A Planet With A 27,000 Year Orbit & That’s Just Where The Strangeness Begins

The star system CVSO 30, which was found to have two exoplanets with extreme orbital periods. If you look closely, you can see 30c to the upper left of the star. Credit: ESO

Every planet in the Solar System has its own peculiar orbit, and these vary considerably. Whereas planet Earth takes 365.25 days to complete a single orbit about our Sun, Mars takes almost twice as long – 686.971 days. Then you have Jupiter and the other gas giants, which take between 11.86 and 164.8 years to orbit our Sun. But even with these serving as examples, astronomers were not prepared for what they found when they looked at CVSO 30.

This star system, which lies some 1200 light years from Earth, has been found in recent years to have two candidate exoplanets. These planets, which are many times the mass of Jupiter, were discovered by an international team of astronomers using both the Transit Method and Direct Imaging. And what they found was very interesting: one planet has an orbital period of less than 11 days while the other takes a whopping 27,000 years to orbit its parent star!

In addition to being a big surprise, the detection of these two planets using different methods was an historic achievement. Up until now, the vast majority of the over 2,000 exoplanets discovered have been detected thanks to indirect methods. These include the aforementioned Transit Method, which detects planets by measuring the dimming effect they cause when crossing their parent star’s path, and the Radial Velocity Method, which measures the gravitational effect planets have on their parent star.

In 2012, astronomers used the Transit Method to detect CVSO 30b, a planet with 5 to 6 times the mass of Jupiter, and which orbits its star at a distance of only 1.2 million kilometers (by comparison, Mercury orbits our Sun at a distance of 58 million kilometers). From these characteristics, CVSO 30b can be described as a particularly “hot-Jupiter”.

In contrast, Direct Imaging has been used to spot only a few dozen exoplanets. The reason for this is because it is typically quite difficult to detect the light reflected by a planet’s atmosphere due it being drowned out by the light of its parent star. It can also be quite demanding when it comes to the instrument involved. Still, compared to indirect methods, it can be more effective when it comes to exploring the remote regions of a star.

Thanks to the efforts of an international team of astronomers, who combined the use of the Keck Observatory in Hawaii, the ESO’s Very Large Telescope in Chile, and the Spanish National Research Council’s (CSIC) Calar Alto Observatory, CVSO 30c was spotted in remote regions around its parent star, orbiting at a distance of around 666 AU.

The details of the discovery were published in a paper titled “Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30“. In it, the researchers – who hail from such prestigious institutions as the Cerro Tololo Inter-American Observatory, the Jena Observatory, the European Space Agency and the Max Planck Institute for Astronomy – explained the methods used to find the exoplanet, and the significance of its discovery.

The star CVSO30, showing the two detection methods that revealed its exoplanet candidates. Credit: Keck Observatory/ESO/VLT/NACO
The star CVSO30, showing the two detection methods that revealed its exoplanet candidates. Credit: Keck Observatory/ESO/VLT/NACO

As Tobias Schmidt – of the University of Hamburg, the Astrophysical Institute and University Observatory Jena, and the lead author of the paper – told Universe Today via email:

“[30b and 30c] are both unusual on their own. CVSO 30b is the first transiting planet around a star as young as 2.5 million years. Published in 2012, all previously detected transiting planets were older than few hundred million years… It has been a surprise to find a planetary mass companion at 662 AU, or 662 times the distance from Earth to the Sun, from a primary star having only about 0.4 solar masses. According to the standard model, planets form in disks around the star. But none of the observed disks around such low-mass stars is large enough to form such an object.”

In other words, it is surprising to find two exoplanet candidates with several times the mass of Jupiter (aka. Super-Jupiters) orbiting a star as small as CVSO 30. But to find two exoplanets with such a disparity in terms of their respective distance from their star (despite being similar in mass) was particularly surprising.

Relying on high-contrast photometric and spectroscopic observations from the Very Large Telescope, the Keck telescopes and the Calar Alto observatory, the international team was able to spot 30c using a technique known as lucky imaging. This process, which is used by ground-based telescopes, involves many high-speed, quick exposure photos being taken to minimize atmospheric interference.

An artist's conception of a T-type brown dwarf. (Credit: Tyrogthekreeper under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license).
An artist’s conception of a T-type brown dwarf. Credit: Tyrogthekreeper/Wikimedia Commons.

What they found was an exoplanet with a wide orbit that was between 4 and 5 Jupiter masses, and was also very young – less than 10 million years old. What’s more, the spectroscopic data indicated that it is unusually blue for a planet, as most other planet candidates of its kind are very red. The researchers concluded from this that it is likely that 30c is the first young planet of its kind to be directly imaged.

They further concluded that 30 c is also likely the first “L-T transition object” younger than 10 million years to be found orbiting a star. L-T transition objects are a type of brown dwarf – objects that are too large to be considered planets, but too small to be considered stars. Typically they are found embedded in large clouds of gas and dust, or on their own in space.

Paired with its companion – 30 b, which is impossibly close to its parent star – 30 c is not believed to have formed at its current position, and is likely not stable in the long-term. At least, not where current models of planetary formation and orbit are concerned. However, as Prof. Schmidt indicated, this offers a potential explanation for the odd nature of these exoplanets.

“We do think this is a very good hint,” he said, “that the two objects might have formed regularly around the star at a separation comparable to Jupiter or Saturn’s separation from the Sun, then interacted gravitationally and were scattered to their current orbits. However this is still speculation, further investigations will try to prove this. Both have about the same mass of few Jupiter masses, the inner one might be even lower.”

The Very Large Telescoping Interferometer firing it's adaptive optics laser. Credit: ESO/G. Hüdepohl
The Very Large Telescoping Interferometer firing it’s adaptive optics laser. Credit: ESO/G. Hüdepohl

The discovery is also significant since it was the first time that these two detection methods – Transit and Direct Imaging – were used to confirm exoplanet candidates around the same star. In this case, the methods were quite complimentary, and present opportunities to learn more about exoplanets. As Professor Schmidt explained:

“Both Transit method and radial velocity method have problems finding planets around young stars, as the activity of young stars is disturbing the search for them. CVSO 30 b was the first very young planet found with these methods, currently a hand full of candidates exist. Direct imaging, on the other hand, is working best for young planets as they still contract and are thus self-luminous. It is therefore great luck that a far out planet was found around the very first young star hosting a inner planet…

“However, the real advantage of transit and direct imaging methods is that the two objects can now be investigated in greater detail. While we can use the direct light from the imaging for spectroscopy, i.e. split the light according to its wavelength, we hope to achieve the same for the inner planet candidate. This is possible as the light passes through the atmosphere of the planet during transits and some of the elements are absorbed by the composition material of the atmosphere. So we do hope to learn a lot about planet formation, thus also formation of the early Solar System and about young planets in particular from the CVSO 30 system.”

Since astronomers first began began to find exoplanet candidates in distant star systems, we have come to learn just how diverse our Universe really is. Many of the discoveries have challenged our notions about where planets can form around their parent star, while others have showed us that planets can take many different forms.

As time goes on and our exploration of the local Universe advances, we will be challenged to find explanations for how it all fits together. And from that, new and more comprehensive models will no doubt emerge.

Further Reading: IAA, arXiv

Starshade Prepares To Image New Earths

Artist's concept of the prototype starshade, a giant structure designed to block the glare of stars so that future space telescopes can take pictures of planets. Credit: NASA/JPL
Artist's concept of the prototype starshade, a giant structure designed to block the glare of stars so that future space telescopes can take pictures of planets. Credit: NASA/JPL

For countless generations, people have looked up at the stars and wondered if life exists somewhere out there, perhaps on planets much like ours. But it has only been in recent decades that we have been able to confirm the existence of extrasolar planets (aka. exoplanets) in other star systems. In fact, between 1988 and April 20th of 2016, astronomers have been able to account for the existence of 2108 planets in 1350 different star systems, including 511 multiple planetary systems.

Most of these discoveries have taken place within just the past three years, thanks to improvements in our detection methods, and the deployment of the Kepler space observatory in 2009. Looking ahead, astronomers hope to improve on these methods even further with the introduction of the Starshade, a giant space structure designed to block the glare of stars, thus making it easier to find planets – and perhaps another Earth!

Continue reading “Starshade Prepares To Image New Earths”

Russia Will Begin Hunt For Extrasolar Planets

Russia to Start Own Search for Extrasolar Planets - Photo: Paul A. Kempton

[/caption]

Located just south of Saint Petersburg on Pulkovo Heights, one of the greatest Russian Observatories of all times – the Pulkovo Observatory – is about to embark on a very noble study. According to the head of the Institute for Space Research, Lev Zelyony, the Soviet telescopes are about to turn their eyes towards deep skies in search of extrasolar planets. “Scientists from the Pulkovo Observatory are planning to use ground-based instruments to study the transit of planets around their parent stars,” Zelyony said at a roundtable meeting at RIA Novosti headquarters in Moscow.

The observatory was absolutely state-of-the-art when it opened for business in 1839 and employed Wilhelm von Struve as its director. It houses some of the largest refractor telescopes in the world, including a 38-cm (15 in.) aperture refractor and a 30-inch (76 cm) refractor – both built by Alvan Clarke and Sons. Fifty years later, they added an astrophysical laboratory, a mechanical workshop and installed one of Europe’s largest lensed telescope, a 76-cm refractor (30 inch). Later additions to the observatory included a Littrow spectrograph and horizontal solar telescope and the facility blossomed into a world leader in stellar spectroscopy, cataloging and more. Modern improvements include astrograph equipment, an interferometer, radio telescope and even an additional 65-cm (26-inch) refractor. The Pulkovo Observatory is up to the task.

Pulkovo Observatory 2004 - Credit: Vladimir Ivanov

The hunt for exoplanets is one of the most popular aspects of modern astronomy and one of the fastest growing fields. In less than 25 years, 755 and an ever-increasing number of planets have been cataloged… and the research just doesn’t end. The United States Kepler Mission and French CoRoT space telescope have had their share of fun, but using a ground-based telescope could also be a viable source of planet detection, Zelyony said. He also cited the example of the Hungarian Automated Telescope Network (HATNet) which so far has discovered 29 exoplanets. By using the transit detection method, the Russian astronomers are eager to begin observations where a small change in magnitude could mean a big change in the way their telescopes perceive the stars.

“It is an interesting research, which should be pursued,” Zelyony said. “It will also help us look at our Solar System from a different perspective.”

Original Story Source: Rionovosti News Release.

11 New Planetary Systems… 26 New Planets… Kepler Racks ‘Em Up!

Artist's Concept of New Planetary Systems - Credit: NASA

[/caption]

Eleven ball in the side pocket. Whack! And another 26 planets are discovered! NASA just announced the latest tally and the new discoveries come close to doubling the amount of verified planets and tripling the number of stars which are confirmed to have more than one transiting planet. It’s just another score for understanding how planets came to be… planets which run the gambit from about one and half times the size of Earth up to the size of Jupiter. Of these, fifteen are judged to be between the size of Earth and Neptune – while more observations will reveal their structure. The new bodies orbit the parent star between 6 and 143 days and all are closer than our Sun/Venus distance.

“Prior to the Kepler mission, we knew of perhaps 500 exoplanets across the whole sky,” said Doug Hudgins, Kepler program scientist at NASA Headquarters in Washington. “Now, in just two years staring at a patch of sky not much bigger than your fist, Kepler has discovered more than 60 planets and more than 2,300 planet candidates. This tells us that our galaxy is positively loaded with planets of all sizes and orbits.”

Kepler is a busy-body. It monitors the brightness changes in more than 150,000 stars. Through repeated measurements, it is able to pick out minute magnitude fluctuations which occur as a planet passes between us, Kepler and the parent sun. The newly documented solar systems are host to between two and five closely situated transiting bodies. In such cramped systems, the gravitational interaction between the orbiting members means some are accelerated – and others decelerated – in their tracks. Faster orbital speeds account for changes in orbital periods… Changes that the Kepler mission documents as Transit Timing Variations (TTVs). For planetary systems possessing TTVs, no extreme study with ground-based telescopes is required to verify their existence and the technique allows Kepler to validate the presence of planetary systems around further and fainter stars.

What’s been found? Five of the systems documented as Kepler-25, Kepler-27, Kepler-30, Kepler-31 and Kepler-33, are home to a set of planets whose orbits double each other. The outer body orbits twice for every inner body orbit. Four of the systems, Kepler-23, Kepler-24, Kepler-28 and Kepler-32, are home to a pairing where the outer planet circles the star twice for every three times the inner planet orbits.

“These configurations help to amplify the gravitational interactions between the planets, similar to how my sons kick their legs on a swing at the right time to go higher,” said Jason Steffen, the Brinson postdoctoral fellow at Fermilab Center for Particle Astrophysics in Batavia, Ill., and lead author of a paper confirming four of the systems.

And now for the game ball… Kepler-33 had the most planets of all. With a parent star older and more massive than Sol, the system gives rise to five planets whose sizes run between one and a half to five times the size of Earth. But, this is one crowded grouping. All of the planets orbiting this star are closer than Mercury is to our Sun! Thanks to stellar properties, Kepler is able to distinguish planets like these. The drop in the sun’s brightness and the length of time it takes for the planet to transit all play a role in determining presence. With similar signatures verified around the same star, chances of false readings are unlikely.

“The approach used to verify the Kepler-33 planets shows the overall reliability is quite high,” said Jack Lissauer, planetary scientist at NASA Ames Research Center at Moffett Field, Calif., and lead author of the paper on Kepler-33. “This is a validation by multiplicity.”

Original Story Source: NASA News Release.