How Amateur Astronomers Can Help LADEE

An Artist's concept of LADEE in orbit around the Moon. (Credit: NASA Ames).

You can help NASA’s upcoming lunar mission.

NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) is slated to lift off from Wallops Island this September 5th in a spectacular night launch. LADEE will be the first mission departing Wallops to venture beyond low Earth orbit. A joint collaboration between NASA’s Goddard Spaceflight Center & the AMES Research Center, LADEE will study the lunar environment from orbit, including its tenuous exosphere.

Scientists hope to answer some long standing questions about the lunar environment with data provided by LADEE. How substantial is the wispy lunar atmosphere?  How common are micro-meteoroid impacts? What was the source of the sky glow recorded by the Surveyor spacecraft and observed by Apollo astronauts before lunar sunrise and after lunar sunset while in orbit?

Glows of the solar corona and crepuscular rays reported by the Apollo 17 astronauts in lunar orbit. (Credit: NASA).
Glows of the solar corona and crepuscular rays reported by the Apollo 17 astronauts in lunar orbit. (Credit: NASA).

The micro-meteoroid issue is of crucial concern for any future long duration human habitation on the Moon. The Apollo missions were only days in length. No one has ever witnessed a lunar sunrise or sunset from the surface of the Moon, as all six landings occurred on the nearside of the Moon in daylight. (Sunrise to sunset on the Moon takes about two Earth weeks!)

And that’s where amateur astronomers come in. LADEE is teaming up with the Association of Lunar & Planetary Observers (ALPO) and their Lunar Meteoritic Impact Search Program in a call to watch for impacts on the Moon. These are recorded as brief flashes on the nighttime side of the Moon, which presents a favorable illumination after last quarter or leading up into first quarter phase.

We wrote recently about a +4th magnitude flash detected of the Moon on March 17th of this year. That explosion was thought to have been caused by a 35 centimetre impactor which may have been associated with the Eta Virginid meteor shower. The impact released an explosive equivalent of five tons of TNT and has set a possible new challenge for Moon Zoo volunteers to search for the resulting 6 metre crater.

An artist's illustration of a meteoroid impact on the Moon. (Credit: NASA).
An artist’s illustration of a meteoroid impact on the Moon. (Credit: NASA).

We’ve also written about amateur efforts to document transient lunar phenomena and studies attempting to pinpoint a possible source of these spurious glows and flashes on the Moon observed over the years.

NASA’s Meteoroid Environment Office is looking for dedicated amateurs to take part in their Lunar Impact Monitoring campaign. Ideally, such an observing station should utilize a telescope with a minimum aperture of 8 inches (20cm) and be able to continuously monitor and track the Moon while it’s above the local horizon. Most micro-meteoroid flashes are too fast and faint to be seen with the naked eye, and thus video recording will be necessary. A typical video configuration for the project is described here. Note the high frame rate and the ability to embed a precise time stamp is required. I’ve actually run WWV radio signals using an AM short wave radio transmitting in the background to accomplish this during occultations.

Finally, you’ll need a program called LunarScan to analyze those videos for evidence of high speed flashes. LunarScan is pretty intuitive. We used the program to analyze video shot during the 2010 Total Lunar Eclipse for any surreptitious Geminid or Ursid meteors.

Brian Cudnik, coordinator of the Lunar Meteoritic Impact Search section of the ALPO, noted in a recent forum post that we’re approaching another optimal window to accomplish these sorts of observations this weekend, with the Moon headed towards last quarter on June 30th.

An example of an impact flash recorded by the Automated & Lunar Meteor Observatory video cameras based at the Marshall Spaceflight Center in Huntsville, Alabama.
An example of an impact flash recorded by the Automated & Lunar Meteor Observatory video cameras based at the Marshall Spaceflight Center in Huntsville, Alabama.

Interestingly, the June Boötids are currently active as well, with historical sporadic rates of anywhere from 10-100 per hour.  In 1975, seismometers left by Apollo astronauts detected series of impacts on June 24th thought to have been caused by one of two Taurid meteor swarms the Earth passes through in late June, another reason to be vigilant this time of year.

Don’t have access to a large telescope or sophisticated video gear? You can still participate and make useful observations.

LADEE is also teaming up with JPL and the Lewis Center for Educational Research to allow students track the spacecraft en route to the Moon. Student groups will be able to remotely access the 34-metre radio telescopes based at Goldstone, California that form part of NASA’s Deep Space Communications Network. Students will be able to perform Doppler measurements during key mission milestones to monitor the position and status of the spacecraft during thruster firings.

And backyard observers can participate in another fashion, using nothing more than their eyes and patience. Meteor streams that are impacting the Moon affect the Earth as well. The International Meteor Organization is always looking for information from dedicated observers in the form of meteor counts. The Perseids, an “Old Faithful” of meteor showers, occurs this year around August 12th under optimal conditions, with the Moon only five days past New. This is also three weeks prior to the launch of LADEE.

Whichever way you choose to participate, be sure to follow the progress of LADEE and our next mission to study Earth’s Moon!

-Listen to Universe Today’s Nancy Atkinson and her interview with Brian Day of the NASA Lunar Science Institute.

-Also listen to the 365 Days of Astronomy interview with Brian Day and Andy Shaner from the Lunar Planetary institute on the upcoming LADEE mission.

Mysterious Moon Flashes: Could the Transient Lunar Phenomena be Linked to the Solar Cycle?

The Moon, our nearest natural satellite. (Photo by author).

A key mystery in observational lunar astronomy may be at least partially resolved.

An interesting study appeared recently in the British Astronomical Association’s (BAA) March 2013 edition of their Lunar Section Circular. The study is one of the most comprehensive looks at possible connections between Transient Lunar Phenomena and the Solar Cycle.

Collection of TLP reports analyzed by Barbara Middlehurst & Sir Patrick Moore. The red dots indicate reddish events, the yellow one other colored events. (Wikimedia Commons image in the Public Domain).
Collection of TLP reports analyzed by Barbara Middlehurst & Sir Patrick Moore. The red dots indicate reddish events. The yellow ones represent other colored events. (Wikimedia Commons image in the Public Domain).

Transient Lunar Phenomena (or TLPs) are observations collected over the years of flashes or glows on the Moon. Since these phenomena often rely on a report made by a solitary observer, they have been very sparsely studied.

The term itself was coined by Sir Patrick Moore in 1968. One of the very earliest reports of a TLP event was the flash seen on the dark limb of the waxing crescent Moon by Canterbury monks in 1178.

Other reports, such as a daylight “star near of the daytime crescent Moon” seen by the residents of Saint-Denis, France on January 13, 1589 was almost certainly a close conjunction of the planet Venus. Bright planets such as Venus can be easily seen next to the Moon in the daytime.

A daytime Moon and Venus as seen from France on January 13th, 1589. (Created by the author in Starry Night).
A daytime Moon and Venus as seen from France on January 13th, 1589. (Created by the author in Starry Night).

A stunning illusion also occurs when the Moon occults, or passes in front of a bright star or planet. In fact, there’s a name for this psychological phenomenon of a bright star seeming to “hang” between the horns of the Moon just prior to an occultation, known as the Coleridge Effect. This takes its name from a line in Coleridge’s Rime of the Ancient Mariner;

“Till clomb above the eastern bar, the horned Moon with one bright star,

Within nether tip.”

Okay, we’ve never seen the “horned Moon clomb,” either. But this does describe a real illusion often seen during an occultation. The mind thinks that gap between the horns of the Moon should be transparent, and the lingering planet or star seems to cross that space on the dark limb, if only for a second. Incidentally, South American residents will get to check this out during the next occultation of Venus this year on September 8th.

So, what does this have to do with the 11-year solar cycle? Well, when you strip away many of the dubious observations of TLPs over the years, a core of well- documented events described by seasoned observers remains. Anyone who has sketched such a complex object as the Moon realizes that fine detail becomes apparent on scrutiny that may be missed in a casual glance. But one persistent assertion that has gone around the astronomical community for years is that an increase in the number of TLP events is linked to the peak of the solar cycle.

This was first suggested in 1945 by H. Percy Wilkins. A later study by Barbara Middlehurst in 1966 disproved the idea, citing no statistical correlation between sunspot activity and TLPs.

Of course, pundits have tried unsuccessfully to link the solar cycle to just about everything, from earthquakes to human activity to booms and busts of the stock market. Most flashes on the dark limb of the Moon are suspected to be meteorite impacts. In fact, the advent of high-speed photography has been able to reveal evidence for lunar strikes during intense meteor showers such as the Leonids and Geminids.

Flash of a Leonid impact captured on the limb of the Moon in 2006. Click image  to see animation. (Credit: NASA Meteoroid Environment Office).
Flash of a Leonid impact captured on the limb of the Moon in 2006. Click image to see animation. (Credit: NASA Meteoroid Environment Office).

What’s at little less clear are the source of luminous “hazes” or “glows” noted by observers. Keep in mind; we’re talking subtle effects noted after meticulous study. NASA even commissioned a study of TLPs named Project Moon-Blink during the early Apollo program. About a third of TLP events have been observed near the bright crater Aristarchus. Researchers even managed to get Neil Armstrong to make an observation of the crater during a pass on Apollo 11. He noted that “there’s an area that is considerably more illuminated than the surrounding area. It seems to have a slight amount of fluorescence.”

Aristarchus crater (arrowed) near Full Moon. Note how bright it is compared to the surrounding terrain. (Photo by Author).
A crater with a relatively high albedo (Proclus, arrowed) near Full Moon. Note how bright it is compared to the surrounding terrain. (Photo by Author).

But what’s interesting in the recent BAA study conducted by Jill Scambler is the amount of data that was available. The study was a comprehensive analysis of TLPs noted by the BAA, the Association of Lunar and Planetary Observers (ALPO) and NASA from 1700 to 2010. Observations were weighted from 1 to 5, with 1 for reports from inexperienced observers to 5 for definitive and unambiguous TLP events.

The periodogram analysis comparing the frequency of TLPs with the sunspot cycle utilized a tool available from NASA’s Exoplanet Database to evaluate the data. If there was any mechanism whereby TLPs were being generated by solar activity, it had been suggested previously by Wilkins that perhaps out-gassing was being caused be solar irradiation or lunar dust was becoming electrostatically charged and suspended.

In fact, Surveyor 7 witnessed such a phenomenon during lunar twilight. To date, no human has witnessed a sunrise or sunset from the surface of the Moon, although astronauts witnessed several from lunar orbit.

"Horizon glow" as imaged from the lunar surface during twilight. (Credit: NASA).
“Horizon glow” as imaged from the lunar surface during twilight. (Credit: NASA).

The final conclusion of the BAA study cites that “Although there are theories that might infer that TLP would be more frequent during solar activity, from a sunspot cycle perspective there is no evidence to support this.”

The report provides an interesting perspective on the topic, especially with solar cycle 24 peaking over the next year. It also seems that reports of TLPs have declined in past decades. One of the most famous examples was the flash imaged on the Moon (thought to be a Leonid) by Leon Stuart in 1953. But in the modern era of astrophotography with the Moon under nearly continuous scrutiny, where are all the images of TLPs?

Granted, a core number (2%) of events suggest evidence of real activity on a Moon that we most often think of as geologically dead. As for the spurious sightings, it helps to recall the number of “sightings” in the 19th century of Vulcan transiting the face of the Sun. Where is Vulcan today, with the Sun being monitored around the clock?

We’re not immune to this sort of “echo effect” in the modern world of astronomy, either. For example, whenever an impact scar or flash is noted on Jupiter, as occurred in 2009 and 2012, other sightings are “seen” throughout the solar system. A similar psychological phenomenon occurred when Comet Holmes brightened in 2007. For a time, reports flying around the Internet suggested many comets where suddenly increasing in brightness!

It also interesting to note that many features such as Aristarchus and Ina Caldera also have a high brightness or albedo. Although the Full Moon seems pearly white, the albedo of the Moon is actually quite low at (13%), about that of worn asphalt. Bright ejecta and rays tend to stand out, especially approaching a Full Moon, such as occurs on May 25th.

You can even enhance the saturation of those lunar pics to bring out subtle color and reveal that the Moon isn’t as monochromatic as it appears to the naked eye;

A false-colored gibbous Moon enhanced to bright out subtle color. (Photo by author).
A false-colored gibbous Moon enhanced to bring out subtle color. (Photo by author).

Kudos to the team at the BAA for casting a critical scientific eye on a little studied phenomenon. Perhaps missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE) departing for the Moon this summer will shed more light on the curious nature of Transient Lunar Phenomena.

-The study can be read in the March 2013 edition of the British Astronomical Association’s Lunar Section Circular available as a free pdf.

Mystery Moon Flashes Caused by Meteorite Impacts

Example of a lunar flash, photographed in 1953. Credit: Leon Stuart/Columbia University Department of Astronomy

[/caption]

For hundreds of years, people have seen tiny flashes of light on the surface of the Moon. Very brief, but bright enough to be seen from Earth, these odd flashes still hadn’t been adequately explained up until now. Also known as Transient Lunar Phenomena (TLPs), they’ve been observed on many occasions, but rarely photographed. On Earth, meteorites burning up in the atmosphere can produce similar flashes, but the Moon has no atmosphere for anything to burn up in, so what could be causing them? As it turns out, according to a new study, the answer is still meteorites, but for a slightly different reason.

The lights don’t result from burning up as on Earth, but rather are hot blobs of material produced by the impact itself. The impacts were calculated to be powerful enough to melt the meteorites, producing super hot liquid droplets, called melt droplets, that produced light as they formed and then began to cool afterwards. The meteorites themselves can be tiny, but still cause an impact that could be seen from Earth.

Sylvain Bouley, a planetary scientist at the Paris Observatory and co-author of the study, explains: “You have just a small piece of cometary material or asteroid, about 10 centimeters, that can do a very bright flash visible from the Earth.”

Fellow planetary scientist Carolyn Ernst of Johns Hopkins University’s Applied Physics Laboratory, adds: “Something is melting, and because it’s so hot, it radiates in the visible wavelength until it cools down.”

The study included observations from 1999 – 2007, for which the brightness of the flashes and sizes and speeds of the meteorites were calculated.

The impacts have also been replicated at the Meteoroid Environment Office at the Marshall Space Flight Center, where tiny aluminum spheres were shot into simulated lunar dirt. The results were similar, helping to confirm the other team’s findings.

Other previous possible explanations included reflections on the Moon by tumbling satellites or even volcanic activity. There may still be debate though, as an earlier report in 2007 had attributed the flashes to outgassing on the Moon’s surface.

The paper will be published in the March 2012 issue of Icarus.