Don’t Tell Bones: Are We One Step Closer to “Beaming Up?”

It’s a crazy way to travel, spreading a man’s molecules all over the Universe…

While we’re still a very long way off from instantly transporting from ship to planet à la Star Trek, scientists are still relentlessly working on the type of quantum technologies that could one day make this sci-fi staple a possibility. Just recently, researchers at the University of Cambridge in the UK have reported ways to simplify the instantaneous transmission of quantum information using less “entanglement,” thereby making the process more efficient — as well as less error-prone.

(Because nobody wants a transporter mishap.)

In a paper titled Generalized teleportation and entanglement recycling, Cambridge researchers Sergii Strelchuk, Michal Horodecki and Jonathan Oppenheim investigate a couple of previously-developed protocols for quantum teleportation.

“Teleportation lies at the very heart of quantum information theory, being the pivotal primitive in a variety of tasks. Teleportation protocols are a way of sending an unknown quantum state from one party to another using a resource in the form of an entangled state shared between two parties, Alice and Bob, in advance. First, Alice performs a measurement on the state she wants to teleport and her part of the resource state, then she communicates the classical information to Bob. He applies the unitary operation conditioned on that information to obtain the teleported state.” (Strelchuk et al.)

In order for the teleportation to work, the process relies on entanglement — the remote connection between particles or individual bits of information regardless of the physical space separating them. This was what Einstein referred to as “spooky action at a distance.” But getting particles or information packets entangled is no simple task.

“Teleportation crucially depends on entanglement, which can be thought as a ‘fuel’ powering it,” Strelchuk said in an article on ABC Science. “This fuel… is hard to generate, store and replenish. Finding a way to use it sparingly, or, ideally, recycling it, makes teleportation potentially more usable.”

Read: Beam Me Up, Obama: Conspiracy Theory Claims President Teleported to Mars

Considering the sheer amount of information that makes up the also-difficult-to-determine state of a single object (in the case of a human, even simplistically speaking, about 10^28 kilobytes worth of data) you’re obviously going to want to keep the amount of entanglement fuel needed at a minimum.

Of course, we’re not saying we can teleport red-shirted security officers anywhere yet. But if.

Still, with a more efficient method to reduce — and even recycle — entanglement, Strelchuk and his team are bringing us a little closer to making quantum computing a reality. And it may very well take the power of a quantum computer to even make the physical teleportation of large-scale objects possible… once the technology becomes available.

“We are very excited to show that recycling works in theory, and hope that it will find future applications in areas such as quantum computation,” said Strelchuk. “Building a quantum computer is one of the great challenges of modern physics, and it is hoped that the new teleportation protocol will lead to advances in this area.”

(I’m sure Dr. McCoy would still remain skeptical.)

You can find the team’s full paper here (chock full of maths!) and read the article on ABC Science by Stephen Pincock here.

Transporter room image from TOS “Obsession” episode. © 2013 CBS Studios Inc. All Rights Reserved.

NASA’s Colossal Crawler Gets Souped-Up for SLS

Shuttle Discovery riding one of KSC’s crawler-transporters to Launch Pad 39B in June 2005 (NASA)

One of NASA’s two iconic crawler-transporters — the 2,750-ton monster vehicles that have delivered rockets from Saturns to Shuttles to launch pads at Kennedy Space Center for nearly half a century — is getting an upgrade in preparation for NASA’s new future in space flight.

131 feet long, 113 feet wide and with a breakneck top speed of 2 mph (they’re strong, not fast!) NASA’s colossal crawler-transporters are the only machines capable of hauling fully-fueled rockets the size of office buildings safely between the Vehicle Assembly Building and the launch pads at Kennedy Space Center. Each 3.5-mile one-way trip takes around 6 hours.

Now that the shuttles are retired and each in or destined for its permanent occupation as a relic of human spaceflight, the crawler-transporters have not been doing much crawling or transporting down the 130-foot-wide, Tennessee river-rock-coated lanes at KSC… but that’s soon to change.

According to an article posted Sept. 5 on TransportationNation.org, crawler 2 (CT-2) is getting a 6-million-pound upgrade, bringing its carrying capacity from 12 million pounds to 18 million. This will allow the vehicle to bear the weight of a new generation of heavy-lift rockets, including NASA’s Space Launch System (SLS).

Read: SLS: NASA’s Next Big Thing

In addition to carrying capacity CT-2 will also be getting new brakes, exhausts, hydraulics and computer systems.

Part of a $2 billion plan to upgrade Kennedy Space Center for a future with both NASA and commercial spaceflight partners, the crawler will have two of its onboard power engines replaced — but the original generators that power its eight enormous tread belts will remain, having been thoroughly inspected and deemed to be “in pristine condition” according to the article by Matthew Peddie.

When constructed in the early 1960s, the crawler-transporters were the largest tracked vehicles ever made and cost $14 million — that’s about $100 million today. But were they to be built from scratch now they’d likely cost even more, as the US “is no longer the industrial powerhouse it was in the 1960s.”

Still, it’s good to know that these hardworking behemoths will keep bringing rockets to the pad, even after the shuttles have been permanently parked.

“When they built the crawler, they overbuilt it, and that’s a great thing because it’s able to last all these years. I think it’s a great machine that could last another 50 years if it needed to,” said Bob Myers, systems engineer for the crawler.

You can see some really great full panoramas of the CT-2 at the NASATech website, where photographer John O’Connor took three different panoramic views while the transporter was inside the Vehicle Assembly Building at KSC in Highbay 1. There’s even a pan close-up of the giant cleats that move the transporter.

Read the full article on TransportationNation.org here, and find out more about the crawler-transporters here and here.

Since the Apollo years the transporters have traveled an accumulated 2,526 miles, about the same distance as a one-way highway trip from KSC to Los Angeles.

Inset image: the Apollo 11 Saturn V, tower and mobile launch platform atop the crawler-transporter during rollout on May 20, 1969. (NASA) Bottom image: NASA Administrator Charles Bolden on the site of the CT-2 upgrade in August 2012. Each of the crawler’s 456 tread shoes weighs about one ton. (NASA)