply drifting on the lake when it splashes down.

In response to NASA’s 2010 Discovery Announcement, the concept known as Journey to Enceladus and Titan (JET) was proposed. Developed by Caltech and JPL, this mission would consist of a low-cost astrobiology orbiter that would be sent to the Saturnian system to asses the habitability potential of Enceladus and Titan.

In 2015, NASA’s Innovative Advanced Concepts (NIAC) awarded a Phase II grant to a proposed robotic submarine in order to further investigate and develop the concept. This submarine explorer, should it be deployed to Titan, will explore the depths of Kraken Mare to investigate its makeup and potential for supporting life.

Colonization:

The colonization of the Saturn system presents numerous advantages compared to other gas giants in the Solar System. According to Dr. Robert Zubrin – an American aerospace engineer, author, and an advocate for the exploration Mars – these include its relative proximity to Earth, its low radiation, and its excellent system of moons. Zubrin has also stated that Titan is the most important of these moons when it comes to building a base to develop the system’s resources.

On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it's own propulsion, in the form of paddlewheels. Credit: bisbos.com
Artist’s conception of possible Titan “floater” designed by NASA and the ESA. Credit: bisbos.com

For starters, Titan possess an abundance of all the elements necessary to support life, such as atmospheric nitrogen and methane, liquid methane, and liquid water and ammonia. Water could easily be used to generate breathable oxygen, and nitrogen is ideal as a buffer gas to create a pressurized, breathable atmosphere. In addition, nitrogen, methane and ammonia could all be used to produce fertilizer for growing food.

Additionally, Titan has an atmospheric pressure one and a half times that of Earth, which means that the interior air pressure of landing craft and habitats could be set equal or close to the exterior pressure. This would significantly reduce the difficulty and complexity of structural engineering for landing craft and habitats compared with low or zero pressure environments such as on the Moon, Mars, or the Asteroid Belt.

The thick atmosphere also makes radiation a non-issue, unlike with other planets or Jupiter’s moons. And while Titan’s atmosphere does contain flammable compounds, these only present a danger if they are mixed with sufficient enough oxygen – otherwise, combustion cannot be achieved or sustained. Finally, the very high ratio of atmospheric density to surface gravity also greatly reduces the wingspan needed for aircraft to maintain lift.

Beyond this, Titan presents many challenges for human colonization. For starters, the moon has a surface gravity of 0.138 g, which is slightly less than that of the Moon. Managing the long-term effects of this presents a challenge, and what those effects would be (especially for children born on Titan) are not currently known. However, they would likely include loss of bone density, muscle deterioration, and a weakened immune system.

Artist's impression of future colonists flying over Ligeia Mare on Titan. Credit: Erik Wernquist/erikwernquist.com
Artist’s impression of future colonists flying over Ligeia Mare on Titan. Credit: Erik Wernquist/erikwernquist.com

The temperature on Titan is also considerably lower than on Earth, with an average temperature of 94 K (-179 °C, or -290.2 °F). Combined with the increased atmospheric pressure, temperatures vary very little over time and from one local to the next. Unlike in a vacuum, the high atmospheric density makes thermoinsulation a significant engineering problem. Nevetherless, compared to other cases for colonization, the problems associated with creating a human presence on Titan are relatively surmountable.

Titan is a moon that is shrouded in mystery, both literally and metaphorically. Until very recently, we were unable to discern what secrets it held because its atmosphere was simply too thick to see beneath. However, in recent years, we have managed to pull back that shroud and get a better look at the moon’s surface. But in many ways, doing this has only confounded the sense of mystery surrounding this world.

Perhaps someday we will send astronauts to Titan and find life forms there that completely alter our conception of what life is and where it can thrive. Perhaps we will find only extremophiles, life forms that live in the deepest parts of its interior ocean huddled around hydorthermal vents, since these spots are the only place on Titan where lifeforms can exist.

Perhaps we will even colonize Titan someday, and use it as a base for further exploration of the Solar System and resource extraction. Then, we may come to know the pleasures of looking up at a ringed planet in the sky while sailing on a methane lake, the hazy light of the Sun trickling down onto the cold, hydrocarbon seas. One can only hope… and dream!

We have many interesting articles about Titan here at Universe Today. Here are some on Titan’s atmosphere, it’s mysterious sand dunes, and how we might explore it with a robotic sailboat.

For more information on Titan’s methane lakes, check out this article on Titan’s north pole, and this one about Kraken Mare.

Here’s NASA’s Cassini mission to Saturn and Titan, and here’s the ESA’s version.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Is There a Kraken in Kraken Mare? What Kind of Life Would We Find on Titan?

The left image shows a mosaic of images of Titan taken by the Cassini spacecraft in near infrared light. Titan’s polar seas are visible as sunlight glints off of them. The right image is a radar image of Kraken Mare. Credit: NASA Jet Propulsion Laboratory.
The left image shows a mosaic of images of Titan taken by the Cassini spacecraft in near infrared light. Titan’s polar seas are visible as sunlight glints off of them. The right image is a radar image of Kraken Mare. Credit: NASA Jet Propulsion Laboratory.

Could there be life on Saturn’s large moon Titan? Asking the question forces astrobiologists and chemists to think carefully and creatively about the chemistry of life, and how it might be different on other worlds than it is on Earth. In February, a team of researchers from Cornell University, including chemical engineering graduate student James Stevenson, planetary scientist Jonathan Lunine, and chemical engineer Paulette Clancy, published a pioneering study arguing that cell membranes could form under the exotic chemical conditions present on this remarkable moon.

In many ways, Titan is Earth’s twin. It’s the second largest moon in the solar system and bigger than the planet Mercury. Like Earth, it has a substantial atmosphere, with a surface atmospheric pressure a bit higher than Earth’s. Besides Earth, Titan is the only object in our solar system known to have accumulations of liquid on its surface. NASA’s Cassini space probe discovered abundant lakes and even rivers in Titan’s polar regions. The largest lake, or sea, called Kraken Mare, is larger than Earth’s Caspian Sea. Researchers know from both spacecraft observations and laboratory experiments that Titan’s atmosphere is rich in complex organic molecules, which are the building blocks of life.

All these features might make it seem as though Titan is tantalizingly suitable for life. The name ‘Kraken’, which refers to a legendary sea monster, fancifully reflects the eager hopes of astrobiologists. But, Titan is Earth’s alien twin. Being almost ten times further from the sun than Earth is, its surface temperature is a frigid -180 degrees Celsius. Liquid water is vital to life as we know it, but on Titan’s surface all water is frozen solid. Water ice takes on the role that silicon-containing rock does on Earth, making up the outer layers of the crust.

The liquid that fills Titan’s lakes and rivers is not water, but liquid methane, probably mixed with other substances like liquid ethane, all of which are gases here on Earth. If there is life in Titan’s seas, it is not life as we know it. It must be an alien form of life, with organic molecules dissolved in liquid methane instead of liquid water. Is such a thing even possible?

The Cornell team took up one key part of this challenging question by investigating whether cell membranes can exist in liquid methane. Every living cell is, essentially, a self-sustaining network of chemical reactions, contained within bounding membranes. Scientists think that cell membranes emerged very early in the history of life on Earth, and their formation might even have been the first step in the origin of life.

Here on Earth, cell membranes are as familiar as high school biology class. They are made of large molecules called phospholipids. Each phospholipid molecule has a ‘head’ and a ‘tail’. The head contains a phosphate group, with a phosphorus atom linked to several oxygen atoms. The tail consists of one or more strings of carbon atoms, typically 15 to 20 atoms long, with hydrogen atoms linked on each side. The head, due to the negative charge of its phosphate group, has an unequal distribution of electrical charge, and we say that it is polar. The tail, on the other hand, is electrically neutral.

phospholipid membrane
Here on Earth, cell membranes are composed of phospholipid molecules dissolved in liquid water. A phospholipid has a backbone of carbon atoms (gray), and also contains hydrogen (sky blue), phosphorus (yellow), oxygen (red), and nitrogen (blue). Due to the positive charge associated with the nitrogen containing choline group, and the negative charge associated with the phosphate group, the head is polar, and attracts water. It is therefore hydrophilic. The hydrocarbon tail is electrically neutral and hydrophobic. The structure of a cell membrane is due these electrical properties of phospholipids and water. The molecules form a double layer, with the hydrophilic heads facing outward, towards water, and the hydrophobic tails facing inward, towards one another. Credit: Ties van Brussel

These electrical properties determine how phospholipid molecules will behave when they are dissolved in water. Electrically speaking, water is a polar molecule. The electrons in the water molecule are more strongly attracted to its oxygen atom than to its two hydrogen atoms. So, the side of the molecule where the two hydrogen atoms are has a slight positive charge, and the oxygen side has a small negative charge. These polar properties of water cause it to attract the polar head of the phospholipid molecule, which is said to be hydrophilic, and repel its nonpolar tail, which is said to be hydrophobic.

When phospholipid molecules are dissolved in water, the electrical properties of the two substances work together to cause the phospholipid molecules to organize themselves into a membrane. The membrane closes onto itself into a little sphere called a liposome. The phospholipid molecules form a bilayer two molecules thick. The polar hydrophilic heads face outward towards the water on both the inner and outer surface of the membrane. The hydrophobic tails are sandwiched between, facing each other. While the phospholipid molecules remain fixed in their layer, with their heads facing out and their tails facing in, they can still move around with respect to each other, giving the membrane the fluid flexibility needed for life.

Phospholipid bilayer membranes are the basis of all terrestrial cell membranes. Even on its own, a liposome can grow, reproduce and aid certain chemical reactions important to life, which is why some biochemists think that the formation of liposomes might have been the first step towards life. At any rate, the formation of cell membranes must surely been an early step in life’s emergence on Earth.

water and methane
At the left, water, consisting of hydrogen (H) and oxygen (O), is a polar solvent. Oxygen attracts electrons more strongly than hydrogen does, giving the hydrogen side of the molecule a net positive charge and the oxygen side a net negative charge. The delta symbol ( ) indicates that the charge is partial, that is less than a full unit of positive or negative charge. At right, methane is a non-polar solvent, due to the symmetrical distribution of hydrogen atoms (H) around a central carbon atom (C). Credit: Jynto as modified by Paul Patton.

If some form of life exists on Titan, whether sea monster or (more likely) microbe, it would almost certainly need to have a cell membrane, just like every living thing on Earth does. Could phospholipid bilayer membranes form in liquid methane on Titan? The answer is no. Unlike water, the methane molecule has an even distribution of electrical charges. It lacks water’s polar qualities, and so couldn’t attract the polar heads of phospholipid molecule. This attraction is needed for the phospholipids to form an Earth-style cell membrane.

Experiments have been conducted where phospholipids are dissolved in non-polar liquids at Earthly room temperature. Under these conditions, the phospholipids form an ‘inside-out’ two layer membrane. The polar heads of the phospholipid molecules are at the center, attracted to one another by their electrical charges. The non-polar tails face outward on each side of the inside-out membrane, facing the non-polar solvent.

membranes in polar and non-polar solvents
At left, phospholipids are dissolved in water, a polar solvent. They form a bilayer membrane, with their polar, hydrophilic heads facing outward towards water, and their hydrophobic tails facing each other. At right, when phospholipids are dissolved in a non-polar solvent at Earthly room temperature, they form an inside-out membrane, with the polar heads attracting one another, and the non-polar tails facing outwards towards the non-polar solvent. Based on figure 2 from Stevenson, Lunine, and Clancy (2015). Credit: Paul Patton

Could Titanian life have an inside out phospholipid membrane? The Cornell team concluded that this wouldn’t work, for two reasons. The first is that at the cryogenic temperatures of liquid methane, the tails of phospholipids become rigid, depriving any inside-out membrane that might form of the fluid flexibility needed for life. The second is that two key ingredients of phospholipids; phosphorus and oxygen, are probably unavailable in the methane lakes of Titan. In their search for Titanian cell membranes, the Cornell team needed to probe beyond the familiar realm of high school biology.

Although not composed of phospholipids, the scientists reasoned that any Titanian cell membrane would nevertheless be like the inside-out phospholipid membranes created in the lab. It would consist of polar molecules clinging together electrically in a solution of non-polar liquid methane. What molecules might those be? For answers the researchers looked to data from the Cassini spacecraft and from laboratory experiments that reproduced the chemistry of Titan’s atmosphere.

Titan’s atmosphere is known to have a very complex chemistry. It is made mostly of nitrogen and methane gas. When the Cassini spacecraft analyzed its composition using spectroscopy it found traces of a variety of compounds of carbon, nitrogen, and hydrogen, called nitriles and amines. Researchers have simulated the chemistry of Titan’s atmosphere in the lab by exposing mixtures of nitrogen and methane to sources of energy simulating sunlight on Titan. A stew of organic molecules called ‘tholins’ is formed. It consists of compounds of hydrogen and carbon, called hydrocarbons, as well as nitriles and amines.

The Cornell investigators saw nitriles and amines as potential candidates for their Titanian cell membranes. Both are polar molecules that might stick together to form a membrane in non-polar liquid methane due to the polarity of nitrogen containing groups found in both of them. They reasoned that candidate molecules must be much smaller than phospholipids, so that they could form fluid membranes at liquid methane temperatures. They considered nitriles and amines containing strings of between three and six carbon atoms. Nitrogen containing groups are called ‘azoto’ –groups, so the team named their hypothetical Titanian counterpart to the liposome the ‘azotosome’.

Synthesizing azotosomes for experimental study would have been difficult and expensive, because the experiments would need to be conducted at the cryogenic temperatures of liquid methane. But since the candidate molecules have been studied extensively for other reasons, the Cornell researchers felt justified in turning to the tools of computational chemistry to determine whether their candidate molecules could cohere as a flexible membrane in liquid methane. Computational models have been used successfully to study conventional phospholipid cell membranes.

acrylonitrile
Acrylonitrile has been identified as a possible basis for cell membranes in liquid methane on Titan. It is known to be present in Titan’s atmosphere at a concentration of 10 parts per million and has been produced in laboratory simulations of the effects of energy sources on Titan’s nitrogen-methane atmosphere. As a small polar molecule capable of dissolving in liquid methane, it is a candidate substance for the formation of cell membranes in an alternative biochemistry on Titan. Light blue: carbon atoms, dark blue: nitrogen atom, white: hydrogen atoms. Credit: Ben Mills as modified by Paul Patton.

acrylonitrile membrane
Polar acrylonitrile molecules align ‘head’ to ‘tail’ to form a membrane in non-polar liquid methane. Light blue: carbon atoms, dark blue: nitrogen atoms, white: hydrogen atoms. Credit: James Stevenson.

The group’s computational simulations showed that some candidate substances could be ruled out because they would not cohere as a membrane, would be too rigid, or would form a solid. Nevertheless, the simulations also showed that a number of substances would form membranes with suitable properties. One suitable substance is acrylonitrile, which Cassini showed is present in Titan’s atmosphere at 10 parts per million concentration. Despite the huge difference in temperature between cryogenic azotozomes and room temperature liposomes, the simulations showed them to exhibit strikingly similar properties of stability and response to mechanical stress. Cell membranes, then, are possible for life in liquid methane.

azotosome
Computational chemistry simulations show that acrylonitrile and some other small polar nitrogen containing organic molecules are capable of forming ‘azotosomes’ when they are dissolved on liquid methane. Azotosomes are small membrane bounded spherules like the liposomes formed by phospholipids when they are dissolved in water. The simulations show that acrylonitrile azotosomes would be both stable and flexible in cryogenically cold liquid methane, giving them the properties they need to function as cell membranes for hypothetical Titanian life, or for life on any world with liquid methane on its surface. The azotosome shown is 9 nanometers in size, about the size of a virus. Light blue: carbon atoms, dark blue: nitrogen atoms, white: hydrogen atoms. Credit: James Stevenson.

The scientists from Cornell view their findings as nothing more than a first step towards showing that life in liquid methane is possible, and towards developing the methods that future spacecraft will need to search for it on Titan. If life is possible in liquid methane, the implications ultimately extend far beyond Titan.

When seeking conditions suitable for life in the galaxy, astronomers typically search for exoplanets within a star’s habitable zone, defined as the narrow range of distances over which a planet with an Earth-like atmosphere would have a surface temperature suitable for liquid water. If methane life is possible, then stars would also have a methane habitable zone, a region where methane could exist as a liquid on a planet or moon, making methane life possible. The number of habitable worlds in the galaxy would be greatly increased. Perhaps, on some worlds, methane life evolves into complex forms that we can scarcely imagine. Maybe some of them are even a bit like sea monsters.

References and Further Reading:

N. Atkinson (2010) Alien Life on Titan? Hang on Just a Minute, Universe Today.

N. Atkinson (2010) Life on Titan Could be Smelly and Explosive, Universe Today.

M. L. Cable, S. M. Horst, R. Hodyss, P. M. Beauchamp, M. A. Smith, P. A. Willis, (2012) Titan tholins: Simulating Titan organic chemistry in the Cassini-Huygens era, Chemical Reviews, 112:1882-1909.

E. Howell (2014) Titan’s Majestic Mirror-Like Lakes Will Come Under Cassini’s Scrutiny This Week, Universe Today.

J. Major (2013) Titan’s North Pole is Loaded With Lakes, Universe Today.

C. P. McKay, H. D. Smith, (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan, Icarus 178: 274-276.

J. Stevenson, J. Lunine, P. Clancy, (2015) Membrane alternatives in worlds without oxygen: Creation of an azotosome, Science Advances 1(1):e1400067.

S. Oleson (2014) Titan submarine: Exploring the depths of Kraken, NASA Glenn Research Center, Press release.

Cassini Solstice Mission, NASA Jet Propulsion Laboratory

NASA and ESA celebrate 10 years since Titan landing, NASA 2015

What Do Other Planets Sound Like?

What Do Other Planets Sound Like?

We know that in space, no one can hear you scream. But what would things sound like on another planet?

When humans finally set foot on Mars, they’re going to be curious about everything around them.

What’s under that rock? What does it feel like to jump in the lower Martian gravity. What does Martian regolith taste like? What’s the bitcoin to red rock exchange rate?

As long as they perform their activities in the safety of a pressurized habitation module or exosuit, everything should be fine. But what does Mars sound like?

I urge all future Martian travelers, no matter how badly you want to know the answer to this question: don’t take your helmet off. With only 1% the atmospheric pressure of Earth, you’d empty your lungs with a final scream in a brief and foolish moment, then suffocate horribly with a mouthful of dust on the surface of the Red Planet.

But… actually, even the screaming would sound a little different. How different? Let me show you. First you just need to take your helmet off for a just a little sec, just an itsy bitsy second. Here, I’ll hold it for you. Oh, come on, just take your helmet off. All the cool kids are doing it.

What about Venus? Or Titan? What would everything sound like on an alien world?

We evolved to exist on Earth, and so it’s perfectly safe for us to listen to sounds in the air. No space suit needed. Unless you didn’t evolve on Earth, in which case I offer to serve as emissary to our all new alien overlords.

You know sounds travel when waves of energy propagate through a medium, like air or water. The molecules bump into each other and pass along the energy until they strike something that won’t move, like your ear drum. Then your brain turns bouncing into sounds.

The speed of the waves depends on what the medium is made of and how dense it is. For example, sound travels at about 340 meters/second in dry air, at sea level at room temperature. Sound moves much more quickly through liquid. In water it’s nearly 1,500 m/s. It’s even faster through a solid – iron is up past 5,100 m/s. Our brain perceives a different sound depending on the intensity of the waves and how quickly they bounce off our ears.

Artist's impression of the surface of Venus. Credit: ESA/AOES
Artist’s impression of the surface of Venus. Credit: ESA/AOES

Other worlds have media that sound waves can travel through, and with your eardrum exposed to the atmosphere you should theoretically hear sounds on other worlds. Catastrophic biological failures from using your eardrums outside of documented pressure tolerances notwithstanding.

Professor Tim Leighton and a team of researchers from the University of Southampton have simulated what we would hear standing on the surface of other worlds, like Mars, Venus or even Saturn’s Moon Titan.

On Venus, the pitch of your voice would become deeper, because vocal cords would vibrate much more slowly in the thicker Venusian atmosphere. But sounds would travel more quickly through the soupy atmosphere. According to Dr. Leighton, humans would sound like bass Smurfs. Mars would sound a little bit higher, and Titan would sound totally alien.

Dr. Leighton actually simulated the same sound on different worlds. Here’s the sound of thunder on Earth.
Here’s what it would sound like on Venus.
And here’s what it would sound like on Mars.
Here’s what a probe splashing into water on Earth would sound like.
And here’s what it would sound like splashing into a hydrocarbon lake on Titan.

You might be amazed to learn that we still haven’t actually recorded sounds on another world, right up until someone points out that putting a microphone on another planet hasn’t been that big a priority for any space mission.

A fish-eye view of Titan's surface from the European Space Agency's Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona
A fish-eye view of Titan’s surface from the European Space Agency’s Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona

Especially when we could analyze soil samples, but hey fart sounds played and then recorded in the Venusian atmosphere could prove incredibly valuable to the future of internet soundboards.

The Planetary Society has been working to get a microphone included on a mission. They actually included a microphone on the Mars Polar Lander mission that failed in 1999. Another French mission was going to have a microphone, but it was cancelled. There are no microphones on either Spirit or Opportunity, and the Curiosity Rover doesn’t have one either despite its totally bumping stereo.

Here’s is the only thing we’ve got. When NASA’s Phoenix Lander reached the Red Planet in 2008, it had a microphone on board to capture sounds. It recorded audio as it entered the atmosphere, but operators turned the instrument off before it reached the surface because they were worried it would interfere with the landing.

Mars Phoenix Lander. Image credit: NASA/JPL/SSI

Here’s the recording.

Meh. I’m going to need you to do better NASA. I want an actual microphone recording winds on the surface of Mars. I hope it’s something Dethklok puts on their next album, they could afford that kind of expense.

It turns out, that if you travel to an alien world, not only would the sights be different, but the sounds would be alien too. Of course, you’d never know because you’re be too chicken to take your helmet off and take in the sounds through the superheated carbon dioxide or methane atmosphere.

What sounds would you like to hear on an alien world? Tell us in the comments below.

The Planet Saturn

This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on Oct. 10, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic

The farthest planet from the Sun that can be observed with the naked eye, the existence of Saturn has been known for thousands of years. And much like all celestial bodies that can be observed with the aid of instruments – i.e. Mercury, Venus, Mars, Jupiter and the Moon – it has played an important role in the mythology and astrological systems of many cultures.

Saturn is one of the four gas giants in our Solar System, also known as the Jovian planets, and the sixth planet from the Sun. It’s ring system, which is it famous for, is also the most observable – consisting of nine continuous main rings and three discontinuous arcs.

Saturn’s Size, Mass and Orbit:

With a polar radius of 54364±10 km and an equatorial radius of 60268±4 km, Saturn has a mean radius of 58232±6 km, which is approximately 9.13 Earth radii. At 5.6846×1026 kg, and a surface area, at 4.27×1010 km2, it is roughly 95.15 as massive as Earth and 83.703 times it’s size. However, since it is a gas giant, it has significantly greater volume – 8.2713×1014 km3, which is equivalent to 763.59 Earths.

The sixth most distant planet, Saturn orbits the Sun at an average distance of 9 AU (1.4 billion km; 869.9 million miles). Due to its slight eccentricity, the perihelion and aphelion distances are 9.022 (1,353.6 million km; 841.3 million mi) and 10.053 AU (1,513,325,783 km; 940.13 million mi), on average respectively.

Saturn Compared to Earth. Image credit: NASA/JPL
Saturn Compared to Earth. Image credit: NASA/JPL

With an average orbital speed of 9.69 km/s, it takes Saturn 10,759 Earth days to complete a single revolution of the Sun. In other words, a single Cronian year is the equivalent of about 29.5 Earth years. However, as with Jupiter, Saturn’s visible features rotate at different rates depending on latitude, and multiple rotation periods have been assigned to various regions.

The latest estimate of Saturn’s rotation as a whole are based on a compilation of various measurements from the Cassini, Voyager and Pioneer probes. Saturn’s rotation causes it to have the shape of an oblate spheroid; flattened at the poles but bulging at the equator.

Saturn’s Composition:

As a gas giant, Saturn is predominantly composed of hydrogen and helium gas. With a mean density of 0.687 g/cm3, Saturn is the only planet in the Solar System that is less dense than water; which means that it lacks a definite surface, but is believed to have a solid core. This is due to the fact that Saturn’s temperature, pressure, and density all rise steadily toward the core.

Standard planetary models suggest that the interior of Saturn is similar to that of Jupiter, having a small rocky core surrounded by hydrogen and helium with trace amounts of various volatiles. This core is similar in composition to the Earth, but more dense due to the presence of metallic hydrogen, which as a result of the extreme pressure.

Diagram of Saturn's interior. Credit: Kelvinsong/Wikipedia Commons
Diagram of Saturn’s interior. Credit: Kelvinsong/Wikipedia Commons

Saturn has a hot interior, reaching 11,700 °C at its core, and it radiates 2.5 times more energy into space than it receives from the Sun. This is due in part to the Kelvin-Helmholtz mechanism of slow gravitational compression, but may also be attributable to droplets of helium rising from deep in Saturn’s interior out to the lower-density hydrogen. As these droplets rise, the process releases heat by friction and leaves Saturn’s outer layers depleted of helium. These descending droplets may have accumulated into a helium shell surrounding the core.

In 2004, French astronomers Didier Saumon and Tristan Guillot estimated that the core must 9-22 times the mass of Earth, which corresponds to a diameter of about 25,000 km. This is surrounded by a thicker liquid metallic hydrogen layer, followed by a liquid layer of helium-saturated molecular hydrogen that gradually transitions to a gas with increasing altitude. The outermost layer spans 1,000 km and consists of gas.

Saturn’s Atmosphere:

The outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium by volume. The gas giant is also known to contain heavier elements, though the proportions of these relative to hydrogen and helium is not known. It is assumed that they would match the primordial abundance from the formation of the Solar System.

Trace amounts of ammonia, acetylene, ethane, propane, phosphine and methane have been also detected in Saturn’s atmosphere. The upper clouds are composed of ammonia crystals, while the lower level clouds appear to consist of either ammonium hydrosulfide (NH4SH) or water. Ultraviolet radiation from the Sun causes methane photolysis in the upper atmosphere, leading to a series of hydrocarbon chemical reactions with the resulting products being carried downward by eddies and diffusion.

NASA's Cassini spacecraft captures a composite near-true-color view of the huge storm churning through the atmosphere in Saturn's northern hemisphere. Image credit: NASA/JPL-Caltech/SSI
NASA’s Cassini spacecraft captures a composite near-true-color view of the huge storm churning through the atmosphere in Saturn’s northern hemisphere. Image credit: NASA/JPL-Caltech/SSI

Saturn’s atmosphere exhibits a banded pattern similar to Jupiter’s, but Saturn’s bands are much fainter and wider near the equator. As with Jupiter’s cloud layers, they are divided into the upper and lower layers, which vary in composition based on depth and pressure. In the upper cloud layers, with temperatures in range of 100–160 K and pressures between 0.5–2 bar, the clouds consist of ammonia ice.

Water ice clouds begin at a level where the pressure is about 2.5 bar and extend down to 9.5 bar, where temperatures range from 185–270 K. Intermixed in this layer is a band of ammonium hydrosulfide ice, lying in the pressure range 3–6 bar with temperatures of 290–235 K. Finally, the lower layers, where pressures are between 10–20 bar and temperatures are 270–330 K, contains a region of water droplets with ammonia in an aqueous solution.

On occasion, Saturn’s atmosphere exhibits long-lived ovals, similar to what is commonly observed on Jupiter. Whereas Jupiter has the Great Red Spot, Saturn periodically has what’s known as the Great White Spot (aka. Great White Oval). This unique but short-lived phenomenon occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere’s summer solstice.

These spots can be several thousands of kilometers wide, and have been observed in 1876, 1903, 1933, 1960, and 1990. Since 2010, a large band of white clouds called the Northern Electrostatic Disturbance have been observed enveloping Saturn, which was spotted by the Cassini space probe. If the periodic nature of these storms is maintained, another one will occur in about 2020.

 The huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI
The huge storm churning through the atmosphere in Saturn’s northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI

The winds on Saturn are the second fastest among the Solar System’s planets, after Neptune’s. Voyager data indicate peak easterly winds of 500 m/s (1800 km/h). Saturn’s northern and southern poles have also shown evidence of stormy weather. At the north pole, this takes the form of a hexagonal wave pattern, whereas the south shows evidence of a massive jet stream.

The persisting hexagonal wave pattern around the north pole was first noted in the Voyager images. The sides of the hexagon are each about 13,800 km (8,600 mi) long (which is longer than the diameter of the Earth) and the structure rotates with a period of 10h 39m 24s, which is assumed to be equal to the period of rotation of Saturn’s interior.

The south pole vortex, meanwhile, was first observed using the Hubble Space Telescope. These images indicated the presence of a jet stream, but not a hexagonal standing wave. These storms are estimated to be generating winds of 550 km/h, are comparable in size to Earth, and believed to have been going on for billions of years. In 2006, the Cassini space probe observed a hurricane-like storm that had a clearly defined eye. Such storms had not been observed on any planet other than Earth – even on Jupiter.

Saturn’s Moons:

Saturn has at least 150 moons and moonlets, but only 53 of these moons have been given official names. Of these moons, 34 are less than 10 km in diameter and another 14 are between 10 and 50 km in diameter. However, some of its inner and outer moons are rather large, ranging from 250 to over 5000 km.

Images of several moons of Saturn. From left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Some small moons are also shown. All to scale. Credit: NASA/JPL/Space Science Institute
Moons of Saturn (from left to right): Mimas, Enceladus, Tethys, Dione, Rhea, Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Credit: NASA/JPL/Space Science Institute

Traditionally, most of Saturn’s moons have been named after the Titans of Greek mythology, and are grouped based on their size, orbits, and proximity to Saturn. The innermost moons and regular moons all have small orbital inclinations and eccentricities and prograde orbits. Meanwhile, the irregular moons in the outermost regions have orbital radii of millions of kilometers, orbital periods lasting several years, and move in retrograde orbits.

The Inner Large Moons, which orbit within the E Ring (see below), includes the larger satellites Mimas, Enceladus, Tethys, and Dione. These moons are all composed primarily of water ice, and are believed to be differentiated into a rocky core and an icy mantle and crust. With a diameter of 396 km and a mass of 0.4×1020 kg, Mimas is the smallest and least massive of these moons. It is ovoid in shape and orbits Saturn at a distance of 185,539 km with an orbital period of 0.9 days.

Enceladus, meanwhile, has a diameter of 504 km, a mass of 1.1×1020 km and is spherical in shape. It orbits Saturn at a distance of 237,948 km and takes 1.4 days to complete a single orbit. Though it is one of the smaller spherical moons, it is the only Cronian moon that is endogenously active – and one of the smallest known bodies in the Solar System that is geologically active. This results in features like the famous “tiger stripes” – a series of continuous, ridged, slightly curved and roughly parallel faults within the moon’s southern polar latitudes.

Large geysers have also been observed in the southern polar region that periodically release plumes of water ice, gas and dust which replenish Saturn’s E ring. These jets are one of several indications that Enceladus has liquid water beneath it’s icy crust, where geothermal processes release enough heat to maintain a warm water ocean closer to its core. With a geometrical albedo of more than 140%, Enceladus is one of the brightest known objects in the Solar System.

Artist's rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Image Credit: NASA/JPL
Artist’s rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Image Credit: NASA/JPL

At 1066 km in diameter, Tethys is the second-largest of Saturn’s inner moons and the 16th-largest moon in the Solar System. The majority of its surface is made up of heavily cratered and hilly terrain and a smaller and smoother plains region. Its most prominent features are the large impact crater of Odysseus, which measures 400 km in diameter, and a vast canyon system named Ithaca Chasma – which is concentric with Odysseus and measures 100 km wide, 3 to 5 km deep and 2,000 km long.

With a diameter and mass of 1,123 km and 11×1020 kg, Dione is the largest inner moon of Saturn. The majority of Dione’s surface is heavily cratered old terrain, with craters that measure up to 250 km in diameter. However, the moon is also covered with an extensive network of troughs and lineaments which indicate that in the past it had global tectonic activity.

The Large Outer Moons, which orbit outside of the Saturn’s E Ring, are similar in composition to the Inner Moons – i.e. composed primarily of water ice and rock. Of these, Rhea is the second largest – measuring 1,527 km in diameter and 23 × 1020 kg in mass – and the ninth largest moon of the Solar System. With an orbital radius of 527,108 km, it is the fifth-most distant of the larger moons, and takes 4.5 days to complete an orbit.

Like other Cronian satellites, Rhea has a rather heavily cratered surface, and a few large fractures on its trailing hemisphere. Rhea also has two very large impact basins on its anti-Saturnian hemisphere – the Tirawa crater (similar to Odysseus on Tethys) and an as-yet unnamed crater – that measure 400 and 500 km across, respectively.

A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute

At 5150 km in diameter, and 1,350×1020 kg in mass, Titan is Saturn’s largest moon and comprises more than 96% of the mass in orbit around the planet. Titan is also the only large moon to have its own atmosphere, which is cold, dense, and composed primarily of nitrogen with a small fraction of methane. Scientists have also noted the presence of polycyclic aromatic hydrocarbons in the upper atmosphere, as well as methane ice crystals.

The surface of Titan, which is difficult to observe due to persistent atmospheric haze, shows only a few impact craters, evidence of cryo-volcanoes, and longitudinal dune fields that were apparently shaped by tidal winds. Titan is also the only body in the Solar System beside Earth with bodies of liquid on its surface, in the form of methane–ethane lakes in Titan’s north and south polar regions.

With an orbital distance of 1,221,870 km, it is the second-farthest large moon from Saturn, and completes a single orbit every 16 days. Like Europa and Ganymede, it is believed that Titan has a subsurface ocean made of water mixed with ammonia, which can erupt to the surface of the moon and lead to cryovolcanism.

Hyperion is Titan’s immediate neighbor. At an average diameter of about 270 km, it is smaller and lighter than Mimas. It is also irregularly shaped and quite odd in composition. Essentially, the moon is an ovoid, tan-colored body with an extremely porous surface (which resembles a sponge).  The surface of Hyperion is covered with numerous impact craters, most of which are 2 to 10 km in diameter. It also has a highly unpredictable rotation, with no well-defined poles or equator.

The two sides of Iapetus. Credit: NASA/JPL
The two sides of Iapetus, which is known as “Saturn’s yin yang moon” because of the contrast in its color composition. Credit: NASA/JPL

At 1,470 km in diameter and 18×1020 kg in mass, Iapetus is the third-largest of Saturn’s large moons. And at a distance of 3,560,820 km from Saturn, it is the most distant of the large moons, and takes 79 days to complete a single orbit. Due to its unusual color and composition – its leading hemisphere is dark and black whereas its trailing hemisphere is much brighter – it is often called the “yin and yang” of Saturn’s moons.

Beyond these larger moons are Saturn’s Irregular Moons. These satellites are small, have large-radii, are inclined, have mostly retrograde orbits, and are believed to have been acquired by Saturn’s gravity. These moons are made up of three basic groups – the Inuit Group, the Gallic Group, and the Norse Group.

The Inuit Group consists of five irregular moons that are all named from Inuit mythology – Ijiraq, Kiviuq, Paaliaq, Siarnaq, and Tarqeq. All have prograde orbits that range from 11.1 to 17.9 million km, and from 7 to 40 km in diameter. They are all similar in appearance (reddish in hue) and have orbital inclinations of between 45 and 50°.

The Gallic group are a group of four prograde outer moons named for characters in Gallic mythology -Albiorix, Bebhionn, Erriapus, and Tarvos. Here too, the moons are similar in appearance and have orbits that range from 16 to 19 million km. Their inclinations are in the 35°-40° range, their eccentricities around 0.53, and they range in size from 6 to 32 km.

Saturns rings and moons Credit: NASA
Saturns rings and moons, shown to scale. Credit: NASA

Last, there is the Norse group, which consists of 29 retrograde outer moons that take their names from Norse mythology. These satellites range in size from 6 to 18 km, their distances from 12 and 24 million km, their inclinations between 136° and 175°, and their eccentricities between 0.13 and 0.77. This group is also sometimes referred to as the Phoebe group, due to the presence of a single larger moon in the group – which measures 240 km in diameter. The second largest, Ymir, measures 18 km across.

Within the Inner and Outer Large Moons, there are also those belonging to Alkyonide group. These moons – Methone, Anthe, and Pallene – are named after the Alkyonides of Greek mythology, are located between the orbits of Mimas and Enceladus, and are among the smallest moons around Saturn.

Some of the larger moons even have moons of their own, which are known as Trojan moons. For instance, Tethys has two trojans – Telesto and Calypso, while Dione has Helene and Polydeuces.

Saturn’s Ring System:

Saturn’s rings are believed to be very old, perhaps even dating back to the formation of Saturn itself. There are two main theories as to how these rings formed, each of which have variations. One theory is that the rings were once a moon of Saturn whose orbit decayed until it came close enough to be ripped apart by tidal forces.

In version of this theory, the moon was struck by a large comet or asteroid – possible during the Late Heavy Bombardment – that pushed it beneath the Roche Limit. The second theory is that the rings were never part of a moon, but are instead left over from the original nebular material from which Saturn formed billions of years ago.

The structure is subdivided into seven smaller ring sets, each of which has a division (or gap) between it and its neighbor. The A and B Rings are the densest part of the Cronian ring system and are 14,600 and 25,500 km in diameter, respectively. They extend to a distance of 92,000 – 117,580 km (B Ring) and 122,170 – 136,775 km (A Ring) from Saturn’s center, and are separated by the 4,700 km wide Cassini Division.

Saturn's rings. Credit: NASA/JPL/Space Science Institute.
Saturn’s rings. Credit: NASA/JPL/Space Science Institute.

The C Ring, which is separated from the B Ring by the 64 km Maxwell Gap, is approximately 17,500 km in width and extends 74,658 – 92,000 from Saturn’s center. Together with the A and B Rings, they comprise the main rings, which are denser and contain larger particles than the “dusty rings”.

These tenuous rings are called “dusty” due to the small particles that make them up. They include the D Ring, a 7,500 km ring that extends inward to Saturn’s cloud tops (66,900 – 74,510 km from Saturn’s center) and is separated from the C Ring by the 150 km Colombo Gap. On the other end of the system, the G and E Rings are located, which are also “dusty” in composition.

The G Ring is 9000 km in width and extends 166,000 – 175,000 km from Saturn’s center. The E Ring, meanwhile, is the largest single ring section, measuring 300,000 km in width and extending 166,000 to 480,000 km from Saturn’s center. It is here where the majority of Saturn’s moons are located (see above).

The narrow F Ring, which sits on the outer edge of the A Ring, is more difficult to categorize. While some parts of it are very dense, it also contains a great deal of dust-size particles. For this reason, estimates on its width range from 30 to 500 km, and it extends roughly 140,180 km from Saturn’s center.

History of Observing Saturn:

Because it is visible to the naked eye in the night sky, human beings have been observing Saturn for thousands of years. In ancient times, it was considered the most distant of five known the planets, and thus was accorded special meaning in various mythologies. The earliest recorded observations come from the Babylonians, where astronomers systematically observed and recorded its movements through the zodiac.

From the stone plate of the 3rd—4th centuries CE, found in Rome.
Roman astrological calendar, from the stone plate of the 3rd—4th centuries CE, Rome. Credit: Museo della civiltà romana

To the ancient Greeks, this outermost planet was named Cronus (Kronos), after the Greek god of agriculture and youngest of the Titans. The Greek scientist Ptolemy made calculations of Saturn’s orbit based on observations of the planet while it was in opposition.The Romans followed in this tradition, identifying it with their equivalent of Cronos (named Saturnus).

In ancient Hebrew, Saturn is called ‘Shabbathai’, whereas in Ottoman Turkish, Urdu and Malay, its name is ‘Zuhal’, which derived is from the original Arabic. In Hindu astrology, there are nine astrological objects known as Navagrahas. Saturn, which is one of them, is known as “Shani”, who judges everyone based on the good and bad deeds performed in life. In ancient China and Japan, the planet was designated as the “earth star” – based on the Five Elements of earth, air, wind, water and fire.

However, the planet was not directly observed until 1610, when Galileo Galilee first discerned the presence of rings. At the time, he mistook them for two moons that were located on either side. It was not until Christiaan Huygens used a telescope with greater magnification that this was corrected. Huygens also discovered Saturn’s moon Titan, and Giovanni Domenico Cassini later discovered the moons of Iapetus, Rhea, Tethys and Dione.

No further discoveries of significance were made again until the 181th and 19th centuries. The first occurred in 1789 when William Herschel discovered the two distant moons of Mimas and Enceladus, and then in 1848 when a British team discovered the irregularly-shaped moon of Hyperion.

Robert Hooke noted the shadows (a and b) cast by both the globe and the rings on each other in this drawing of Saturn in 1666. Robert Hooke - Philosophical Transactions (Royal Society publication)
Drawing of Saturn by Robert Hook, taken from Philosophical Transactions (1666). Credit: Wikipedia Commons

In 1899 William Henry Pickering discovered Phoebe, noting that it had a highly irregular orbit that did not rotate synchronously with Saturn as the larger moons do. This was the first time any satellite had been found to move about a planet in retrograde orbit. And by 1944, research conducted throughout the early 20th century confirmed that Titan has a thick atmosphere – a feature unique among the Solar System’s moons.

Exploration of Saturn:

By the late 20th century, unmanned spacecraft began to conduct flybys of Saturn, gathering information on its composition, atmosphere, ring structure, and moons. The first flyby was conducted by NASA using the Pioneer 11 robotic space probe, which passed Saturn at a distance of 20,000 km in September of 1979.

Images were taken of the planet and a few of its moons, although their resolution was too low to discern surface detail. The spacecraft also studied Saturn’s rings, revealing the thin F Ring and the fact that dark gaps in the rings are bright when facing towards the Sun, meaning that they contain fine light-scattering material. In addition, Pioneer 11 measured the temperature of Titan.

The next flyby took place in November of 1980 when the Voyager 1 space probe passed through the Saturn system.  It sent back the first high-resolution images of the planet, its rings and satellites – which included features of various moons that had never before been seen.

These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). Credit: NASA/JPL
These six narrow-angle color images were made from the first ever ‘portrait’ of the solar system taken by Voyager 1 in November 1980. Credit: NASA/JPL

In August 1981, Voyager 2 conducted its flyby and gathered more close-up images of Saturn’s moons, as well as evidence of changes in the atmosphere and the rings. The probes discovered and confirmed several new satellites orbiting near or within the planet’s rings, as well as the small Maxwell Gap and Keeler gap (a 42 km wide gap in the A Ring).

In June of 2004, the Cassini–Huygens space probe entered the Saturn system and conducted a close flyby of Phoebe, sending back high-resolution images and data. By July 1st, 2004, the probe entered orbit around Saturn, and by December, it had completed two flybys of Titan before releasing the Huygens probe. This lander reached the surface and began transmitting data on the atmospheric and surface by by Jan. 14th, 2005. Cassini has since conducted multiple flybys of Titan and other icy satellites.

In 2006, NASA reported that Cassini had found evidence of liquid water reservoirs that erupt in geysers on Saturn’s moon Enceladus. Over 100 geysers have since been identified, which are concentrated around the southern polar region. In May 2011, NASA scientists at an Enceladus Focus Group Conference reported that Enceladus’ interior ocean may be the most likely candidate in the search for extra-terrestrial life.

In addition, Cassini photographs have revealed a previously undiscovered planetary ring, eight new satellites, and evidence of hydrocarbon lakes and seas near Titan’s north pole. The probe was also responsible for sending back high-resolution images of the intense storm activity at Saturn’s northern and southern poles.

Cassini’s primary mission ended in 2008, but the probe’s mission has been extended twice since then – first to September 2010 and again to 2017. In the coming years, NASA hopes to use the probe to study a full period of Saturn’s seasons.

Cassini-Huygens Mission
Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Credit: NASA/JPL

From being a very important part of the astrological systems of many cultures to becoming the subject of ongoing scientific fascination, Saturn continues to occupy a special place in our hearts and minds. Whether it’s Saturn’s fantastically large and beautiful ring system, its many many moons, its tempestuous weather, or its curious composition, this gas giant continues to fascinate and inspire.

In the coming years and decades, additional robotic explorer missions will likely to be sent to investigate Saturn, its rings and its system of moons in greater detail. What we find may constitute some of the most groundbreaking discoveries of all time, and will likely teach us more about the history of our Solar System.

Universe Today has articles on the density of Saturn, the Orbit of Saturn, and Interesting Facts about Saturn.

If you want to learn more about Saturn’s rings and moons, check out Where Did Saturn’s Rings Come From? and How Many Moons Does Saturn Have?

For more information, check out Saturn and all about Saturn, and NASA’s Solar System Exploration page on Saturn.

Astronomy Cast has an episode on the subject – Episode 59: Saturn.

Weekly Space Hangout – June 26, 2015: Paul Sutter, CCAPP Visiting Fellow

Host: Fraser Cain (@fcain)

Special Guest: This week we welcome Paul Sutter, the CCAPP Visiting Fellow who works on the cosmic microwave background and large-scale structure.

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Brian Koberlein (@briankoberlein / briankoberlein.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – June 26, 2015: Paul Sutter, CCAPP Visiting Fellow”

What is Lunar Regolith?

A boot print on the lunar regolith. Credit: NASA.

When you’re walking around on soft ground, do you notice how your feet leave impressions? Perhaps you’ve tracked some of the looser earth in your yard into the house on occasion? If you were to pick up some of these traces – what we refer to as dirt or soil – and examine them beneath a microscope, what would you see?

Essentially, you would be seeing the components of what is known as regolith, which is a collection of particles of dust, soil, broken rock, and other materials found here on Earth. But interestingly enough, this same basic material can be found in other terrestrial environments as well – including the Moon, Mars, other planets, and even asteroids.

Definition:

The term regolith refers to any layer of material covering solid rock, which can come in the form of dust, soil or broken rock. The word is derived from the combination of two Greek words – rhegos (which means “blanket”) and lithos (which means “rock).

Earth:

On Earth, regolith takes the form of dirt, soil, sand, and other components that are formed as a result of natural weathering and biological processes. Due to a combination of erosion, alluvial deposits (i.e. moving water deposing sand), volcanic eruptions, or tectonic activity, the material is slowly ground down and laid out over solid bedrock.

central Yilgarn Craton, Western Australia.
Picture of Mt Magnet in the Central Yilgarn Craton in Western Australia, which dates to the Precambrian Era. Credit: geomorphologie.revues.org

It can be made up of clays, silicates, various minerals, groundwater, and organic molecules. Regolith on Earth can vary from being essentially absent to being hundreds of meters thick. Its can also be very young (in the form of ash, alluvium, or lava rock that was just deposited) to hundreds of millions of years old (regolith dating to the Precambrian age occurs in parts of Australia).

On Earth, the presence of regolith is one of the important factors for most life, since few plants can grow on or within solid rock and animals would be unable to burrow or build shelter without loose material. Regolith is also important for human beings since it has been used since the dawn of civilization (in the form of mud bricks, concrete and ceramics) to build houses, roads, and other civil works.

The difference in terminology between “soil” (aka. dirt, mud, etc.) and “sand” is the presence of organic materials. In the former, it exists in abundance, and is what separates regolith on Earth from most other terrestrial environments in our Solar System.

The Moon:

The surface of the Moon is covered with a fine powdery material that scientists refer to it as “lunar regolith”. Nearly the entire lunar surface is covered with regolith, and bedrock is only visible on the walls of very steep craters.

Earth viewed from the Moon by the Apollo 11 spacecraft. Credit: NASA
Earth viewed from the Moon by the Apollo 11 spacecraft, across a sea of lunar soil. Credit: NASA

The Moon regolith was formed over billions of years by constant meteorite impacts on the surface of the Moon. Scientists estimate that the lunar regolith extends down 4-5 meters in some places, and even as deep as 15 meters in the older highland areas.

When the plans were put together for the Apollo missions, some scientists were concerned that the lunar regolith would be too light and powdery to support the weight of the lunar lander. Instead of landing on the surface, they were worried that the lander would just sink down into it like a snowbank.

However, landings performed by robotic Surveyor spacecraft showed that the lunar soil was firm enough to support a spacecraft, and astronauts later explained that the surface of the Moon felt very firm beneath their feet. During the Apollo landings, the astronauts often found it necessary to use a hammer to drive a core sampling tool into it.

Once astronauts reached the surface, they reported that the fine moon dust stuck to their spacesuits and then dusted the inside of the lunar lander. The astronauts also claimed that it got into their eyes, making them red; and worse, even got into their lungs, giving them coughs. Lunar dust is very abrasive, and has been noted for its ability to wear down spacesuits and electronics.

Alan Bean Takes Lunar Soil Sample
Alan Bean takes a sample of lunar regolith during the Apollo 12 mission. Credit: NASA

The reason for this is because lunar regolith is sharp and jagged. This is due to the fact that the Moon has no atmosphere or flowing water on it, and hence no natural weathering process. When the micro-meteoroids slammed into the surface and created all the particles, there was no process for wearing down its sharp edges.

The term lunar soil is often used interchangeably with “lunar regolith”, but some have argued that the term “soil” is not correct because it is defined as having organic content. However, standard usage among lunar scientists tends to ignore that distinction. “Lunar dust” is also used, but mainly to refer to even finer materials than lunar soil.

As NASA is working on plans to send humans back to the Moon in the coming years, researchers are working to learn the best ways to work with the lunar regolith. Future colonists could mine minerals, water, and even oxygen out of the lunar soil, and use it to manufacture bases with as well.

Mars:

Landers and rovers that have been sent to Mars by NASA, the Russians and the ESA have returned many interesting photographs, showing a landscape that is covered with vast expanses of sand and dust, as well as rocks and boulders.

A successful scoop of Martian regolith (NASA/JPL-Caltech/University of Arizona/Max Planck Institute)
A successful scoop of Martian regolith performed by NASA’s Phoenix lander. Credit: NASA/JPL-Caltech/University of Arizona/Max Planck Institute

Compared to lunar regolith, Mars dust is very fine and enough remains suspended in the atmosphere to give the sky a reddish hue. The dust is occasionally picked up in vast planet-wide dust storms, which are quite slow due to the very low density of the atmosphere.

The reason why Martian regolith is so much finer than that found on the Moon is attributed to the flowing water and river valleys that once covered its surface. Mars researchers are currently studying whether or not martian regolith is still being shaped in the present epoch as well.

It is believed that large quantities of water and carbon dioxide ices remain frozen within the regolith, which would be of use if and when manned missions (and even colonization efforts) take place in the coming decades.

Mars moon of Deimos is also covered by a layer of regolith that is estimated to be 50 meters (160 feet) thick. Images provided by the Viking 2 orbiter confirmed its presence from a height of 30 km (19 miles) above the moon’s surface.

Asteroids and Outer Solar System:

The only other planet in our Solar System that is known to have regolith is Titan, Saturn’s largest moon. The surface is known for its extensive fields of dunes, though the precise origin of them are not known. Some scientists have suggested that they may be small fragments of water ice eroded by Titan’s liquid methane, or possibly particulate organic matter that formed in Titan’s atmosphere and rained down on the surface.

Another possibility is that a series of powerful wind reversals, which occur twice during a single Saturn year (30 Earth years), are responsible for forming these dunes, which measure several hundred meters high and stretch across hundreds of kilometers.  Currently, Earth scientists are still not certain what Titan’s regolith is composed of.

Data returned by the Huygens Probe’s penetrometer indicated that the surface may be clay-like, but long-term analysis of the data has suggested that it may be composed of sand-like ice grains.  The images taken by the probe upon landing on the moon’s surface show a flat plain covered in rounded pebbles, which may be made of water ice, and suggest the action of moving fluids on them.

Asteroids have been observed to have regolith on their surfaces as well. These are the result of meteoriod impacts that have taken place over the course of millions of years, pulverizing their surfaces and creating dust and tiny particles that are carried within the craters.

False color picture of Eros' 5.3-kilometer (3.3-mile) surface crater, showing regolith inside. Credit: NASA/JPL/JHUAPL
False color picture taken by NASA’s NEAR Shoemaker camera of Eros’ 5.3-kilometer (3.3-mile) surface crater, showing the presence of regolith inside. Credit: NASA/JPL/JHUAPL

NASA’s NEAR Shoemaker spacecraft produced evidence of regolith on the surface of the asteroid 433 Eros, which remains the best images of asteroid regolith to date. Additional evidence has been provided by JAXA’s Hayabusa mission, which returned clear images of regolith on an asteroid that was thought to be too small to hold onto it.

Images provided by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras on board the Rosetta Spacecraft confirmed that the asteroid 21 Lutetia has a layer of regolith near its north pole, which was seen to flow in major landslides associated with variations in the asteriod’s albedo.

To break it down succinctly, wherever there is rock, there is likely to be regolith. Whether it is the product of wind or flowing water, or the presence of meteors impacting the surface, good old fashioned “dirt” can be found just about anywhere in our Solar System; and most likely, in the universe beyond…

We’ve done several articles about the Moon’s regolith here on Universe Today. Here’s a way astronauts might be able to extract water from lunar regolith with simple kitchen appliances, and an article about NASA’s search for a lunar digger.

Want to buy some lunar regolith simulant? Here’s a site that lets you buy it. Do you want to be a Moon miner? There’s lots of good metal in that lunar regolith.

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

Reference:
NASA

Why Don’t We Search for Different Life?

Why Don’t We Search for Different Life?

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?

In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.

Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.

Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!

Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities.
Credits: NASA/Jet Propulsion Laboratory, Caltech

The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.

The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.

The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.
An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.

Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?

We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

What Other Worlds Have We Landed On?

As of November 2014, these are all of the planetary, lunar and small body surfaces where humanity has either lived, visited, or sent probes to. Composition by Mike Malaska, updated by Michiel Straathof. Image credits: Comet 67P/C-G [Rosetta/Philae]: ESA / Rosetta / Philae / CIVA / Michiel Straathof. Asteroid Itokawa [Hayabusa]: ISAS / JAXA / Gordan Ugarkovic. Moon [Apollo 17]: NASA. Venus [Venera 14]: IKI / Don Mitchell / Ted Stryk / Mike Malaska. Mars [Mars Exploration Rover Spirit]: NASA / JPL / Cornell / Mike Malaska. Titan [Cassini-Huygens]: ESA / NASA / JPL / University of Arizona. Earth: Mike Malaska

Think of all the different horizons humans have viewed on other worlds. The dust-filled skies of Mars. The Moon’s inky darkness. Titan’s orange haze. These are just a small subset of the worlds that humans or our robots landed on since the Space Age began.

It’s a mighty tribute to human imagination and engineering that we’ve managed to get to all these places, from moons to planets to comets and asteroids. By the way, for the most part we are going to focus on “soft landings” rather than impacts — so, for example, we wouldn’t count Galileo’s death plunge into Jupiter in 2003, or the series of planned landers on Mars that ended up crashing instead.

The Moon

Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA
Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA

Our instant first association with landings on other worlds is the human landings on the Moon. While it looms large in NASA folklore, the Apollo landings only took place in a brief span of space history. Neil Armstrong and Buzz Aldrin were the first crew (on Apollo 11) to make a sortie in 1969, and Apollo 17’s Gene Cernan and Jack Schmitt made the final set of moonwalks in 1972. (Read more: How Many People Have Walked on the Moon?)

But don’t forget all the robotic surveyors that came before and after. In 1959, the Soviet Union’s Luna 2 made the first impact on the lunar surface; the first soft landing came in 1966, with Luna 9. The United States set a series of Ranger and Surveyor probes to reach the moon in the 1960s and 1970s. The Soviet Union also deployed a rover on the moon, Lunakhod 1, in 1970 — the first remote-controlled robot controlled on another world’s surface.

In 2013, China made the first lunar soft landing in a generation. The country’s Chang’e-3 not only made it safely, but deployed the Yutu rover shortly afterwards.

Mars

Sojourner - NASA’s 1st Mars Rover. Rover takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing.  Credit: NASA
Sojourner – NASA’s 1st Mars Rover. Rover takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing. Credit: NASA

Mars is a popular destination for spacecraft, but only a fraction of those machines that tried to get there actually safely made it to the surface. The first successful soft landing came on Dec. 2, 1971 when the Soviet Union’s Mars 3 made it to the surface. The spacecraft, however, only transmitted for 20 seconds — perhaps due to dust storms on the planet’s surface.

Less than five years later, on July 20, 1976, NASA’s Viking 1 touched down on Chryse Planitia. This was quickly followed by its twin Viking 2 in September. NASA has actually made all the other soft landings to date, and expanded its exploration by using rovers to move around on the surface. The first one was Sojourner, a rover that rolled off the Pathfinder lander in 1997.

NASA also sent a pair of Mars Exploration Rovers in 2004. Spirit transmitted information back to Earth until 2010, while Opportunity is still roaming the surface. The more massive Curiosity lander followed them in 2012. Another stationary spacecraft, Phoenix, successfully landed close to the planet’s north pole in 2008.

Venus

Surface of Venus by Venera.
Surface of Venus by Venera.

Venera 7 — one of a series of Soviet probes sent in the 1960s and 1970s — was the first to make it to the surface of Venus and send data back, on Dec. 15, 1970. It lasted 23 minutes on the surface, transmitting weakly towards Earth. This may have been because it came to rest on its side after bouncing through a landing.

The first pictures of the surface came courtesy of Venera 9, which made it to Venus on Oct. 22, 1975 and sent data back for 53 minutes. Venera 10 also successfully landed three days later and sent back data from Venus as planned. Several other Venera probes followed, most notably including Venera 13 — which sent back the first color images and remained active for 127 minutes.

Titan

Artist depiction of Huygens landing on Titan. Credit: ESA
Artist depiction of Huygens landing on Titan. Credit: ESA

Humanity’s first and only landing on Titan so far came on Jan. 14, 2005. The European Space Agency’s Huygens probe likely didn’t come to rest right away when it arrived on the surface, bouncing and skidding for about 10 seconds after landing, an analysis showed almost a decade later.

A fish-eye view of Titan's surface from the European Space Agency's Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona
A fish-eye view of Titan’s surface from the European Space Agency’s Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona

The probe managed to send back information all the way through its 2.5-hour descent, and continued transmitting data for an hour and 12 minutes after landing. Besides the pictures, it also sent back information about the moon’s wind and surface.

The orangey moon of Saturn has come under scrutiny because it is believed to have elements in its atmosphere and on its surface that are precursors to life. It also has lakes of ethane and methane on its surface, showing that it has a liquid cycle similar to our own planet.

Comets and asteroids

Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Robots have also touched the ground on smaller, airless bodies in our Solar System — specifically, a comet and two asteroids. NASA’s NEAR Shoemaker made the first landing on asteroid Eros on Feb. 12, 2001, even though the spacecraft wasn’t even designed to do so. While no images were sent back from the surface, it did transmit data successfully for more than two weeks.

Japan made its first landing on an extraterrestrial surface on Nov. 19, 2005, when the Hayabusa spacecraft successfully touched down on asteroid Itokawa. (This followed a failed attempt to send a small hopper/lander, called Minerva, from Hayabusa on Nov. 12.) Incredibly, Hayabusa not only made it to the surface, but took off again to return the samples to Earth — a feat it accomplished successfully in 2010.

The first comet landing came on Nov. 12, 2014 when the European Space Agency’s Philae lander successfully separated from the Rosetta orbiter and touched the surface of Comet 67P/Churyumov–Gerasimenko. Philae’s harpoons failed to deploy as planned and the lander drifted for more than two hours from its planned landing site until it stopped in a relatively shady spot on the comet’s surface. Its batteries drained after a few days and the probe fell silent. As of early 2015, controllers are hoping that as more sunlight reaches 67P by mid-year, Philae will wake up again.