One of the Most Interesting Exoplanets Just Got Even More Interesting!

An artistic impression of Trappist-1 B shortly before it passes behind the cool, red dwarf star, Trappist-1. Such stars are known for their activity with large starspots and eruptions. Trappist-1 B may experience intense volcanism. Credit Thomas Muller (HDA.MPIA)

Since the discovery of the first exoplanet in 1992, thousands more have been discovered. 40 light years away, one such system of exoplanets was discovered orbiting a star known as Trappist-1. Studies using the James Webb Space Telescope have revealed that one of the planets, Trappist-1 b has a crust that seems to be changing. Geological activity and weathering are a likely cause and if the latter, it suggests the exoplanet has an atmosphere too. 

Continue reading “One of the Most Interesting Exoplanets Just Got Even More Interesting!”

Astronomers Discover a New Meteor Shower. The Source is Comet 46P/Wirtanen

Comet Wirtanen imaged using a 130P-DS Newtonian telescope on a guided HEQ5 mount and an astro modified and cooled Canon 450D. 45 two-minute images stacked using deep sky stacked to stack comet and stars separately before recombination topo remove blurring. Stub Mandrel

Like many of you, I love a good meteor shower. I have fond memories of the Leonid meteor storm back in 1999 when several hundred per hour were seen at peak. Sadly meteor storms are not that common unlike meteor showers of which, there are about 20 major showers per year. Wait, there’s another one and this time it comes from the debris left behind from Comet 46P/Wirtanen with an expected peak on December 12. Last year, 23 meteors were seen on that night that matched the location of the comets trail. 

Continue reading “Astronomers Discover a New Meteor Shower. The Source is Comet 46P/Wirtanen”

7 Questions For 7 New Planets

Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech
Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech

NASA’s announcement last week of 7 new exoplanets is still causing great excitement. Any time you discover 7 “Earth-like” planets around a distant star, with 3 of them “potentially” in the habitable zone, it’s a big deal. But now that we’re over some of our initial excitement, let’s look at some of the questions that need to be answered before we can all get excited again.

What About That Star?

The star that the planets orbit, called Trappist-1, is a Red Dwarf star, much dimmer and cooler than our Sun. The three potentially habitable planets—TRAPPIST-1e, f, and g— get about the same amount of energy as Earth and Mars do from the Sun, because they’re so close to it. Red Dwarfs are very long-lasting stars, and their lifetimes are measured in the trillions of years, rather than billions of years, like our Sun is.

But Red Dwarfs themselves can have some unusual properties that are problematic when it comes to supporting life on nearby planets.

This illustration shows TRAPPIST-1 in relation to our Sun. Image: By ESO – http://www.eso.org/public/images/eso1615e/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=48532941

Red Dwarfs can be covered in starspots, or what we call sunspots when they appear on our Sun. On our Sun, they don’t have much affect on the amount of energy received by the Earth. But on a Red Dwarf, they can reduce the energy output by up to 40%. And this can go on for months at a time.

Other Red Dwarfs can emit powerful flares of energy, causing the star to double in brightness in mere minutes. Some Red Dwarfs constantly emit these flares, along with powerful magnetic fields.

Part of the excitement surrounding the Trappist planets is that they show multiple rocky planets in orbit around a Red Dwarf. And Red Dwarfs are the most common type of star in the Milky Way. So, the potential for life-supporting, rocky planets just grew in a huge way.

But we don’t know yet how the starspots and flaring of Red Dwarfs will affect the potential habitability of planets orbiting them. It could very well render them uninhabitable.

Will Tidal Locking Affect the Planets’ Habitability?

The planets orbiting Trappist-1 are very likely tidally locked to their star. This means that they don’t rotate, like Earth and the rest of the planets in our Solar System. This has huge implications for the potential habitability of these planets. With one side of the planet getting all the energy from the star, and the other side in perpetual darkness, these planets would be nothing like Earth.

Tidal locking is not rare. For example, Pluto and its moon Charon (above) are tidally locked to each other, as are the Earth and the Moon. But can life appear and survive on a planet tidally locked to its star? Credit: NASA/JHUAPL/SwRI

One side would be constantly roasted by the star, while the other would be frigid. It’s possible that some of these planets could have atmospheres. Depending on the type of atmosphere, the extreme temperature effects of tidal locking could be mitigated. But we just don’t know if or what type of atmosphere any of the planets have. Yet.

So, Do They Have Atmospheres?

We just don’t know yet. But we do have some constraints on what any atmospheres might be.

Preliminary data from the Hubble Space Telescope suggests that TRAPPIST 1b and 1c don’t have extended gas envelopes. All that really tells us is that they aren’t gaseous planets. In any case, those two planets are outside of the habitable zone. What we really need to know is if TRAPPIST 1e, 1f, and 1g have atmospheres. We also need to know if they have greenhouse gases in their atmospheres. Greenhouse gases could help make tidally locked planets hospitable to life.

On a tidally locked planet, the termination line between the sunlit side and the dark side is considered the most likely place for life to develop. The presence of greenhouse gases could expand the habitable band of the termination line and make more of the dark side warmer.

We won’t know much about any greenhouse gases in the atmospheres of these planets until the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (EELT) are operating. Those two ‘scopes will be able to analyze the atmospheres for greenhouse gases. They might also be able to detect biosignatures like ozone and methane in the atmospheres.

We’ll have to wait a while for that though. The JWST doesn’t launch until October 2018, and the EELT won’t see first light until 2024.

Do They Have Liquid Water?

We don’t know for sure if life requires liquid water. We only know that’s true on Earth. Until we find life somewhere else, we have to be guided by what we know of life on Earth. So we always start with liquid water.

A study published in 2016 looked at planets orbiting ultra-cool dwarfs like TRAPPIST-1. They determined that TRAPPIST 1b and 1c could have lost as much as 15 Earth oceans of water during the early hot phase of their solar system. TRAPPIST 1d might have lost as much as 1 Earth ocean of water. If they had any water initially, that is. But the study also shows that they may have retained some of that water. It’s not clear if the three habitable planets in the TRAPPIST system suffered the same loss of initial water. But if they did, they could have retained a similar amount of water.

Artist’s impression of an “eyeball” planet, a water world where the sun-facing side is able to maintain a liquid-water ocean. Credit and Copyright: eburacum45/ DeviantArt

There are still a lot of questions here. The word “habitable” only means that they are receiving enough energy from their star to keep water in liquid form. Since the planets are tidally locked, any water they did retain could be frozen on the planets’ dark side. To find out for sure, we’ll have to point other instruments at them.

Are Their Orbits Stable?

Planets require stable orbits over a biologically significant period of time in order for life to develop. Conditions that change too rapidly make it impossible for life to survive and adapt. A planet needs a stable amount of solar radiation, and a stable temperature, to support life. If the solar radiation, and the planet’s temperature, fluctuates too rapidly or too much due to orbital instability, then life would not be able to adapt to those changes.

Right now, there’s no indication that the orbits of the TRAPPIST 1 planets are unstable. But we are still in the preliminary stage of investigation. We need a longer sampling of their orbits to know for sure.

Pelted by Interlopers?

Our Solar System is a relatively placid place when it comes to meteors and asteroids. But it wasn’t always that way. Evidence from lunar rock samples show that it may have suffered through a period called the “Late Heavy Bombardment.” During this time, the inner Solar System was like a shooting gallery, with Earth, Venus, Mercury, Mars, and our Moon being struck continuously by asteroids.

The cause of this period of Bombardment, so the theory goes, was the migration of the giant planets through the solar system. Their gravity would have dislodged asteroids from the asteroid belt and the Kuiper Belt, and sent them into the path of the inner, terrestrial planets.

We know that Earth has been hit by meteorites multiple times, and that at least one of those times, a mass extinction was the result.

Computer generated simulation of an asteroid strike on the Earth. Credit: Don Davis/AFP/Getty Images

The TRAPPIST 1 system has no giant planets. But we don’t know if it has an asteroid belt, a Kuiper Belt, or any other organized, stable body of asteroids. It may be populated by asteroids and comets that are unstable. Perhaps the planets in the habitable zone are subjected to regular asteroid strikes which wipes out any life that gets started there. Admittedly, this is purely speculative, but so are a lot of other things about the TRAPPIST 1 system.

How Will We Find Out More?

We need more powerful telescopes to probe exoplanets like those in the TRAPPIST 1 system. It’s the only way to learn more about them. Sending some kind of probe to a solar system 40 light years away is something that might not happen for generations, if ever.

Luckily, more powerful telescopes are on the way. The James Webb Space Telescope should be in operation by April of 2019, and one of its objectives is to study exoplanets. It will tell us a lot more about the atmospheres of distant exoplanets, and whether or not they can support life.

Other telescopes, like the Giant Magellan Telescope (GMT) and the European Extremely Large Telescope (E-ELT), have the potential to capture images of large exoplanets, and possibly even Earth-sized exoplanets like the ones in the TRAPPIST system. These telescopes will see their first light within ten years.

This artist’s impression shows the European Extremely Large Telescope (E-ELT) in its enclosure. The E-ELT will be a 39-metre aperture optical and infrared telescope. ESO/L. Calçada

What these questions show is that we can’t get ahead of ourselves. Yes, it’s exciting that the TRAPPIST planets have been discovered. It’s exciting that there are multiple terrestrial worlds there, and that 3 of them appear to be in the habitable zone.

It’s exciting that a Red Dwarf star—the most common type of star in our neighborhood—has been found with multiple rocky planets in the habitable zone. Maybe we’ll find a bunch more of them, and the prospect of finding life somewhere else will grow.

But it’s also possible that Earth, with all of its life supporting and sustaining characteristics, is an extremely unlikely occurrence. Special, rare, and unrepeatable.

Comet ISON Suddenly Brightens as it Dives Toward the Sun

Mike Hankey of Monkton, Maryland took this photo of Comet ISON in outburst this morning Nov. 14. The tail now shows multiple streamers. Click to enlarge. Credit: Mike Hankey

After a sleepy week, Comet ISON is suddenly coming alive. Several amateur astronomers and at least one professional astronomers are reporting today that the comet has brightened at least a full magnitude overnight.  Two days ago it glowed at around magnitude 7.5 and was visible weakly in 10×50 binoculars from a dark sky. Now it’s surged to around magnitude 5.5 – just above the naked eye limit – and continues to brighten. Several amateur astronomers have even seen it without optical aid.

Comet ISON on Nov. 10 before the recent outburst with well-developed dust (upper) and gas tails. Click ot enlarge. Credit: Damian Peach
Comet ISON on Nov. 10 before the recent outburst with well-developed dust (upper) and gas tails. Click ot enlarge. Credit: Damian Peach

ISON’s appearance has radically changed too. A week ago the comet developed a second gas or ion tail streaming alongside the wider, brighter dust tail. That new appendage has since grown like Pinocchio’s nose to nearly equal the length of the dust tail. I spotted it with averted vision Tuesday morning Nov. 12 through a 15-inch (37 cm) telescope. More exciting, the ISON’s head has been much brighter and more compact. Astronomers rate a comet’s degree of condensation or “DC” on a scale of 0 to 9 from extremely diffuse with no brightening in the center to disk-like or stellar. In recent days, Comet ISON has been packing it in at DC=6 or moderately compact and bright. Now amateurs are reporting that the comet’s head has brightened and become much more compact with a DC of 8.

Comet ISON in outburst with a completely changed tail appearance and bright, very compact coma shot this morning. Credit: Juanjo Gonzalez
Comet ISON in outburst with a completely changed tail appearance and bright, very compact coma shot this morning. Gonzalez reports the comet at magnitude 6.4. Click to enlarge. Credit: Juanjo Gonzalez

You can watch Comet ISON evolve right before your eyes in this panel of photos taken by Juanjo Gonzalez. Top  row left-right: Nov. 3 and Nov. 9. Bottom row left right: Nov. 12 and Nov. 14. The tail structure changes are dramatic. Click to enlarge. Credit: Juanjo Gonzalez
You can watch Comet ISON evolve right before your eyes in this panel of photos taken by Juanjo Gonzalez. Top row left-right: Nov. 3 and Nov. 9. Bottom row left right: Nov. 12 and Nov. 14. The tail structure changes are dramatic. Click to enlarge. Credit: Juanjo Gonzalez

Backing up reports of the outburst, astronomer Emmanuel Jehin of the TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) team, noted a tenfold increase in dust production around the comet’s nucleus on Nov. 11 and 12  plus additional jets of material blasting into the coma.   Jehin reports that the inner coma near the nucleus is still very sharp and shows no sign of disruption – so far, ISON’s hanging in there.

If you haven't seen the comet yet, you can use this map to track it through the weekend as it zips quickly through Virgo. The map shows the sky facing southeast just before the start of morning twilight or about 100 minutes before sunrise. ISON should be plainly visible in binoculars in a dark sky. Created with Chris Marriott's SkyMap program
If you haven’t seen the comet yet, you can use this map to track it through the weekend as it zips quickly through Virgo. The map shows the sky facing southeast just before the start of morning twilight or about 100 minutes before sunrise. ISON should be plainly visible in binoculars in a dark sky. Created with Chris Marriott’s SkyMap program

This is all great news for comet observers. The intense heat of the sun is beginning to boil away the comet’s ice with greater fury. The heat may also be exposing new cracks or breaks in ISON’s crust. Fresh ice means even more material becomes available for the sun to vaporize and likely additional jumps in brightness in the next day or two.

Trouble finding  Virgo? Use this wide-view map to get oriented. Slide from Mars toward Spica near the southeastern horizon. ISON is about halfway between Spica and Gamma Virginis. The map shows the sky around 5-5:30 a.m. CST. Stellarium
Trouble finding Virgo? Use this wide-view map to get oriented. Slide from Mars toward Spica near the southeastern horizon. ISON is about halfway between Spica and Gamma Virginis. The map shows the sky around 5-5:30 a.m. CST. Stellarium

Comet ISON Heats Up, Grows New Tail

Two new tail streamers are visible between Comet ISON's green coma and bright star near center. in this photo taken on Nov. 6. They're possibly the beginning of an ion tail. Click to enlarge. Credit: Damian Peach

I’m starting to get the chills about Comet ISON. I can’t help it. With practically every telescope turned the comet’s way fewer than three short weeks before perihelion, every week brings new images and developments. The latest pictures show a brand new tail feature emerging from the comet’s bulbous coma. For months, amateur and professional astronomers alike have watched ISON’s slowly growing dust tail that now stretches nearly half a degree or a full moon’s diameter. In the past two days, photos taken by amateur astronomers reveal what appears to be a nascent ion or gas tail. Damian Peach’s Nov. 6 image clearly shows two spindly streamers.

Early detection of ISON's possible ion tail on Oct. 31 by amateur astronomer Efrain Morales Rivera in a 12-inch telescope.
Early detection of ISON’s possible ion tail on Oct. 31 by amateur astronomer Efrain Morales Rivera in a 12-inch telescope.

A picture of the comet two days earlier on Nov. 4 also shows new tail structures. Credit: Justin Ng
The comet on Nov. 4 also shows the new tail structures extending farther from the coma. Credit: Justin Ng

Ion tails are composed of gases like carbon monoxide and carbon dioxide  blown into a narrow straight tail by the solar wind and electrified to fluorescence by the sun’s ultraviolet light. Being made of ions (charged particles), they interact with the sun’s wind of charged particles. Changes in the intensity and direction of the magnetic field associated with sun’s exhalations kink and twist ion tails into strange shapes. Strong particle blasts can even snap off an ion tail. Not that a comet could care. Like a lizard, it grows a new one back a day or three later.

Comet ISON plunges sunward across Virgo in the coming days. Watch for it low in the eastern sky shortly before the start of dawn. Click to enlarge and print for outdoor use. Stellarium
Comet ISON plunges sunward across Virgo in the coming days. Watch for it low in the eastern sky shortly before the start of dawn. Click to enlarge and print for outdoor use. Stellarium

A fresh forked tail isn’t ISON’s only new adornment. Its inner coma, location of the bright “false nucleus”, is becoming more compact, and the overall magnitude of the comet has been slowly but steadily rising. Two mornings ago I pointed a pair of 10×50 binoculars ISON’s way and was surprised to see it glowing at magnitude 8.5.  Things happen quickly now that the comet is picking up speed  While it appeared as little more than a small smudge, any comet crossing into binocular territory is cause for excitement. Other observers are reporting magnitudes as bright as 8.0. Estimates may vary among observers, but the trend is up. Seiichi Yoshida’s excellent Weekly Information about Bright Comets site predicts another half magnitude brightening over the next few days. You can use the map here to spot it in your own glass before the moon returns to the morning sky.

Photo taken through the TRAPPIST 60-cm telescope using a narrowband CN (390 nm) filter shows two active jets in ISON's inner coma (right) and a broad dust tail at left. Credit: Cyrielle Opitom, TRAPPIST team
False color photo taken with the TRAPPIST 60-cm telescope using a narrowband CN (390 nm) filter at 8:45 Universal Time Nov. 5 shows two active jets (small double-plume) in ISON’s inner coma (right) and the dust tail at left. Field of view is 5×5 arc minutes. North is up, east to the left. Credit: Cyrielle Opitom, TRAPPIST team

But wait, there’s more. Emmanuel Jehin, a member of the TRAPPIST ( TRAnsiting Planets and PlanetesImals in Small Telescopes) team, a group of astronomers dedicated to the detection of exoplanets and the study of comets and other small solar system bodies, reports a rapid rise in ISON’s gas production rate in the past several days. They’ve increased by a factor of two since Nov. 3. Could the spike be connected to the development of an ion tail? Jehin and team have also recorded two active jets coming from the comet’s nucleus using specialized filters. Dust production rates however have remained flat.

The Comet ISON Observing Campaign is both terrestrial and celestial. Nine different NASA and ESA spacecraft, eight of which are shown here, have observed comet ISON so far. Credit: NASA/ESA
The Comet ISON Observing Campaign is both terrestrial and celestial. Nine different NASA and ESA spacecraft, eight of which are shown here, have observed comet ISON so far. Credit: NASA/ESA

Casey Lisse of the Comet ISON Observing campaign (CIOC) reports that the Chandra X-ray Observatory just became the 9th spacecraft to image the comet . More details and photos should be available soon. The campaign predicts the comet will peak in brightness between -3 to -5 magnitude when it zips closest to the sun on Nov. 28. Want to ride alongside the comet during its passage through the inner solar system? Click on this awesome, interactive simulator.

 Hubble Space Telescope image of comet C/1999 S4 (LINEAR) that disintegrated around July 23, 2000. Credit: NASA/ESA

Hubble Space Telescope image of comet C/1999 S4 (LINEAR) that disintegrated around July 23, 2000. Credit: NASA/ESA

Because ISON is a fresh-faced visitor from the distant Oort Cloud that will soon face the full fury of the sun, speculation of its fate has ranged across the spectrum. Everything from breakup and dissolution before perihelion to surviving intact trailing a spectacular dust tail. The comet is currently approaching the 0.8 A.U. mark (74.4 million miles / 120 million km) when previous comets C/1999 S4 LINEAR in 2000 and C/2010 X1 Elenin in 2011 crumbled to pieces and vaporized away. Will ISON have the internal strength to pass the test and venture further into the solar boil? Should it survive, it faces a formidable foe – the sun. Both the intense solar heat and gravitational stress on the comet’s nucleus could easily tear it apart. If this happens a few days before perihelion we’ll be left with little to see, but if ISON busts up a day or two after perihelion, watch out baby. When the comet reappears in the morning sky, it may be missing its head but make it up for the loss with a spectacular tail of fresh dust and ice many degrees in length. This is exactly what happened to Comet C/2011 W3 (Lovejoy) in December 2011. After its close graze with the home star, the nucleus disintegrated, producing a striking tail seen by skywatchers in the southern hemisphere.

Pictures of Comet C/2011 W3 Lovejoy on Dec. 22, 2011 after perihelion passage. Its head was very tiny and faint with a long tail. Credit: Chris Wyatt
Pictures of Comet C/2011 W3 Lovejoy on Dec. 22, 2011 after perihelion passage. Will ISON be a repeat? Credit: Chris Wyatt

The final scenario sees Comet ISON pushing past all barriers intact and ready to put on a splendid show. Whatever happens, I suspect we’re in for surprises ahead. For a more detailed analysis of these possibilities I invite you check out Matthew Knight’s blog on the CIOC website.