This is Kepler’s Final Image

MATLAB Handle Graphics. Credit: NASA/Ames Research Center

On October 30th, 2018, after nine years of faithful service, the Kepler Space Telescope was officially retired. With nearly 4000 candidates and 2,662 confirmed exoplanets to its credit, no other telescope has managed to teach us more about the worlds that exist beyond our Solar System. In the coming years, multiple next-generation telescopes will be deployed that will attempt to build on the foundation Kepler built.

And yet, even in retirement, Kepler is still providing us with impressive discoveries. For starters, NASA started the new year by announcing the discovery of several new exoplanets, including a Super-Earth and a Saturn-sized gas giant, as well as an unusually-sized planet that straddles these two categories. On top of that, NASA recently released the “last lighty” image and recordings obtained by Kepler before it ran out of fuel and ended its mission.

Continue reading “This is Kepler’s Final Image”

One of the TRAPPIST-1 Planets Has an Iron Core

Artist's impression of TRAPPIST-1e, which has a large iron core, according to a recent study. Credit: NASA/JPL-Caltech

In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. Since that time, multiple studies have been conducted to determine whether or not any of these planets could be habitable.

In accordance with this goal, these studies have focused on whether or not these planets have atmospheres, their compositions and their interiors. One of the latest studies was conducted by two researchers from Columbia University’s Cool Worlds Laboratory, who determined that one of the TRAPPIST-1 planets (TRAPPIST-1e) has a large iron core – a finding which could have implications for this planet’s habitability.

Continue reading “One of the TRAPPIST-1 Planets Has an Iron Core”

Weekly Space Hangout: April 4, 2018: Mathew Anderson’s “Habitable Exoplanets”

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guests:
Mathew Anderson, author and good friend of the Weekly Space Hangout, joins us again this week to discuss his newest book, Habitable Exoplanets: Red Dwarf Systems Like TRAPPIST-1, in which he focuses on exoplanet properties and the chances for habitable planets around Red Dwarf stars.

As he did with his two prior books, Our Cosmic Story and its followup Is Anyone Out There, Mathew will be offering a free e-copy of Habitable Exoplanets: Red Dwarf Systems Like TRAPPIST-1 to viewers of the Weekly Space Hangout, so be sure to tune in this week to find out how to get your free copy of this fascinating book.

Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

TRAPPIST-1 Planets Might Actually Have Too Much Water to be Habitable

Artist's impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

In February of 2017, the world was astounded to learn that astronomers – using data from the TRAPPIST telescope in Chile and the Spitzer Space Telescope – had identified a system of seven rocky exoplanets in the TRAPPIST-1 system. As if this wasn’t encouraging enough for exoplanet-enthusiasts, it was also indicated that three of the seven planets orbited within the stars’ circumstellar habitable zone (aka. “Goldilocks Zone”).

Since that time, this system has been the focus of considerable research and follow-up surveys to determine whether or not any of its planets could be habitable. Intrinsic to these studies has been the question whether or not the planets have liquid water on their surfaces. But according to a new study by a team of American astronomers, the TRAPPIST planets may actually have too much water to support life.

Continue reading “TRAPPIST-1 Planets Might Actually Have Too Much Water to be Habitable”

Good News For The Search For Life, The Trappist System Might Be Rich In Water

This artist’s impression shows several of the planets orbiting the ultra-cool red dwarf star TRAPPIST-1. New observations and analysis have yielded good estimates of the densities of all seven of the Earth-sized planets and suggest that they are rich in volatile materials, probably water. Image Credit: ESO

When we finally find life somewhere out there beyond Earth, it’ll be at the end of a long search. Life probably won’t announce its presence to us, we’ll have to follow a long chain of clues to find it. Like scientists keep telling us, at the start of that chain of clues is water.

The discovery of the TRAPPIST-1 system last year generated a lot of excitement. 7 planets orbiting the star TRAPPIST-1, only 40 light years from Earth. At the time, astronomers thought at least some of them were Earth-like. But now a new study shows that some of the planets could hold more water than Earth. About 250 times more.

Continue reading “Good News For The Search For Life, The Trappist System Might Be Rich In Water”

What is the Radial Velocity Method?

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

Welcome back to our series on Exoplanet-Hunting methods! Today, we look at another widely-used and popular method of exoplanet detection, known as the Radial Velocity (aka. Doppler Spectroscopy) Method.

The hunt for extra-solar planets sure has heated up in the past decade or so! Thanks to improvements made in instrumentation and methodology, the number of exoplanets discovered (as of December 1st, 2017) has reached 3,710 planets in 2,780 star systems, with 621 system boasting multiple planets. Unfortunately, due to the limits astronomers are forced to contend with, the vast majority have been discovered using indirect methods.

When it comes to these indirect methods, one of the most popular and effective is the Radial Velocity Method – also known as Doppler Spectroscopy. This method relies on observing the spectra stars for signs of “wobble”, where the star is found to be moving towards and away from Earth. This movement is caused by the presence of planets, which exert a gravitational influence on their respective sun.

Continue reading “What is the Radial Velocity Method?”

Astronomers Find Another Solar System with 8 Planets. Uh, Pluto, About that Deplaneting…

In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle
In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle

With every passing year, more and more extra-solar planets are discovered. To make matters more interesting, improvements in methodology and technology are allowing for the discovery of more planets within individual systems. Consider the recent announcement of a seven-planet system around the red dwarf star known as TRAPPIST-1. At the time, this discovery established the record for most exoplanets orbiting a single star.

Well move over TRAPPIST-1! Thanks to the Kepler Space Telescope and machine learning, a team from Google AI and the Harvard-Smithsonian Center of Astrophysics (CfA) recently discovered an eighth planet in the distant star system of Kepler-90. Known as Kepler -90i, the discovery of this planet was made possible thanks to Google algorithms that detected evidence of a weak transit signal in the Kepler mission data.

Continue reading “Astronomers Find Another Solar System with 8 Planets. Uh, Pluto, About that Deplaneting…”

New Study Claims that TRAPPIST-1 Could Also Have Gas Giants

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech
Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In February of 2017, NASA scientists announced the existence of seven terrestrial (i.e. rocky) planets within the TRAPPIST-1 star system. Since that time, the system has been the focal point of intense research to determine whether or not any of these planets could be habitable. At the same time, astronomers have been wondering if all of the system’s planets are actually accounted for.

For instance, could this system have gas giants lurking in its outer reaches, as many other systems with rocky planets (for instance, ours) do? That was the question that a team of scientists, led by researchers from the Carnegie Institute of Science, sought to address in a recent study. According to their findings, TRAPPIST-1 may be orbited by gas giants at a much-greater distance than its seven rocky planets.

Continue reading “New Study Claims that TRAPPIST-1 Could Also Have Gas Giants”

Hubble Spots First Indications of Water on TRAPPIST-1s Planets

This artist’s impression shows the view from the surface of one of the planets in the TRAPPIST-1 system. A powerful laser beacon using current and near-future technology could send a signal strong enough to be detected by any alien astronomers here. Credit: NASA/ESA/HST
This artist’s impression shows the view from the surface of one of the planets in the TRAPPIST-1 system. A powerful laser beacon using current and near-future technology could send a signal strong enough to be detected by any alien astronomers here. Credit: NASA/ESA/HST

In February of 2017, astronomers from the European Southern Observatory (ESO) announced the discovery of seven rocky planets around the nearby star of TRAPPIST-1. Not only was this the largest number of Earth-like planets discovered in a single star system to date, the news was also bolstered by the fact that three of these planets were found to orbit within the star’s habitable zone.

Since that time, multiple studies have been conducted to ascertain the likelihood that these planets are actually habitable. Thanks to an international team of scientists who used the Hubble Space Telescope to study the system’s planets, we now have the first clues as to whether or not water (a key ingredient

Continue reading “Hubble Spots First Indications of Water on TRAPPIST-1s Planets”

Scientists Discover TRAPPIST-1 is Older Than Our Solar System

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech
Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. As such, multiple studies have been conducted that have sought to determine whether or not any planets in the system could be habitable.

When it comes to habitability studies, one of the key factors to consider is the age of the star system. Basically, young stars have a tendency to flare up and release harmful bursts of radiation while planets that orbit older stars have been subject to radiation for longer periods of time. Thanks to a new study by a pair of astronomers, it is now known that the TRAPPIST-1 system is twice as old as the Solar System.

Continue reading “Scientists Discover TRAPPIST-1 is Older Than Our Solar System”