Little Enceladus and enormous Titan are seen on either side of Saturn’s rings in this image, a color-composite made from raw images acquired by Cassini on March 12, 2012. The original images were taken in red, green and blue color channels, and with a little Photoshop editing I combined them into a roughly true-color view of what Cassini saw as it passed within 1,045,591 km of Enceladus.
Titan is a world that is amazingly Earth-like in some ways, with rain, rivers, lakes and seas. Mind you, the liquid in this case is methane/ethane instead of water, at the bitterly cold conditions on the surface. Also like Earth, Titan has vast sand dune fields, covering about 10 million square kilometres (39 million square miles), or 13% of Titan’s surface. The Cassini spacecraft has been studying these dunes with its radar (in order to see through the perpetually smog-like atmosphere), with interesting results.
Titan’s dunes show regional differences, although they are only found in equatorial areas, between 30°S and 30°N. They are found in both highlands and lowlands, but primarily in lower elevations. The ones at higher altitudes are thinner and more widely spaced, and the gaps between them are brighter in the radar images, which means that there is probably less sand available than at lower altitudes. The dunes also become narrower and more widely spaced at northern latitudes.
Because Titan’s southern hemisphere has shorter but more intense summers, due to Saturn’s elliptical orbit around the Sun, there is less moisture in the soil in those regions, making them more ideal for dune-forming. There is more moisture in the northern regions, where most of the lakes and seas are found.
“As one goes to the north, the soil moisture probably increases, making the sand particles less mobile and, as a consequence, the development of dunes more difficult,” said Dr. Le Gall of LATMOS-UVSQ in Paris.
The characteristics of Titan’s dunes also provide clues to the moon’s climate and geological history.
According to Nicolas Altobelli, Cassini–Huygens project scientist, “Understanding how the dunes form as well as explaining their shape, size and distribution on Titan’s surface is of great importance to understanding Titan’s climate and geology. As their material is made out of frozen atmospheric hydrocarbons, the dunes might provide us with important clues on the still puzzling methane/ethane cycle on Titan, comparable in many aspects with the water cycle on Earth.”
It should also be noted that the sand on Titan is composed of solid hydrocarbons instead of silicates like sand on Earth. Similar in appearance, but like the rest of Titan, very different in composition. They are reminiscent of the dune fields in Namibia or southern Arabia, but are much larger – they average about 1-2 kilometres (0.6-1.2 miles) wide, 100 metres (328 feet) tall and extend for hundreds of kilometres/miles!
It would be interesting to see a Titanian version of Lawrence of Arabia…
Titan, the largest moon of Saturn, is in some ways the most Earth-like world in the solar system, with a thick nitrogen atmosphere, rain, rivers, lakes and seas. Albeit it is much colder, and liquid methane/ethane takes the place of water, but the hydrological processes are quite similar to those here. There may, however, also be a liquid water-ammonia ocean below the surface. Now, new research suggests that Titan is Earth-like in another way as well, with a layered lower atmosphere similar to ours.
It’s been long known that Titan has a dense atmosphere; you can’t even see the surface due to a thick smog-like upper haze composed of hydrocarbons. As it turns out, the lower atmosphere has two distinct layers; the lowest layer, like on Earth, is known as the boundary layer, which has the most influence on climate and weather.
There has been a lot of uncertainty about the nature of Titan’s lower atmosphere, so scientists developed a 3-D climate model to try to answer those questions – previous data from Voyager 1, Cassini and Huygens had led to conflicting results. This was largely due to the fact that the lower atmosphere can’t be observed directly because of the opaque upper atmosphere. The new climate model shows that there are two lower layers which are distinct from each other as well as from the upper atmosphere. The lowest boundary layer is about 800 metres (2,600 feet) thick while the next layer is about 2 kilometers (1.2 miles) deep.
According to Paulo Penteado from the Institute of Astronomy, Geophysics and Atmospheric Science at the University of São Paulo in Brazil, “The most interesting point is that their model shows the presence of two different boundaries, the lower one caused by the daily heating and cooling of the surface – and varying in height during the day – and the higher one caused by the seasonal change in global air circulation.”
Benjamin Charnay from the French National Centre for Scientific Research (CNRS) in Paris and lead author of the study, adds: “This unprecedented organisation of the boundary layer has several consequences. It controls the atmospheric circulation and wind patterns in the lower atmosphere; it controls the size and spacing of dunes on Titan; it could imply the formation of boundary layer clouds (of methane on Titan). Such clouds seem to have been observed but not explained.”
These differences are surprising, since Titan receives far less solar energy from the Sun than Earth does. This solar insulation, which determines temperature variations in the atmosphere, is 1,000 times weaker on Titan than on Earth. Such a dynamic atmosphere on Titan was unexpected, but it may hold clues as to the formation of our own atmosphere. This could also be extrapolated to exoplanets; if a smaller world so far from the Sun can have unanticipated Earth-like conditions, how many exoplanets, now being discovered by the thousands, could as well?
The findings were published in the January 15, 2012 issue of Nature Geoscience.
From the abstract:
“We conclude that Titan’s troposphere is well structured, featuring two boundary layers that control wind patterns, dune spacing and cloud formation at low altitudes.”
The abstract and article are here. The full article is available for $18.00 US or by subscription to Nature Geoscience.
It’s been said many times that the most Earthlike world in our solar system is not a planet at all, but rather Saturn’s moon Titan. At first it may not seem obvious why; being only a bit larger than the planet Mercury and coated in a thick opaque atmosphere containing methane and hydrocarbons, Titan sure doesn’t look like our home planet. But once it’s realized that this is the only moon known to even have a substantial atmosphere, and that atmosphere creates a hydrologic cycle on its surface that mimics Earth’s – complete with weather, rain, and gully-carving streams that feed liquid methane into enormous lakes – the similarities become more evident. Which, of course, is precisely why Titan continues to hold such fascination for scientists.
Now, researchers have identified yet another similarity between Saturn’s hazy moon and our own planet: Titan’s energy budget is in equilibrium, making it much more like Earth than the gas giant it orbits.
A team of researchers led by Liming Li of the Department of Earth and Atmospheric Sciences at the University of Houston in Texas has completed the first-ever investigation of the energy balance of Titan, using data acquired by telescopes and the Cassini spacecraft from 2004 to 2010.
Energy balance (or “budget”) refers to the radiation a planet or moon receives from the Sun versus what it puts out. Saturn, Jupiter and Neptune emit more energy than they receive, which indicates an internal energy source. Earth radiates about the same amount as it receives, so it is said to be in equilibrium… similar to what is now shown to be the case for Titan.
The energy absorption and reflection rates of a planet’s – or moon’s! – atmosphere are important clues to the state of its climate and weather. Different balances of energy or changes in those balances can indicate climate change – global cooling or global warming, for instance.
Of course, this doesn’t mean Titan is a balmy world. At nearly 300 degrees below zero (F) it has an environment that even the most extreme Earth-based life would find inhospitable. Although Titan’s atmosphere is ten times thicker than Earth’s its composition is very different, permitting easy passage of infrared radiation (a.k.a. “heat”) and thus exhibits an “anti-greenhouse” effect, unlike Earth or, on the opposite end of the scale, Venus.
Still, some stable process is in place on Saturn’s moon that allows for distribution of solar energy across its surface, within its atmosphere and back out into space. With results due in from Cassini from a flyby on Jan. 2, perhaps there will soon be even more clues as to what that may be.
The team’s report was published in the AGU’s Geophysical Research Letters on December 15, 2011. Li, L., et al. (2011), The global energy balance of Titan, Geophys. Res. Lett., 38, L23201, doi:10.1029/2011GL050053.
It has been said that the atmosphere on Titan is so dense that a person could strap a pair of wings on their back and soar through its skies.
It’s a pretty fascinating thought. And Titan – Saturn’s largest moon – is a pretty fascinating place. After all, it’s the only other body in our solar system (besides Earth, of course) that has that type of atmosphere and evidence of liquid on its surface.
“As far as its scientific interest, Titan is the most interesting target in the Solar System,” Dr. Jason W. Barnes of the University of Idaho told Universe Today.
That’s why Barnes and a team of 30 scientists and engineers created an unmanned mission concept to explore Titan called AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The plan, which primarily consists of a 120 kg plane soaring through the natural satellite’s atmosphere, was published online late last month.
The goal of the plane concept – which according to Barnes can serve as a standalone mission or as part of a larger Titan-focused exploration program – is to study the moon’s geography (its mountains, dunes, lakes and seas), as well as its atmosphere (the wind, haze, clouds and rain. Did you know that Titan is the only other place is our solar system where it rains?)
AVIATR is composed of three vehicles: one for space travel, one for entry and descent into Titan, and a plane to fly through the atmosphere. AVIATR, estimated to cost $715 million, would not prevent other missions from occurring on Titan, Barnes said. Instead, it would supplement the science being done by other projects.
“The science that AVIATR could do complements the science that can be accomplished from both orbiting and landed platforms,” the article stated.
Unfortunately, it seems like the plane concept won’t be happening anytime soon.
That’s because Titan didn’t make the National Research Council’s “Decadal Survey” – a prioritization of future planetary missions. (Read more about the survey in this Universe Today post.)
“Titan was deferred to another decade,” Barnes said.
But, he hopes to continue to build support for AVIATR so that it can get onto the next decadal survey in 2020. “We certainly had a lot of interest from people. We are breaking the paradigm that a balloon was the right way to go to Titan,” Barnes said.
So, why send an unmanned plane to study Titan’s atmosphere?
“Titan is the best place to fly an airplane in the whole solar system. We can go when and where we want,” Barnes said, adding that when compared to Earth, there’s four times more air and seven times less gravity on Titan. “A balloon is stuck in the wind.”
According to the article:
“A balloon entrained in primarily zonal winds near the equator would have no mechanism by which to travel to the polar regions to observe lakes and shoreline processes. Even if it were possible to get there, it is not clear that it would be desirable to send a balloon to the poles where Titan’s most violent meteorological activity takes place. AVIATR is both able to fly to the poles and is sufficiently robust to survive there.”
There’s also this issue: A shortage of plutonium-238.
“The radioactive decay of plutonium-238 provides the heat that powers RTGs, which can power spacecraft where there is insufficient sunlight for solar panels to operate. NASA is presently investing in a new type of RTG, called the ASRG,” the article stated. “A traditional hot-air balloon will not work on Titan with an ASRG owing to its lower heat production. In contrast, the AVIATR mission is specifically enabled by the use of ASRGs. The power density (in Watts per kilogram) and longevity of the ASRG allow an electrically-powered aircraft to fly on Titan.”
A plane could also find potential landing spots for future exploration. And, “since we are flying, we fly west the whole time so we can stay on the day side of Titan,” Barnes said.
That daylight would also help AVIATR collect photographic data during its travels and, according to Barnes, when it’s time to downlink that information, the plane would conserve energy by gliding through the air.
“And in doing so, we can also sample of bunch of altitude ranges,” Barnes said. “We are sampling the whole time.”
The plan seems interesting enough, but it’ll be quite a while before any data from the prospective mission would be coming back to Earth. If the plan is accepted (the earliest being 2020), the project would still have to be built, then once completed it would take 7 1/2 years to reach Titan. Once there, the mission would take about a nominal Earth year to study.
“I now realize that it’s a career-long project,” Barnes said to Universe Today. “The plan at this point is to keep this in the forefront of people’s minds and take whatever new ideas that people suggest and try to improve its prospect for selection.
To view the complete proposal, published in Experimental Astronomy, go here.
“Hey! Look what our Santa at Saturn has sent our way!” said Carolyn Porco, the Cassini imaging team lead, in a post on Twitter. This wonderful collection of just-released colorful images from the Saturn system are a holiday gift from the Cassini and CICLOPS (Cassini Imaging Central Laboratory for Operations)team.
Above, Saturn’s third-largest moon, Dione, can be seen through the haze of the planet’s largest moon, Titan, in this view of the two posing before the planet and its rings from NASA’s Cassini spacecraft.
More treats below!
To see more details and larger versions of these images, visit the CICLOPS website. (And thanks, Carolyn and team for the beautiful gifts!)
Made from one of the most recent Cassini images, this is a color-composite showing a backlit Titan with its dense, multi-layered atmosphere scattering sunlight in different colors. Titan’s atmosphere is made up of methane and complex hydrocarbons and is ten times as thick as Earth’s. It is the only moon in our solar system known to have a substantial atmosphere.
Titan’s high-level hydrocarbon haze is nicely visible as a pale blue band encircling the moon.
At 3,200 (5,150 km) miles wide, Titan is one of the largest moons in the solar system – even larger than Mercury. Its thick atmosphere keeps a frigid and gloomy surface permanently hidden beneath opaque clouds of methane and hydrocarbons.
This image was made from three raw images acquired by Cassini on December 13. The raw images were in the red, green and blue visible light channels, and so the composited image you see here approximates true color.
This particular flyby of Titan (designated T-79) gave Cassini’s instruments a chance to examine Titan in many different wavelengths, as well as map its surface and measure its atmospheric temperature. Cassini passed by the giant moon at a distance of about 2,228 miles (3,586 kilometers) traveling 13,000 mph (5.8 km/sec). Read more on the flyby page here.
Credit: NASA / JPL / Space Science Institute. Edited by Jason Major.
See more color-composite images of Titan and other moons of Saturn on my Flickr set here.
Until fairly recently, the search for life elsewhere in the solar system has focused primarily on Mars, as it is the most Earth-like of all the other planets in the solar system. The possibility of finding any kind of life farther out in the outer solar system was considered very unlikely at best; too cold, too little sunlight, no solid surfaces on the gas giants and no atmospheres to speak of on any of the moons apart from Titan.
But now, some of the places that were previously considered the least likely to hold life have turned out to be perhaps some of the most likely to provide habitable environments. Moons that were thought be cold and frozen for eons are now known to be geologically active, in surprising ways. One of them is the most volcanically active place known in the solar system. At least two others appear to have oceans of liquid water beneath their surfaces. That’s right, oceans. And geysers. On the surface, they are ice worlds, but below, they are water worlds. Then there’s the one with rain, rivers, lakes and seas, but made of liquid methane instead of water. Billions of kilometres farther out from the Sun than the Earth. Who would have thought? Let’s look at those last three in a bit more detail…
Ever since the film 2001: A Space Odyssey first came out, Europa has been the subject of fascination. A small, icy moon orbiting Jupiter, its depiction in that movie, as an inhabited world beneath its ice crust was like a sort of foreshadowing, before the Voyager and Galileo spacecraft gave us our first real close-up looks of this intriguing place. Its surface shell of ice is covered with long cracks and fissures, giving it an appearance much like ice floes at the poles on Earth. More surprising though, was the discovery that, also like on Earth, this ice cover most likely is floating on top of a deep layer of liquid water below. In Europa’s case though, the water layer appears to cover the entire moon, a global subsurface ocean. How is this possible? If there is liquid water, there must be heat (or high concentrations of salts or ammonia), and if you have water and heat, could there be something living in those waters? Gravitational tugging from Jupiter indeed appears to provide enough heat to keep the water liquid instead of frozen. The environment is now thought to be similar to ocean bottoms on Earth. No sunlight, but if there are volcanic vents generating heat and minerals, as on Earth, such a spot could be ideal for at least simple forms of life. On Earth, places like these deep in the oceans are brimming with organisms which don’t require sunlight to survive.
Then there’s Enceladus. Another very small icy moon, orbiting Saturn. Geological activity was considered very unlikely on such a tiny world, only a few hundred kilometres in diameter. But then Cassini saw the geysers, plumes of material erupting from the south polar region through large, warmer cracks nicknamed “tiger stripes.” Cassini has now flown directly through the geysers, analyzing their composition, which is mostly water vapour, ice particles, salts and organics. The latest analysis based on the Cassini data indicates that they almost certainly originate from a sea or ocean of liquid water below the surface. Warm, salty water loaded with organics; could Enceladus be another possible niche for extraterrestrial life? As with Europa, only further missions will be able to answer these questions, but the possibilities are exciting.
Titan is even more fascinating in some ways, the largest moon of Saturn. It is perpetually shrouded in a thick smoggy atmosphere of nitrogen and methane, so the surface has never been visible until now, when Cassini, and its small lander probe Huygens, first looked below the smog and clouds. Titan is like an eerily alien version of Earth, with rain, rivers, lakes and seas, but being far too cold for liquid water (not much heat here), its “water cycle” is composed of liquid methane/ethane. Appearance-wise, the surface and geology look amazingly Earth-like, but the conditions are uniquely Titan. For that reason, it has long been considered that the chances of any kind of life existing here are remote at best. In the last few years however, some scientists are starting to consider the possibility of life forming in just such environments, using liquids other than water, even in such cold conditions. Could life occur in a liquid methane lake or sea? How would it differ from water-based life? Last year, a discovery was made which might be interpreted as evidence of methane-based life on Titan – a seeming disappearance of hydrogen from the atmosphere near the surface and a lack of acetylene on the surface. Previous theoretical studies had suggested that those two things, if ever found, could be evidence for methane-based lifeforms consuming the hydrogen and acetylene. All of this is still highly speculative, and while a chemical explanation is probably more likely according to the scientists involved, a biological one cannot be ruled out yet. Future proposed missions for Titan include a floating probe to land in one of the lakes and a balloon to soar over the landscape, pursuing such mysteries as never before. How cool is that?
Oh, and the moon that is the most volcanically active place in the solar system? Io, although with the only known forms of liquid there being extremely hot lavas on that sulfuric hothouse, the chances of life are still thought to be unbelievably slim. But that’s ok when you start to find out that worlds with oceans and lakes, etc. may be much more common than previously imagined…
Titan is making news again, this time with Cassini images from 2010 showing a storm nearly as big as Texas. Jonathan Mitchell from UCLA and his research team have published their findings which help answer the question:
What could cause such large storms to develop on a freezing cold world?
For starters, the huge arrow isn’t a cosmic detour sign reminding us to “Attempt No Landings” on Jupiter’s moon Europa.
In the study by Mitchell and his team, a model of Titan’s global weather was created to understand how atmospheric waves affect weather patterns on Titan. During their research, the team discovered a “stenciling” effect that creates distinct cloud shapes, such as the arrow-shaped cloud shown in the Cassini image above.
“These atmospheric waves are somewhat like the natural, resonant vibration of a wine glass,” Mitchell said. “Individual clouds might ‘ring the bell,’ so to speak, and once the ringing starts, the clouds have to respond to that vibration.”
Titan is the only other body in the solar system (aside from Earth) known to have an active “liquid cycle”. Much like Titan’s warmer cousin Earth, the small moon has an atmosphere primarily composed of Nitrogen. Interestingly enough Titan’s atmosphere is roughly the same mass as Earth’s and has about 1.5 times the surface pressure. At the extremely low temperatures on Titan, hydrocarbons such as methane appear in liquid form, rather than the gaseous form found on Earth.
With an active liquid both on the surface and in the atmosphere of Titan, clouds form and create rain. In the case of Titan, the rain on the plain is mainly methane. Water on Titan is rock-hard, due to temperatures hovering around -200 c.
Studies of Titan show evidence of liquid runoff, rivers and lakes, further emphasizing Titan’s parallels to Earth. Researchers believe better understanding of Titan may offer clues to understanding Earth’s early atmosphere. In another parallel to earth, the weather patterns on Titan created by the atmospheric waves can create intense rainstorms, sometimes with more than 20 times Titan’s average seasonal rainfall. These intense storms may cause erosion patterns that help form the rivers seen on Titan’s surface. Mitchell described Titan’s climate as “all-tropics”, basically comparing the weather to what is usually found near Earth’s equator. Could these storms be Titan’s equivalent of monsoon season?
Mitchell stated “Titan is like Earth’s strange sibling — the only other rocky body in the solar system that currently experiences rain”. Mitchell also added, “In future work, we plan to extend our analysis to other Titan observations and make predictions of what clouds might be observed during the upcoming season”.
The research was published Aug. 14 in the online edition of the journal Nature Geoscience .
The name “Xanadu” just sounds exotic and enticing, and given that this region on Titan is right next to Shangri-la, how can we not be intrigued by the latest radar image of this region taken by the Cassini spacecraft? While Titan itself is shrouded in mystery with its thick, hazy atmosphere, via radar, Cassini can peer through and has found three major surface features: dunes, craters and the enigmatic Xanadu, a bright continent-sized feature centered near the moon’s equator. At upper right is the crater Ksa, first seen by Cassini in 2006. The dark lines running among Xanadu and Ksa are linear dunes, similar to sand dunes on Earth in Egypt and Namibia. In addition to the dunes, look closely at Xanadu to see hills, rivers and valleys which scientists believe are carved in ice rather than solid ground, by liquid methane or ethane.
This image was taken by Cassini’s Titan Radar Mapper on June 21, 2011.