The Orbit of Pluto. How Long is a Year on Pluto?

New Horizon's July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRI.

Discovered in 1930 by Clyde Tombaugh, Pluto was once thought to be the ninth and outermost planet of the Solar System. However, due to the formal definition adopted in 2006 at the 26th General Assembly of the International Astronomical Union (IAU), Pluto ceased being the ninth planet of the Solar System and has become alternately known as a “Dwarf Planet”, “Plutiod”, Trans-Neptunian Object (TNO) and Kuiper Belt Object (KBO).

Despite this change of designation, Pluto remains one of the most fascinating celestial bodies known to astronomers. In addition to having a very distant orbit around the Sun (and hence a very long orbital period) it also has the most eccentric orbit of any planet or minor planet in the Solar System. This makes for a rather long year on Pluto, which lasts the equivalent of 248 Earth years!

Orbital Period:

With an extreme eccentricity of 0.2488, Pluto’s distance from the Sun ranges from 4,436,820,000 km (2,756,912,133 mi) at perihelion to 7,375,930,000 km (4,583,190,418 mi) at aphelion. Meanwhile, it’s average distance (semi-major axis) from the Sun is 5,906,380,000 km (3,670,054,382 mi). Another way to look at it would be to say that it orbits the Sun at an average distance of 39.48 AU, ranging from 29.658 to 49.305 AU.

New Horizons trajectory and the orbits of Pluto and 2014 MU69.

At its closest, Pluto actually crosses Neptune’s orbit and gets closer to the Sun. This orbital pattern takes place once every 500 years, after which the two objects then return to their initial positions and the cycle repeats. Their orbits also place them in a 2:3 mean-motion resonance, which means that for every two orbits Pluto makes around the Sun, Neptune makes three.

The 2:3 resonance between the two bodies is highly stable, and is preserved over millions of years. The last time this cycle took place was between 1979 to 1999, when Neptune was farther from the Sun than Pluto. Pluto reached perihelion in this cycle – i.e. its closest point to the Sun – on September 5th, 1989. Since 1999, Pluto returned to a position beyond that of Neptune, where it will remain for the following 228 years – i.e. until the year 2227.

Sidereal and Solar Day:

Much like the other bodies in our Solar System, Pluto also rotates on its axis. The time it takes for it to complete a single rotation on its axis is known as a “Sidereal Day”, while the amount of time it takes for the Sun to reach the same point in the sky is known as a “Solar Day”. But due to Pluto’s very long orbital period, a sidereal day and a solar day on Pluto are about the same – 6.4 Earth days (or 6 days, 9 hours, and 36 minutes).

View from the surface of Pluto, showing its large moon Charon in the distance. Credit: New York Time

It is also worth noting that Pluto and Charon (its largest moon) are actually more akin to a binary system rather than a planet-moon system. This means that the two worlds orbit each other, and that Charon is tidally locked around Pluto. In other words, Charon takes 6 days and 9 hours to orbit around Pluto – the same amount of time it takes for a day on Pluto. This also means that Charon is always in the same place in the sky when seen from Pluto.

In short, a single day on Pluto lasts the equivalent of about six and a half Earth days. A year on Pluto, meanwhile, lasts the equivalent of 248 Earth years, or 90,560 Earth days! And for the entire year, the moon is hanging overhead and looming large in the sky. But factor in Pluto’s axial tilt, and you will come to see just how odd an average year on Pluto is.

Seasonal Change:

It has been estimated that for someone standing on the surface of Pluto, the Sun would appear about 1,000 times dimmer than it appears from Earth. So while the Sun would still be the brightest object in the sky, it would look more like a very bright star that a big yellow disk. But despite being very far from the Sun at any given time, Pluto’s eccentric orbit still results in some considerable seasonal variations.

On the whole, the surface temperature of Pluto does not change much. It’s surface temperatures are estimated to range from a low of 33 K (-240 °C; -400 °F ) to a high of 55 K (-218 °C; -360°F) – averaging at around 44 K (-229 °C; -380 °F). However, the amount of sunlight each side receives during the course of a year is vastly different.

Compared to most of the planets and their moons, the Pluto-Charon system is oriented perpendicular to its orbit. Much like Uranus, Pluto’s very high axial tilt (122 degrees) essentially means that it is orbiting on its side relative to its orbital plane. This means that at a solstice, one-quarter of Pluto’s surface experiences continuous daylight while the other experiences continuous darkness.

This is similar to what happens in the Arctic Circle, where the summer solstice is characterized by perpetual sunlight (i.e. the “Midnight Sun”) and the winter solstice by perpetual night (“Arctic Darkness”). But on Pluto, these phenomena affect nearly the entire planet, and the seasons last for close to a century.

Even if it is no longer considered a planet (though this could still change) Pluto still has some very fascinating quarks, all of which are just as worthy of study as those of the other eight planets. And the time it takes to complete a full year on Pluto, and all the seasonal changes it goes through, certainly rank among the top ten!

We have written many interesting articles about a year on other planets here at Universe Today. Here’s How Long is a Year on the Other Planets?, Which Planet has the Longest Day?, How Long is a Year on Mercury?, How Long is a Year on Venus?, How Long is a Year on Earth?, How Long is a Year on Mars?, How Long is a Year on Jupiter?, How Long is a Year on Saturn?, How Long is a Year on Uranus?, and How Long is a Year on Neptune?.

For more information, be sure to check out NASA’s Solar System Exploration page on Pluto, and the New Horizon’s mission page for information on Pluto’s seasons.

Astronomy Cast also has some great episodes on the subject. Here’s Episode 1: Pluto’s Planetary Identity Crisis and Episode 64: Pluto and the Icy Outer Solar System.

Sources:

Centaurs Keep Their Rings From Greedy Gas Giants

Artist's impression of what the rings of the asteroid Chariklo would look like from the small body's surface. The rings' discovery was a first for an asteroid. Credit: ESO/L. Calçada/Nick Risinger (skysurvey.org)

When we think of ring systems, what naturally comes to mind are planets like Saturn. It’s beautiful rings are certainly the most well known, but they are not the only planet in our Solar System to have them. As the Voyager missions demonstrated, every planet in the outer Solar System – from Jupiter to Neptune – has its own system of rings. And in recent years, astronomers have discovered that even certain minor planets – like the Centaur asteroids 10199 Chariklo and 2006 Chiron – have them too.

This was a rather surprising find, since these objects have such chaotic orbits. Given that their paths through the Solar System are frequently altered by the powerful gravity of gas giants, astronomers have naturally wondered how a minor planet could retain a system of rings. But thanks to a team of researchers from the Sao Paulo State University in Brazil, we may be close to answering that question.

In a study titled “The Rings of Chariklo Under Close Encounters With The Giant Planets“, which appeared recently in The Astrophysical Journal, they explained how they constructed a model of the Solar System that incorporated 729 simulated objects. All of these objects were the same size as Chariklo and had their own system of rings. They then went about the process of examining how interacting with gas giant effected them.

Artist's impression of rings around the asteroid Chariklo. This was the first asteroid where rings were discovered. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)
Artist’s impression of rings around the Centaur Chariklo, the first asteroid where rings were discovered. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)

To break it down, Centaurs are a population of objects within our Solar System that behave as both comets and asteroids (hence why they are named after the hybrid beasts of Greek mythology). 10199 Chariklo is the largest known member of the Centaur population, a possible former Trans-Neptunian Object (TNO) which currently orbits between Saturn and Uranus.

The rings around this asteroid were first noticed in 2013 when the asteroid underwent a stellar occultation. This revealed a system of two rings, with a radius of 391 and 405 km and widths of about 7 km 3 km, respectively. The absorption features of the rings showed that they were partially composed of water ice. In this respect, they were much like the rings of Jupiter, Saturn, Uranus and the other gas giants, which are composed largely of water ice and dust.

This was followed by findings made in 2015 that indicated that 2006 Chiron – another major Centaur – could have a ring of its own. This led to further speculation that there might be many minor planets in our Solar System that have a system of rings. Naturally, this was a bit perplexing to astronomers, since rings are fragile structures that were thought to be exclusive to the gas giants of our System.

As Professor Othon Winter, the lead researcher of the Sao Paulo team, told Universe Today via email:

“At first it was a surprise to find a Centaur with rings, since the Centaurs have chaotic orbits wandering between the giant planets and having frequent close encounters with them. However, we have shown that in most of the cases the ring system can survive all the close encounters with the giant planets. Therefore,  Centaurs with rings might be much more common than we thought before.”

Arist's impression of Chiron and its possible ring. Credit: dailygalaxy.com
Artist’s impression of Chiron, showing a possible ring system. Credit: dailygalaxy.com

For the sake of their study, Winter and his colleagues considered the orbits of 729 simulated clones of Chariklo as they orbited the Sun over the course of 100 million years. From this, Winter and his colleagues found that each Centaur averaged about 150 close encounters with a gas giant, within one Hill radius of the planet in question. As Winter described it:

“The study was made in two steps. First we considered a set of more than 700 clones of Chariklo. The clones had initial trajectories that were slightly different from Chariklo for statistical purposes (since we are dealing with chaotic trajectories) and computationally simulated their orbital evolution forward in time (to see their future) and also backward in time (to see their past). During these simulations we archived the information of all the close encounters (many thousands) they had with each of the giant planets.”

“In the second step, we performed simulations of each one of the close encounters found in the first step, but now including a disk of particles around Chariklo  (representing the ring particles). Then, at the end of each simulation we analyzed what happened to the particles. Which ones were removed from Chariklo  (escaping its gravitational field)? Which ones were strongly disturbed (still orbiting around Chariklo)? Which ones did not suffer any significant effect?”

In the end, the simulations showed that in 90 percent of the cases, the rings of the Centaurs survived their close encounters with gas giants, whereas they were disturbed in 4 percent of cases, and were stripped away only 3 percent of the time. Thus, they concluded that if there is an efficient mechanism that creates the rings, then it is strong enough to let Centaurs keep them.

Due to their dual nature, astronomers refer to asteroids that behave as both comets and asteroids as Centaurs. Credit: jpl.nasa.gov
Due to their dual nature, the name Centaur has stuck when referring to objects that act as both comets and asteroids. Credit: jpl.nasa.gov

More than that, their research would seem to indicate that what was considered unique to certain planetary bodies may actually be more commonplace. “It reveals that our Solar System is complex not just as whole or for large bodies,” said Winter, “but even small bodies may show complex structures and even more complex temporal evolution.”

The next step for the research team is to study ring formation, which could show that they in fact picking them up from the gas giants themselves. But regardless of where they come from, its becoming increasingly clear that Centaurs like 10199 Chariklo are not alone. What’s more, they aren’t giving up their rings anytime soon!

Further Reading: iopscience.iop.org

How Many Moons Does Mercury Have?

Planet Mercury as seen from the MESSENGER spacecraft in 2008. Credit: NASA/JPL

Virtually every planet in the Solar System has moons. Earth has The Moon, Mars has Phobos and Deimos, and Jupiter and Saturn have 67 and 62 officially named moons, respectively. Heck, even the recently-demoted dwarf planet Pluto has five confirmed moons – Charon, Nix, Hydra, Kerberos and Styx. And even asteroids like 243 Ida may have satellites orbiting them (in this case, Dactyl). But what about Mercury?

If moons are such a common feature in the Solar System, why is it that Mercury has none? Yes, if one were to ask how many satellites the planet closest to our Sun has, that would be the short answer. But answering it more thoroughly requires that we examine the process through which other planets acquired their moons, and seeing how these apply (or fail to apply) to Mercury.

Continue reading “How Many Moons Does Mercury Have?”