These are the Fastest Stars in the Galaxy

Artist concept showing a hypervelocity star escaping our galaxy. Credit: NASA, ESA, and G. Bacon (STScI)

Until recently, there were only ten known stars on trajectories that will allow them to escape the Milky Way Galaxy, thrown astray by powerful supernova explosions. A new study using data from ESA’s Gaia survey this June has revealed an additional six runaways, two of which break the record for the fastest radial velocity of any runaway star ever seen: 1694 km/s and 2285 km/s.

Continue reading “These are the Fastest Stars in the Galaxy”

The Dark Energy Camera Captures the Remains of an Ancient Supernova

The US DOE's DECam captured this image of the tattered shell of the first-ever recorded supernova. A ring of glowing debris is all that remains of a white dwarf star that exploded more than 1800 years ago and was recorded by Chinese astronomers as a ‘guest star’. This special image, which covers an impressive 45 arcminutes on the sky, gives a rare view of the entirety of this supernova remnant. Image Credit: CTIO/NOIRLab/DOE/NSF/AURA T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), J. Miller (Gemini Observatory/NSF’s NOIRLab), M. Zamani & D. de Martin (NSF’s NOIRLab)

The first written record of a supernova comes from Chinese astrologers in the year 185. Those records say a ‘guest star’ lit up the sky for about eight months. We now know that it was a supernova.

All that remains is a ring of debris named RCW 86, and astronomers working with the DECam (Dark Energy Camera) used it to examine the debris ring and the aftermath of the supernova.

Continue reading “The Dark Energy Camera Captures the Remains of an Ancient Supernova”

JWST Sees the Same Supernova Three Times in an Epic Gravitational Lens

JWST image with three smaller insets displaying three lensed images comprised of a single background galaxy up close. Supernova candidate AT 2022riv (middle image with parallel lines) is the oldest image, followed by two subsequent images ~320 days after the first image (bottom) and ~1000 days after the first image (top). Neither of the two subsequent images have the supernova present. (Credit: ESA/Webb, NASA & CSA, P. Kelly)

The NASA/European Space Agency (ESA)/Canadian Space Agency (CSA) James Webb Space Telescope (JWST) mission continues to dazzle and amaze with every image it beams back to Earth, and a recent observation depicting not one, not two, but three images of the same galaxy has been no different, as they proudly tweeted on February 28, 2023.

Continue reading “JWST Sees the Same Supernova Three Times in an Epic Gravitational Lens”

Binary Stars Live Complicated Lives, Especially Near the End

Artist's impression of a red giant star. If the star is in a binary pair, what happens to its sibling? Credit:NASA/ Walt Feimer

We know what will happen to our Sun.

It’ll follow the same path other stars of its ilk follow. It’ll start running out of hydrogen, swell up and cool and turn red. It’ll be a red giant, and eventually, it’ll become so voluminous that it will consume the planets closest to it and render Earth uninhabitable. Then billions of years from now, it’ll create one of those beautiful nebulae we see in Hubble images, and the remnant Sun will be a shrunken white dwarf in the center of the nebula, a much smaller vestige of the luminous body it once was.

This is the predictable life the Sun lives as a solitary star. But what happens to stars that have a solar sibling? How would its binary companion fare?

Continue reading “Binary Stars Live Complicated Lives, Especially Near the End”

From the way These Stars Look, a Supernova is Inevitable

Sometimes loud explosions are easier to deal with when you know they’re coming.  They are also easier to watch out for.  So when astronomers from the University of Warwick found a rare tear-drop shaped star, known as HD265435, they knew they were looking at a potential new supernova waiting to happen.  The only caveat – it might not actually happen until 70 million years from now.

Continue reading “From the way These Stars Look, a Supernova is Inevitable”

Black Hole-Neutron Star Collisions Could Finally Settle the Different Measurements Over the Expansion Rate of the Universe

If you’ve been following developments in astronomy over the last few years, you may have heard about the so-called “crisis in cosmology,” which has astronomers wondering whether there might be something wrong with our current understanding of the Universe. This crisis revolves around the rate at which the Universe expands: measurements of the expansion rate in the present Universe don’t line up with measurements of the expansion rate during the early Universe. With no indication for why these measurements might disagree, astronomers are at a loss to explain the disparity.

The first step in solving this mystery is to try out new methods of measuring the expansion rate. In a paper published last week, researchers at University College London (UCL) suggested that we might be able to create a new, independent measure of the expansion rate of the Universe by observing black hole-neutron star collisions.

Continue reading “Black Hole-Neutron Star Collisions Could Finally Settle the Different Measurements Over the Expansion Rate of the Universe”

This Star Has Been Going Nova Every Year, for Millions of Years

A nova star is like a vampire that siphons gas from its binary partner. As it does so, the gas is compressed and heated, and eventually it explodes. The remnant gas shell from that explosion expands outward and is lit up by the stars at the center of it all. Most of these novae explode about once every 10 years.

But now astrophysicists have discovered one remnant so large that the star that created it must have been erupting yearly for millions of years.

Continue reading “This Star Has Been Going Nova Every Year, for Millions of Years”

What Are Multiple Star Systems?

What Are Multiple Star Systems?
What Are Multiple Star Systems?


When we do finally learn the full truth about our place in the galaxy, and we’re invited to join the Galactic Federation of Planets, I’m sure we’ll always be seen as a quaint backwater world orbiting a boring single star.

The terrifying tentacle monsters from the nightmare tentacle world will gurgle horrifying, but clearly condescending comments about how we’ve only got a single star in the Solar System.

The beings of pure energy will remark how only truly enlightened civilizations can come from systems with at least 6 stars, insulting not only humanity, but also the horrifying tentacle monsters, leading to another galaxy spanning conflict.

Yes, we’ll always be making up for our stellar deficit in the eyes of aliens, or whatever those creepy blobs use for eyes.

What we lack in sophistication, however, we make up in volume. In our Milky Way, fully 2/3rds of star systems only have a single star. The last 1/3rd is made up of multiple star systems.

The Milky Way as seen from Devil's Tower, Wyoming. Image Credit: Wally Pacholka
The Milky Way as seen from Devil’s Tower, Wyoming. Image Credit: Wally Pacholka

We’re taking binary stars, triple star systems, even exotic 7 star systems. When you mix and match different types of stars in various Odd Couple stellar apartments, the results get interesting.

Consider our own Solar System, where the Sun and planets formed together out a cloud of gas and dust. Gravity collected material into the center of the Solar System, becoming the Sun, while the rest of the disk spun up faster and faster. Eventually our star ignited its fusion furnace, blasting out the rest of the stellar nebula.

But different stellar nebulae can lead to the formation of multiple stars instead. What you get depends on the mass of the cloud, and how fast it’s rotating.

Check out this amazing photograph of a multiple star system forming right now.

ALMA image of the L1448 IRS3B system, with two young stars at the center and a third distant from them. Spiral structure in the dusty disk surrounding them indicates instability in the disk, astronomers said. Credit: Bill Saxton, ALMA (ESO/NAOJ/NRAO), NRAO/AUI/NSF
ALMA image of the L1448 IRS3B system, with two young stars at the center and a third distant from them. Spiral structure in the dusty disk surrounding them indicates instability in the disk, astronomers said. Credit: Bill Saxton, ALMA (ESO/NAOJ/NRAO), NRAO/AUI/NSF

In this image, you can see three stars forming together, two at the center, about 60 astronomical units away from each other (60 times the distance from the Earth to the Sun), and then a third orbiting 183 AU away.

It’s estimated these stars are only 10,000 to 20,000 years old. This is one of the most amazing astronomy pictures I ever seen.

When you have two stars, that’s a binary system. If the stars are similar in mass to each other, then they orbit a common point of mass, known as the barycenter. If the stars are different masses, then it can appear that one star is orbiting the other, like a planet going around a star.

When you look up in the sky, many of the single stars you see are actually binary stars, and can be resolved with a pair of binoculars or a small telescope. For example, in a good telescope, Alpha Centauri can be resolved into two equally bright stars, with the much dimmer Proxima Centauri hanging out nearby.

The two bright stars are (left) Alpha Centauri and (right) Beta Centauri. The faint red star in the center of the red circle is Proxima Centauri. Credit: Skatebiker at English Wikipedia (CC BY-SA 3.0)
The two bright stars are (left) Alpha Centauri and (right) Beta Centauri. The faint red star in the center of the red circle is Proxima Centauri. Credit: Skatebiker at English Wikipedia (CC BY-SA 3.0)

You have to be careful, though, sometimes stars just happen to be beside each other in the sky, but they’re not actually orbiting one another – this is known as an optical binary. It’s a trap.

Astronomers find that you can then get binary stars with a third companion orbiting around them. As long as the third star is far enough away, the whole system can be stable. This is a triple star system.

You can get two sets of binary stars orbiting each other, for a quadruple star system.

In fact, you can build up these combinations of stars up. For example, the star system Nu Scorpii has 7 stars in a single system. All happily orbiting one another for eons.

If stars remained unchanging forever, then this would be the end of our story. However, as we’ve discussed in other articles, stars change over time, bloating up as red giants, detonating as supernovae and turning into bizarre objects, like white dwarfs, neutron stars and even black holes. And when these occur in multiple star systems, well, watch the sparks fly.

There are a nearly infinite combinations you can have here: main sequence, red giant, white dwarf, neutron star, and even black holes. I don’t have time to go through all the combinations, but here are some highlights.

This artist’s impression shows VFTS 352 — the hottest and most massive double star system to date where the two components are in contact and sharing material. The two stars in this extreme system lie about 160 000 light-years from Earth in the Large Magellanic Cloud. This intriguing system could be heading for a dramatic end, either with the formation of a single giant star or as a future binary black hole. ESO/L. Calçada
VFTS 352 is the hottest and most massive double star system to date where the two components are in contact and sharing material. ESO/L. Calçada

For starters, binary stars can get so close they actually touch each other. This is known as a contact binary, where the two stars actually share material back and forth. But it gets even stranger.

When a main sequence star like our Sun runs out of hydrogen fuel in its core, it expands as a red giant, before cooling and becoming a white dwarf.

When a red giant is in a binary system, the distance and evolution of its stellar companion makes all the difference.

If the two stars are close enough, the red giant can pass material over to the other star. And if the red giant is large enough, it can actually engulf its companion. Imagine our Sun, orbiting within the atmosphere of a red giant star. Needless to say, that’s not healthy for any planets.

An even stranger contact binary happens when a red giant consumes a binary neutron star. This is known as a Thorne-Zytkow object. The neutron star spirals inward through the atmosphere of the red giant. When it reaches the core, it either becomes a black hole, gobbling up the red giant from within, or an even more massive neutron star. This is exceedingly rare, and only one candidate object has ever been observed.

A Type Ia supernova occurs when a white dwarf accretes material from a companion star until it exceeds the Chandrasekhar limit and explodes. By studying these exploding stars, astronomers can measure dark energy and the expansion of the universe. CfA scientists have found a way to correct for small variations in the appearance of these supernovae, so that they become even better standard candles. The key is to sort the supernovae based on their color. Credit: NASA/CXC/M. Weiss
A white dwarf accreting material from a companion star. Credit: NASA/CXC/M. Weiss

When a binary pair is a white dwarf, the dead remnant of a star like our Sun, then material can transfer to the surface of the white dwarf, causing novae explosions. And if enough material is transferred, the white dwarf explodes as a Type 1A supernova.

If you’re a star that was unlucky enough to be born beside a very massive star, you can actually kicked off into space when it explodes as a supernova. In fact, there are rogue stars which such a kick, they’re on an escape trajectory from the entire galaxy, never to return.

If you have two neutron stars in a binary pair, they release energy in the form of gravitational waves, which causes them to lose momentum and spiral inward. Eventually they collide, becoming a black hole, and detonating with so much energy we can see the explosions billions of light-years away – a short-period gamma ray burst.

The combinations are endless.

How Earth could look with two suns. Credit: NASA/JPL-Caltech/Univ. of Ariz.
How Earth could look with two suns. Credit: NASA/JPL-Caltech/Univ. of Ariz.

It’s amazing to think what the night sky would look like if we were born into a multiple star system. Sometimes there would be several stars in the sky, other times just one. And rarely, there would be an actual night.

How would life be different in a multiple star system? Let me know your thoughts in the comments.

In our next episode, we try to untangle this bizarre paradox. If the Universe is infinite, how did it start out as a singularity? That doesn’t make any sense.

We glossed over it in this episode, but one of the most interesting effects of multiple star systems are novae, explosions of stolen material on the surface of a white dwarf star. Learn more about it in this video.

What is a Nova?

What Is A Nova?
What Is A Nova?

There are times when I really wish astronomers could take their advanced modern knowledge of the cosmos and then go back and rewrite all the terminology so that they make more sense. For example, dark matter and dark energy seem like they’re linked, and maybe they are, but really, they’re just mysteries.

Is dark matter actually matter, or just a different way that gravity works over long distances? Is dark energy really energy, or is it part of the expansion of space itself. Black holes are neither black, nor holes, but that doesn’t stop people from imagining them as dark tunnels to another Universe.  Or the Big Bang, which makes you think of an explosion.

Another category that could really use a re-organizing is the term nova, and all the related objects that share that term: nova, supernova, hypernova, meganova, ultranova. Okay, I made those last couple up.

I guess if you go back to the basics, a nova is a star that momentarily brightens up. And a supernova is a star that momentarily brightens up… to death. But the underlying scenario is totally different.

New research shows that some old stars known as white dwarfs might be held up by their rapid spins, and when they slow down, they explode as Type Ia supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy. In this artist's conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet.   Credit: David A. Aguilar (CfA)
In this artist’s conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet. Credit: David A. Aguilar (CfA)

As we’ve mentioned in many articles already, a supernova commonly occurs when a massive star runs out of fuel in its core, implodes, and then detonates with an enormous explosion.  There’s another kind of supernova, but we’ll get to that later.

A plain old regular nova, on the other hand, happens when a white dwarf – the dead remnant of a Sun-like star – absorbs a little too much material from a binary companion. This borrowed hydrogen undergoes fusion, which causes it to brighten up significantly, pumping up to 100,000 times more energy off into space.

Imagine a situation where you’ve got two main sequence stars like our Sun orbiting one another in a tight binary system. Over the course of billions of years, one of the stars runs out of fuel in its core, expands as a red giant, and then contracts back down into a white dwarf. It’s dead.

Some time later, the second star dies, and it expands as a red giant. So now you’ve got a red dwarf and a white dwarf in this binary system, orbiting around and around each other, and material is streaming off the red giant and onto the smaller white dwarf.

Illustration of a white dwarf feeding off its companion star Credit: ESO / M. Kornmesser
Illustration of a white dwarf feeding off its companion star Credit: ESO / M. Kornmesser

This material piles up on the surface of the white dwarf forming a cosy blanket of stolen hydrogen. When the surface temperature reaches 20 million kelvin, the hydrogen begins to fuse, as if it was the core of a star. Metaphorically speaking, its skin catches fire. No, wait, even better. Its skin catches fire and then blasts off into space.

Over the course of a few months, the star brightens significantly in the sky. Sometimes a star that required a telescope before suddenly becomes visible with the unaided eye. And then it slowly fades again, back to its original brightness.

Some stars do this on a regular basis, brightening a few times a century. Others must clearly be on a longer cycle, we’ve only seen them do it once.

Astronomers think there are about 40 novae a year across the Milky Way, and we often see them in other galaxies.

tycho_brahe
Tycho Brahe: He lived like a sage and died like a fool. He also created his own cosmological model, the Tychonic system.

The term “nova” was first coined by the Danish astronomer Tycho Brahe in 1572, when he observed a supernova with his telescope. He called it the “nova stella”, or new star, and the name stuck. Other astronomers used the term to describe any star that brightened up in the sky, before they even really understood the causes.

During a nova event, only about 5% of the material gathered on the white dwarf is actually consumed in the flash of fusion. Some is blasted off into space, and some of the byproducts of fusion pile up on its surface.

Tycho's Supernova Remnant. Credit: Spitzer, Chandra and Calar Alto Telescopes.
Tycho’s Supernova Remnant. Credit: Spitzer, Chandra and Calar Alto Telescopes.

Over millions of years, the white dwarf can collect enough material that carbon fusion can occur. At 1.4 times the mass of the Sun, a runaway fusion reaction overtakes the entire white dwarf star, releasing enough energy to detonate it in a matter of seconds.

If a regular nova is a quick flare-up of fusion on the surface of a white dwarf star, then this event is a super nova, where the entire star explodes from a runaway fusion reaction.

You might have guessed, this is known as a Type 1a supernova, and astronomers use these explosions as a way to measure distance in the Universe, because they always explode with the same amount of energy.

Hmm, I guess the terminology isn’t so bad after all: nova is a flare up, and a supernova is a catastrophic flare up to death… that works.

Now you know. A nova occurs when a dead star steals material from a binary companion, and undergoes a momentary return to the good old days of fusion. A Type Ia supernova is that final explosion when a white dwarf has gathered its last meal.

‘Cosmic Zombie’ Star Triggered This Explosion In Nearby Galaxy

An infrared image of N103B, the remainders of a supernova that exploded about 1,000 years ago in the Large Magellanic Cloud, which is one of the closest galaxies to the Milky Way. Credit: NASA/JPL-Caltech/Goddard

It might be a bad idea to get close to dead stars. Like a White Walker from Game of Thrones, this “cosmic zombie” white dwarf star was dangerous even though it was just a corpse of a star like our own. The result from this violence is still visible in the Spitzer Space Telescope picture you see above.

Astronomers believe the giant star was shedding material (a common phenomenon in older stars), which fell on to the white dwarf star. As the gas built up on the white dwarf over time, the mass became unstable and the dwarf exploded. What’s left is still lying in a pool of gas about 160,000 light-years away from us.

“It’s kind of like being a detective,” stated Brian Williams of NASA’s Goddard Space Flight Center, who led the research. “We look for clues in the remains to try to figure out what happened, even though we weren’t there to see it.”

This explosion in the Large Magellanic Cloud — one of the closest satellite galaxies to Earth — is known as a Type 1a supernova, but it’s a rare breed of that kind. Type 1as are best known as “standard candles” because their explosions have a consistent luminosity. Knowing how luminous the supernova type is allows astronomers to estimate distance based on its apparent brightness; the fainter the supernova is, the further away it is.

Most Type 1as happen when two orbiting white dwarfs smash into each other, but this scenario is more akin to something that Earthlings saw in 1604. Informally called Kepler’s supernova, because it was discovered by astronomer Johannes Kepler, astronomers believe this arose from a red giant and white dwarf interaction. The evidence left for this conclusion showed the supernova leftovers embedded in dust and gas.

Investigators have submitted their results to the Astrophysical Journal.

Source: NASA Jet Propulsion Laboratory