Beyond Earth, the general scientific consensus is that the best place to search for evidence of extraterrestrial life is Mars. However, it is by no means the only place. Aside from the many extrasolar planets that have been designated as “potentially-habitable,” there are plenty of other candidates right here in our Solar System. These include the many icy satellites that are thought to have interior oceans that could harbor life.
Among them is Titan, Saturn’s largest moon that has all kinds of organic chemistry taking place between its atmosphere and surface. For some time, scientists have suspected that the study of Titan’s atmosphere could yield vital clues to the early stages of the evolution of life on Earth. Thanks to new research led by tech-giant IBM, a team of researchers has managed to recreate atmospheric conditions on Titan in a laboratory.
Saturn’s moon Titan is alone among the Solar System’s moons. It’s the only one with any atmosphere to speak of. Other moons may have thin, largely insignificant atmospheres, like Ganymede with its potential oxygen atmosphere. But Titan’s atmosphere is dense, and rich in nitrogen.
A new study shows that Titan’s atmosphere and winds might produce dust devils similar to Earth’s.
The Cassini spacecraft ended its mission to Saturn and its moons two years ago when it was sent plunging into Saturn to be destroyed. But after two years, scientists are still studying the data from the Cassini mission. A new paper based on Cassini data proposes a new explanation for how some lakes on Titan may have formed.
Saturn’s moon Titan is a very strange place. It’s surrounded by a dense, opaque atmosphere, the only moon in the solar system with an atmosphere to speak of. It has lakes of liquid methane on its surface, maybe some cryovolcanoes, and some scientists speculate that it could support a form of life. Very weird life.
But we still don’t know a lot about it, because we haven’t really seen much of the surface. Until now.
Titan, Saturn’s largest moon, has been a source of mystery ever since scientists began studying it over a century ago. These mysteries have only deepened with the arrival of the Cassini-Huygens mission in the system back in 2004. In addition to finding evidence of a methane cycle, prebiotic conditions and organic chemistry, the Cassini-Huygens mission has also discovered that Titan may have the ingredient that help give rise to life.
Such is the argument made in a recent study by an international team of scientists. After examining data obtained by the Cassini space probe, they identified a negatively charged species of molecule in Titan’s atmosphere. Known as “carbon chain anions”, these molecules are thought to be building blocks for more complex molecules, which could played a key role in the emergence of life of Earth.
As they indicate in their study, these molecules were detected by the Cassini Plasma Spectrometer (CAPS) as the probe flew through Titan’s upper atmosphere at an distance of 950 – 1300 km (590 – 808 mi) from the surface. They also show how the presence of these molecules was rather unexpected, and represent a considerable challenge to current theories about how Titan’s atmosphere works.
For some time, scientists have understood that within Titan’s ionosphere, nitrogen, carbon and hydrogen are subjected to sunlight and energetic particles from Saturn’s magnetosphere. This exposure drives a process where these elements are transformed into more complex prebiotic compounds, which then drift down towards the lower atmosphere and form a thick haze of organic aerosols that are thought to eventually reach the surface.
This has been the subject of much interest, since the process through which simple molecules form complex organic ones has remained something of a mystery to scientists. This could be coming to an end thanks to the detection of carbon chain anions, though their discovery was altogether unexpected. Since these molecules are highly reactive, they are not expected to last long in Titan’s atmosphere before combining with other materials.
However, the data showed that the carbon chains became depleted closer to the moon, while precursors to larger aerosol molecules underwent rapid growth. This suggests that there is a close relationship between the two, with the chains ‘seeding’ the larger molecules. Already, scientists have held that these molecules were an important part of the process that allowed for life to form on Earth, billions of years ago.
However, their discovery on Titan could be an indication of how life begins to emerge throughout the Universe. As Dr. Ravi Desai, University College London and the lead author of the study, explained in an ESA press release:
“We have made the first unambiguous identification of carbon chain anions in a planet-like atmosphere, which we believe are a vital stepping-stone in the production line of growing bigger, and more complex organic molecules, such as the moon’s large haze particles. This is a known process in the interstellar medium, but now we’ve seen it in a completely different environment, meaning it could represent a universal process for producing complex organic molecules.”
Because of its dense nitrogen and methane atmosphere and the presence of some of the most complex chemistry in the Solar System, Titan is thought by many to be similar to Earth’s early atmosphere. Billions of years ago, before the emergence of microorganisms that allowed for subsequent build-up of oxygen, it is likely that Earth had a thick atmosphere composed of nitrogen, carbon dioxide and inert gases.
Therefore, Titan is often viewed as a sort planetary laboratory, where the chemical reactions that may have led to life on Earth could be studied. However, the prospect of finding a universal pathway towards the ingredients for life has implications that go far beyond Earth. In fact, astronomers could start looking for these same molecules on exoplanets, in an attempt to determine which could give rise to life.
Closer to home, the findings could also be significant in the search for life in our own Solar System. “The question is, could it also be happening within other nitrogen-methane atmospheres like at Pluto or Triton, or at exoplanets with similar properties?” asked Desia. And Nicolas Altobelli, the Project Scientist for the Cassini-Huygens mission, added:
“These inspiring results from Cassini show the importance of tracing the journey from small to large chemical species in order to understand how complex organic molecules are produced in an early Earth-like atmosphere. While we haven’t detected life itself, finding complex organics not just at Titan, but also in comets and throughout the interstellar medium, we are certainly coming close to finding its precursors.“
Cassini’s “Grande Finale“, the culmination of its 13-year mission around Saturn and its system of moons, is set to end on September 15th, 2017. In fact, as of the penning of this article, the mission will end in about 1 month, 18 days, 16 hours, and 10 minutes. After making its final pass between Saturn’s rings, the probe will be de-orbited into Saturn’s atmosphere to prevent contamination of the system’s moons.
However, future missions like the James Webb Space Telescope, the ESA’s PLATO mission and ground-based telescopes like ALMA are expected to make some significant exoplanet finds in the coming years. Knowing specifically what kinds of molecules are intrinsic in converting common elements into organic molecules will certainly help narrow down the search for habitable (or even inhabited) planets!
Last week, from Monday Feb. 27th to Wednesday March 1st, NASA hosted the “Planetary Science Vision 2050 Workshop” at their headquarters in Washington, DC. During the course of the many presentations, speeches and addresses that made up the workshop, NASA and its affiliates shared their many proposals for the future of Solar System exploration.
A very popular theme during the workshop was the exploration of Titan. In addition to being the only other body in the Solar System with a nitrogen-rich atmosphere and visible liquid on its surface, it also has an environment rich in organic chemistry. For this reason, a team led by Michael Pauken (from NASA’s Jet Propulsion Laboratory) held a presentation detailing the many ways it can be explored using aerial vehicles.
The presentation, which was titled “Science at a Variety of Scientific Regions at Titan using Aerial Platforms“, was also chaired by members of the aerospace industry – such as AeroVironment and Global Aerospace from Monrovia, California, and Thin Red Line Aerospace from Chilliwack, BC. Together, they reviewed the various aerial platform concepts that have been proposed for Titan since 2004.
While the concept of exploring Titan with aerial drones and balloons dates back to the 1970s and 80s, 2004 was especially important since it was at this time that the Huygens lander conducted the first exploration of the moon’s surface. Since that time, many interesting and feasible proposals for aerial platforms have been made. As Dr. Pauken told Universe Today via email:
“The Cassini-Huygens mission revealed a lot about Titan we didn’t know before and that has also raised a lot more questions. It helped us determine that imaging the surface is possible below 40-km altitude so it’s exciting to know we could take aerial photos of Titan and send them back home.”
These concepts can be divided into two categories, which are Lighter-Than-Air (LTA) craft and Heavier-Than-Air (HTA) craft. And as Pauken explained, these are both well-suited when it comes to exploring a moon like Titan, which has an atmosphere that is actually denser than Earth’s – 146.7 kPa at the surface compared to 101 kPa at sea level on Earth – but only 0.14 times the gravity (similar to the Moon).
“The density of Titan’s atmosphere is higher than Earth’s so it is excellent for flying lighter-than-air vehicles like a balloon,” he said. “Titan’s low gravity is a benefit for heavier-than-air vehicles like helicopters or airplanes since they will ‘weigh’ less than they would on Earth.”
“The Lighter-than-air LTA concepts are buoyant and don’t need any energy to stay aloft, so more energy can be directed towards science instruments and communications. The Heavier-than-air concepts have to consume power to stay in the air which takes away from science and telecom. But HTA can be directed to targets more quickly and accurately the LTA vehicles which mostly drift with the winds.”
TSSM Montgolfiere Balloon:
Plans for using a Montgolfiere balloon to explore Titan go back to 2008, when NASA and the ESA jointly developed the Titan Saturn System Mission (TSSM) concept. A Flagship Mission concept, the TSSM would consist of three elements including a NASA orbiter and two ESA-designed in-situ elements – a lander to explore Titan’s lakes and a Montgolfiere balloon to explore its atmosphere.
The orbiter would rely on a Radioisotopic Power System (RPS) and Solar Electric Propulsion (SEP) to reach the Saturn system. And on its way to Titan, it would be responsible for examining Saturn’s magnetosphere, flying through the plumes of Enceladus to analyze it for biological markers, and taking images of Enceladus’ “Tiger Stripes” in the southern polar region.
Once the orbiter had achieved orbital insertion with Saturn, it would release the Montgolfiere during its first Titan flyby. Attitude control for the balloon would be provided by heating the ambient gas with RPS waste heat. The prime mission would last a total of about 4 years, comprised of a two-year Saturn tour, a 2-month Titan aero-sampling phase, and a 20-month Titan orbiting phase.
Of the benefits to this concept, the most obvious is the fact that a Montgolfiere vehicle powered by RPS could operate within Titan’s atmosphere for many years and would be able to change altitude with only minimal energy use. At the time, the TSSM concept was in competition with mission proposals for the moons of Europa and Ganymede.
In February of 2009, both the TSSM and the the Europa Jupiter System Mission (EJSM) concept were chosen to move forward with development, but the EJSM was given first priority. This mission was renamed the Europa Clipper, and is slated for launch in 2020 (and arriving at Europa by 2026).
Titan Helium Balloon:
Subsequent research on Montgolfiere balloons revealed that years of service and minimal energy expenditure could also be achieved in a much more compact balloon design. By combining an enveloped-design with helium, such a platform could operate in the skies of Titan for four times as long as balloons here on Earth, thanks to a much slower rate of diffusion.
Altitude control would also be possible with very modest amounts of energy, which could be provided either through pump or mechanical compression. Thus, with an RPS providing power, the platform could be expected to last longer that comparable balloon designs. This envelope-helium balloon could also be paired with a glider to create a lighter-than-air vehicle capable of lateral motion as well.
Examples of the this include the Titan Winged Aerobot (TWA, shown below), which was investigated as part of NASA’s Phase One 2016 Small-Business Innovation Research (SBIR) program. Developed by the Global Aerospace Corporation, in collaboration with Northrop Grumman, the TWA is a hybrid entry vehicle, balloon, and maneuverable glider with 3-D directional control that could satisfy many science objectives.
Like the Mongtolfiere concept, it would rely on minimal power provided by a single RPS. Its unique buoyancy system would also allow it to descend and ascend without the need for propulsion systems or control surfaces. One drawback is the fact that it cannot land on the moon’s surface to conduct research and then take off again. However, the design does allow for low-altitude flight, which would allow for the delivery of probes to the surface.
Other concepts that have been developed in recent years include heavier-than-air aircraft, which center around the development of fixed-wing vehicles and rotorcraft.
Fixed Wing Vehicles:
Concepts for fixed-wing aircraft have also been proposed in the past for a mission to Titan. A notable example of this is the Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR), an unmanned aerial vehicle (UAV) that was proposed by Jason Barnes and Lawrence Lemke in 2011 (of the University of Idaho and Central Michigan University, respectively).
Relying on an RPS that would use the waste heat of decaying Plutonium 238 to power a small rear-mounted turbine, this low-power craft would take advantage of Titan’s dense atmosphere and low gravity to conduct sustained flight. A novel “climb-then-glide” strategy, where the engine would shut down during glide periods, would also allow for power to be stored for optimal use during telecommunication sessions.
This addresses a major drawback of fixed-wing vehicles, which is the need to subdivide power between the needs of maintaining flight and conducting scientific research. However, the AVIATR is limited in one respect, in that it cannot descend to the surface to conduct science experiments or collect samples.
Rotorcraft:
Last, but not least, is the concept for a rotorcraft. In this case, the aerial platform would be a quadcopter, which would be well-suited to Titan’s atmosphere, would allow for easy ascent and descent, and for studies to be conducted on the surface. It would also take advantage of developments made in commercial UAVs and drones in recent years.
This mission concept would consist of two components. On the one hand, there’s the rotorcraft – known as a Titan Aerial Daughtercraft (TAD) – which would rely on a rechargeable battery system to power itself while conducting short-duration flights (about an hour at a time). The second component is the “Mothercraft”, which would take the form of a lander or balloon, which the TAD would return to between flights to recharge from an onboard RPS.
Currently, NASA’s Jet Propulsion Laboratory is developing a similar concept, known as the Mars Helicopter “Scout”, for use on Mars – which is expected to be launched aboard the Mars 2020 mission. In this case, the design calls for two coaxial counter-rotating rotors, which would provide the best thrust-to-weight ratio in Mars’ thin atmosphere.
Another rotorcraft concept is being pursued by Elizabeth Turtle and colleagues from John Hopkins APL and the University of Idaho (including James Barnes). With support from NASA and members of Goddard Space Flight Center, Pennsylvania State University, and Honeybee Robotics, they have proposed a concept known as the “Dragonfly“.
Their aerial vehicle would rely on four-rotors to take advantage of Titan’s thick atmosphere and low gravity. Its design would also allow it to easily obtain samples and determine the composition of the surface in multiple geological settings. These findings will be presented at the upcoming 48th Lunar and Planetary Science Conference – which will be taking place from March 20th to 24th in The Woodlands, Texas.
While the exploration of Titan is likely to take a back seat to the exploration of Europa in the coming decades, it is anticipated that a mission will be mounted before the mid-point of this century. Not only are the scientific goals very much the same in both cases – a chance to explore a unique environment and search for life beyond Earth – but the benefits will be comparable as well.
With every potentially life-bearing body we explore, we stand to learn more about how life began in our Solar System. And even if we do not find any life in the process, we stand to learn a great deal about the history and formation of the Solar System. On top of that, we will be one step closer to understanding humanity’s place in the Universe.
Ever since the Cassini probe arrived at Saturn in 2004, it has revealed some startling things about the planet’s system of moons. Titan, Saturn’s largest moon, has been a particular source of fascination. Between its methane lakes, hydrocarbon-rich atmosphere, and the presence of a “methane cycle” (similar to Earth’s “water cycle”), there is no shortage of fascinating things happening on this Cronian moon.
As if that wasn’t enough, Titan also experiences seasonal changes. At present, winter is beginning in the southern hemisphere, which is characterized by the presence of a strong vortex in the upper atmosphere above the south pole. This represents a reversal of what the Cassini probe witnessed when it first started observing the moon over a decade ago, when similar things were happening in the northern hemisphere.
During the course of the meeting, Dr. Athena Coustenis – the Director of Research (1st class) with the National Center for Scientific Research (CNRS) in France – shared the latest atmospheric data retrieved by Cassini. As she stated:
“Cassini’s long mission and frequent visits to Titan have allowed us to observe the pattern of seasonal changes on Titan, in exquisite detail, for the first time. We arrived at the northern mid-winter and have now had the opportunity to monitor Titan’s atmospheric response through two full seasons. Since the equinox, where both hemispheres received equal heating from the Sun, we have seen rapid changes.”
Scientists have been aware of seasonal change on Titan for some time. This is characterized by warm gases rising at the summer pole and cold gases settling down at the winter pole, with heat being circulated through the atmosphere from pole to pole. This cycle experiences periodic reversals as the seasons shift from one hemisphere to the other.
In 2009, Cassini observed a large scale reversal immediately after the equinox of that year. This led to a temperature drop of about 40 °C (104 °F) around the southern polar stratosphere, while the northern hemisphere experienced gradual warming. Within months of the equinox, a trace gas vortex appeared over the south pole that showed glowing patches, while a similar feature disappeared from the north pole.
A reversal like this is significant because it gives astronomers a chance to study Titan’s atmosphere in greater detail. Essentially, the southern polar vortex shows concentrations of trace gases – like complex hydrocarbons, methylacetylne and benzene – which accumulate in the absence of UV light. With winter now upon the southern hemisphere, these gases can be expected to accumulate in abundance.
As Coustenis explained, this is an opportunity for planetary scientists to test out their models for Titan’s atmosphere:
“We’ve had the chance to witness the onset of winter from the beginning and are approaching the peak time for these gas-production processes in the southern hemisphere. We are now looking for new molecules in the atmosphere above Titan’s south polar region that have been predicted by our computer models. Making these detections will help us understand the photochemistry going on.”
Previously, scientists had only been able to observe these gases at high northern latitudes, which persisted well into summer. They were expected to undergo slow photochemical destruction, where exposure to light would break them down depending on their chemical makeup. However, during the past few months, a zone of depleted molecular gas and aerosols has developed at an altitude of between 400 and 500 km across the entire northern hemisphere .
This suggests that, at high altitudes, Titan’s atmosphere has some complex dynamics going on. What these could be is not yet clear, but those who have made the study of Titan’s atmosphere a priority are eager to find out. Between now and the end of Cassini mission (which is slated for Sept. 2017), it is expected that the probe will have provided a complete picture of how Titan’s middle and upper atmospheres behave.
By mission’s end, the Cassini space probe will have conducted more than 100 targeted flybys of Saturn. In so doing, it has effectively witnessed what a full year on Titan looks like, complete with seasonal variability. Not only will this information help us to understand the deeper mysteries of one of the Solar System’s most mysterious moons, it should also come in handy if and when we send astronauts (and maybe even settlers) there someday!
Saturn’s largest moon Titan is a truly fascinating place. Aside from Earth, it is the only place in the Solar System where rainfall occurs and there are active exchanges between liquids on the surface and fog in the atmosphere – albeit with methane instead of water. It’s atmospheric pressure is also comparable to Earth’s, and it is the only other body in the Solar System that has a dense atmosphere that is nitrogen-rich.
For some time, astronomers and planetary scientists have speculated that Titan might also have the prebiotic conditions necessary for life. Others, meanwhile, have argued that the absence of water on the surface rules out the possibility of life existing there. But according to a recent study produced by a research team from Cornell University, the conditions on Titan’s surface might support the formation of life without the need for water.
When it comes to searching for life beyond Earth, scientists focus on targets that possess the necessary ingredients for life as we know it – i.e. heat, a viable atmosphere, and water. This is essentially the “low-hanging fruit” approach, where we search for conditions resembling those here on Earth. Titan – which is very cold, quite distant from our Sun, and has a thick, hazy atmosphere – does not seem like a viable candidate, given these criteria.
However, according to the Cornell research team – which is led by Dr. Martin Rahm – Titan presents an opportunity to see how life could emerge under different conditions, one which are much colder than Earth and don’t involve water.
Previous experiments have shown that hydrogen cyanide (HCN) molecules can link together to form polyimine, a polymer that can serve as a precursor to amino acids and nucleic acids (the basis for protein cells and DNA). Previous surveys have also shown that hydrogen cyanide is the most abundant hydrogen-containing molecule in Titan’s atmosphere.
As Professor Lunine – the David C. Duncan Professor in the Physical Sciences and Director of the Cornell Center for Astrophysics and Planetary Science and co-author of the study – told Universe Today via email: “Organic molecules, liquid lakes and seas (but of methane, not water) and some amount of solar energy reaches the surface. So this suggests the possibility of an environment that might host an exotic form of life.”
Using quantum mechanical calculations, the Cornell team showed that polyimine has electronic and structural properties that could facilitate prebiotic chemistry under very cold conditions. These involve the ability to absorb a wide spectrum of light, which is predicted to occur in a window of relative transparency in Titan’s atmosphere.
Another is the fact that polyimine has a flexible backbone, and can therefore take on many different structures (aka. polymorphs). These range from flat sheets to complex coiled structures, which are relatively close in energy. Some of these structures, according to the team, could work to accelerate prebiotic chemical reactions, or even form structures that could act as hosts for them.
“Polyimine can form sheets,” said Lunine, “which like clays might serve as a catalytic surface for prebiotic reactions. We also find the polyimine absorbs sunlight where Titan’s atmosphere is quite transparent, which might help to energize reactions.”
In short, the presence of polyimine could mean that Titan’s surface gets the energy its needs to drive photochemical reactions necessary for the creation of organic life, and that it could even assist in the development of that life. But of course, no evidence has been found that polyimine has been produced on the surface of Titan, which means that these research findings are still academic at this point.
However, Lunine and his team indicate that hydrogen cyanide may very well have lead to the creation of polyimine on Titan, and that it might have simply escaped detection because of Titan’s murky atmosphere. They also added that future missions to Titan might be able to look for signs of the polymer, as part of ongoing research into the possibility of exotic life emerging in other parts of the Solar System.
“We would need an advanced payload on the surface to sample and search for polyimines,” answered Lunine, “or possibly by a next generation spectrometer from orbit. Both of these are “beyond Cassini”, that is, the next generation of missions.”
Perhaps when Juno is finished surveying Jupiter’s atmosphere in two years time, NASA might consider retasking it for a flyby of Titan? After all, Juno was specifically designed to peer beneath a veil of thick clouds. They don’t come much thicker than on Titan!
Titan is a moon shrouded in mystery. Despite multiple flybys and surface exploration conducted in the past few decades, this Cronian moon still manages to surprise us from time to time. In addition to having a dense atmosphere rich in hydrocarbons, which scientists believe may be similar to what Earth’s own atmosphere was like billions of years ago, it appears that methane is to Titan what water is to planet Earth.
In addition, methane fog was also observed by the Cassini space probe back in 2009 as it conducted a flyby of Titan. But recent findings by a team of researchers from York University indicates that the Huygens lander also detected fog during its descent towards the surface in 2005. This evidence, combined with the data obtained by Cassini, have helped to shed light on the weather patterns of this mysterious moon.
During its 2006 flyby of Titan, the Cassini Space Probe captured some of the most detailed images of Saturn’s largest moon. Amongst them was one showing the lofty cloud formations over Titan’s north pole (shown above). Interestingly enough, these cloud formations bear a strong resemblance to those that are seen in Earth’s own polar stratosphere.
However, unlike Earth’s, these clouds are composed entirely of liquid methane and ethane. Given Titan’s incredibly low temperatures – minus 185 °C (-300 °F) – it’s not surprising that such a dense atmosphere of liquid hydrocarbons exists, or that seas of methane cover the planet.